Consider the following algorithm.

1: `function Mystery(A, s, f)`
2: `# A is a list and s, f are indices such that 0 ≤ s ≤ f + 1 ≤ length(A)`
3: `if s > f then`
4: `return 0`
5: `end if`
6: `m = \lfloor \frac{f - s + 1}{4} \rfloor`
7: `res = Mystery(A, s, s + m - 1)`
8: `# loop precondition goes here...`
9: `for i = s + m, ... , f - m do`
10: `res = res + A[i]`
11: `end for`
12: `# loop postcondition goes here...`
13: `res = res + Mystery(A, f - m + 1, f)`
14: `return res`
15: `end function`

1. State clear and precise preconditions for this algorithm.
2. State clear and precise postconditions for this algorithm.
3. Prove the correctness of this algorithm.

Note: You may assume that the loop is correct without proof, as long as you state clear preconditions and postconditions specifically for the loop where indicated by comments.