1. A "prime factorization" of an integer n is a sequence of prime numbers whose product equals n, e.g., $84=$ $2 \times 2 \times 3 \times 7$. Prove all integers $n \geq 2$ have a prime factorization.
2. What amounts of postages can be made exactly using only $3 \dot{c}$ and 5 ç stamps? Prove your claim by complete induction.
3. Define
$P(n)$: In every set of n kids, all kids have the same eye colour
The following proof tries to use simple induction to show $\forall n \in \mathbb{N}, P(n)$. Can you explain why the proof is wrong?
Base case: $P(0)$ is vacuously true: in every set of 0 kids, all kids have the same eye colour.
Induction step: Let $i \in \mathbb{N}$ and suppose $P(i)$ holds. Let S be a set of $i+1$ kids, say $S=\left\{h_{1}, h_{2}, \ldots, h_{i+1}\right\}$. Consider $\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$: this is a set of i kids, so by IH, all kids in that set have the same eye colour, say A. Now, consider $\left\{h_{2}, \ldots, h_{i}, h_{i+1}\right\}$: this is also a set of i kids, so by IH, all kids in that set have the same eye colour, say B. Since kids h_{2}, \cdots, h_{i} belong to both sets and cannot have two different eye colours, it must be that $A=B$. This means every kid in S has the same eye colour.
