1. Prove the correctness of the following algorithm.

```
1: function MULT(m, n)
        # Precondition: m \in \mathbb{N}, n \in \mathbb{Z}
2:
       x = m
3:
4:
       y = n
        z = 0
5:
6:
        # Loop Invariant: z = m \times n - x \times y
        while x \neq 0 do
7:
           if x \% 2 == 1 then
8:
               z = z + y
9:
           end if
10:
11:
           y = y \ll 1
           x = x \gg 1
12:
        end while
13:
       return z
14:
        # Postcondition: returns m \times n
15:
16: end function
```

▷ left shift, equivalent to $y = y \times 2$ ▷ right shift, equivalent to $x = \lfloor \frac{x}{2} \rfloor$

Ans:Recall that the right shift operator \gg removes some number of bits from the right end of its first operand. For example

$$37 \gg 1 = (100101) \gg 1 = (10010) = 18 = \lfloor \frac{37}{2} \rfloor$$
$$26 \gg 2 = (11010) \gg 2 = \underbrace{(1101)}_{13} \gg 1 = (110) = 6$$

Similarly, the left shift operator \ll adds 0s to the right end of its first operand. For example

$$12 \ll 1 = (1100) \ll 1 = (11000) = 24 = 2 \times 12$$

$$13 \ll 2 = (1101) \ll 2 = \underbrace{(11010)}_{26} \ll 1 = (110100) = 52$$

Now, in order to prove the correctness of algorithm, we have to prove for all inputs that satisfy precondition, postcondition holds after execution. But except the few initial assignments and a final return statement, the code implements a loop, so we have to focus on proving the correctness of the loop.

Partial Correctness: We know that proving the correctness of the loop requires us to prove the loop invariant. We have been suggested a loop invariant. Let's see if it is a reasonable choice for proving the correctness.

- 1. Before the first iteration (iteration 0), we have x = m, y = n, and $z = 0 = m \times n x \times y$.
- 2. Upon loop termination (x = 0), we have $z = m \times n 0 = m \times n$. But that is exactly what we want as the algorithm returns z after the loop.

So let's prove this loop invariant.

Proof. We will prove by induction on the iteration number that $z_i = m \times n - x_i \times y_i$ (loop invariant) in which the subscript *i* defines the iteration number and v_i is the value of *v* at the end of iteration *i*.

Base case: At iteration 0 (before execution of loop), $x_0 = m$, $y_0 = n$, $z_0 = 0$ so

Dept. of Computer Science, University of Toronto, St. George Campus

$$z_0 = 0 = m \times n - m \times n = m \times n - x_0 \times y_0$$

Induction step: Let $k \ge 0$ and suppose $z_k = m \times n - x_k \times y_k$ at the end of iteration k (IH). We want to prove $z_{k+1} = m \times n - x_{k+1} \times y_{k+1}$ at the end of iteration k + 1. Consider two cases:

Case 1: Assume there is no iteration number k + 1. Then $z_{k+1} = z_k$, $x_{k+1} = x_k$, $y_{k+1} = y_k$. Hence by IH, the loop invariant holds.

Case 2: If there is an iteration number k + 1. Then by loop condition $x_k \neq 0$. Moreover, $y_{k+1} = 2y_k$ (line 11) and $x_{k+1} = \lfloor \frac{x_k}{2} \rfloor$ (line 12). Now, consider the following cases:

Subcase A: $x_k \% 2 = 0$ (x_k is even).

$$z_{k+1} = z_k$$

= $m \times n - x_k \times y_k$ (by IH)
= $m \times n - (x_k/2) \times (2y_k)$ (x_k is even)
= $m \times n - x_{k+1} \times y_{k+1}$ (line11-12)

Subcase B: $x_k \% 2 = 1$ (x_k is odd).

$$z_{k+1} = z_k + y_k$$

= $m \times n - x_k \times y_k + y_k$ (by IH)
= $m \times n - (x_k - 1) \times y_k$
= $m \times n - (\frac{x_k - 1}{2}) \times (2y_k)$ (x_k is odd)
= $m \times n - x_{k+1} \times y_{k+1}$ (line11-12)

In all subcases, $z_{k+1} = m \times n - x_{k+1} \times y_{k+1}$. Therefore, by induction, the loop invariant holds for all $i \in \mathbb{N}$.

Termination: In order to prove the termination, we need to find a decreasing sequence of natural numbers. By the loop condition, the loop terminates at iteration i if $x_i = 0$. Moreover, by line 12, $x_{i+1} = \lfloor \frac{x_i}{2} \rfloor$. For any natural number s > 0, it is easy to see that $\lfloor \frac{s}{2} \rfloor \leq \frac{s}{2} < s$. Hence we can conclude that $x_{i+1} < x_i$. By precondition, $x_0 \in \mathbb{N}$ and hence x_i is a decreasing sequence of natural numbers and by theorem 2.5 in the textbook it should be finite, i.e., the loop terminates.