1. Prove the correctness of the following algorithm.
```
function \(\operatorname{mult}(m, n)\)
    \# Precondition: \(m \in \mathbb{N}, n \in \mathbb{Z}\)
    \(x=m\)
    \(y=n\)
    \(z=0\)
    \# Loop Invariant: \(z=m \times n-x \times y\)
    while \(x \neq 0\) do
        if \(x \% 2==1\) then
            \(z=z+y\)
            end if
    end while
    return z
    \# Postcondition: returns \(m \times n\)
end function
```

 \(y=y \ll 1 \quad \triangleright\) left shift, equivalent to \(y=y \times 2\)
 \(x=x \gg 1 \quad \triangleright\) right shift, equivalent to \(x=\left\lfloor\frac{x}{2}\right\rfloor\)
 Ans:Recall that the right shift operator \gg removes some number of bits from the right end of its first operand. For example

$$
\begin{aligned}
& 37 \gg 1=(100101) \gg 1=(10010)=18=\left\lfloor\frac{37}{2}\right\rfloor \\
& 26 \gg 2=(11010) \gg 2=\underbrace{(1101)}_{13} \gg 1=(110)=6
\end{aligned}
$$

Similarly, the left shift operator \ll adds 0 s to the right end of its first operand. For example

$$
\begin{aligned}
& 12 \ll 1=(1100) \ll 1=(11000)=24=2 \times 12 \\
& 13 \ll 2=(1101) \ll 2=\underbrace{(11010)}_{26} \ll 1=(110100)=52
\end{aligned}
$$

Now, in order to prove the correctness of algorithm, we have to prove for all inputs that satisfy precondition, postcondition holds after execution. But except the few initial assignments and a final return statement, the code implements a loop, so we have to focus on proving the correctness of the loop.

Partial Correctness: We know that proving the correctness of the loop requires us to prove the loop invariant. We have been suggested a loop invariant. Let's see if it is a reasonable choice for proving the correctness.

1. Before the first iteration (iteration 0), we have $x=m, y=n$, and $z=0=m \times n-x \times y$.
2. Upon loop termination $(x=0)$, we have $z=m \times n-0=m \times n$. But that is exactly what we want as the algorithm returns z after the loop.

So let's prove this loop invariant.
Proof. We will prove by induction on the iteration number that $z_{i}=m \times n-x_{i} \times y_{i}$ (loop invariant) in which the subscript i defines the iteration number and v_{i} is the value of v at the end of iteration i.

Base case: At iteration 0 (before execution of loop), $x_{0}=m, y_{0}=n, z_{0}=0$ so

$$
z_{0}=0=m \times n-m \times n=m \times n-x_{0} \times y_{0}
$$

Induction step: Let $k \geq 0$ and suppose $z_{k}=m \times n-x_{k} \times y_{k}$ at the end of iteration k (IH). We want to prove $z_{k+1}=m \times n-x_{k+1} \times y_{k+1}$ at the end of iteration $k+1$. Consider two cases:

Case 1: Assume there is no iteration number $k+1$. Then $z_{k+1}=z_{k}, x_{k+1}=x_{k}, y_{k+1}=y_{k}$. Hence by IH, the loop invariant holds.

Case 2: If there is an iteration number $k+1$. Then by loop condition $x_{k} \neq 0$. Moreover, $y_{k+1}=2 y_{k}$ (line 11) and $x_{k+1}=\left\lfloor\frac{x_{k}}{2}\right\rfloor$ (line 12). Now, consider the following cases:

Subcase A: $x_{k} \% 2=0$ (x_{k} is even).

$$
\begin{array}{rlrl}
z_{k+1} & =z_{k} \\
& =m \times n-x_{k} \times y_{k} & & (\text { by IH }) \\
& =m \times n-\left(x_{k} / 2\right) \times\left(2 y_{k}\right) & & \left(x_{k} \text { is even }\right) \\
& =m \times n-x_{k+1} \times y_{k+1} & & (\text { line11-12 })
\end{array}
$$

Subcase B: $x_{k} \% 2=1$ (x_{k} is odd).

$$
\begin{array}{rlrl}
z_{k+1} & =z_{k}+y_{k} \\
& =m \times n-x_{k} \times y_{k}+y_{k} & (\text { by } \mathrm{IH}) \\
& =m \times n-\left(x_{k}-1\right) \times y_{k} & \\
& =m \times n-\left(\frac{x_{k}-1}{2}\right) \times\left(2 y_{k}\right) & & \left(x_{k} \text { is odd }\right) \\
& =m \times n-x_{k+1} \times y_{k+1} & & (\text { line11-12 })
\end{array}
$$

In all subcases, $z_{k+1}=m \times n-x_{k+1} \times y_{k+1}$. Therefore, by induction, the loop invariant holds for all $i \in \mathbb{N}$.
Termination: In order to prove the termination, we need to find a decreasing sequence of natural numbers. By the loop condition, the loop terminates at iteration i if $x_{i}=0$. Moreover, by line $12, x_{i+1}=\left\lfloor\frac{x_{i}}{2}\right\rfloor$. For any natural number $s>0$, it is easy to see that $\left\lfloor\frac{s}{2}\right\rfloor \leq \frac{s}{2}<s$. Hence we can conclude that $x_{i+1}<x_{i}$. By precondition, $x_{0} \in \mathbb{N}$ and hence x_{i} is a decreasing sequence of natural numbers and by theorem 2.5 in the textbook it should be finite, i.e., the loop terminates.

