1. Prove the correctness of the following algorithm.

1: function \textsc{mult}(m, n)
2: # Precondition: \(m \in \mathbb{N}, n \in \mathbb{Z} \)
3: \(x = m \)
4: \(y = n \)
5: \(z = 0 \)
6: # Loop Invariant: \(z = m \times n - x \times y \)
7: while \(x \neq 0 \) do
8: if \(x \mod 2 == 1 \) then
9: \(z = z + y \)
10: end if
11: \(y = y \ll 1 \) \hspace{1cm} \triangleright \text{left shift, equivalent to } y = y \times 2 \)
12: \(x = x \gg 1 \) \hspace{1cm} \triangleright \text{right shift, equivalent to } x = \lfloor \frac{x}{2} \rfloor \)
13: end while
14: return \(z \)
15: # Postcondition: returns \(m \times n \)
16: end function

Ans: Recall that the right shift operator \(\gg \) removes some number of bits from the right end of its first operand. For example

\[
\begin{align*}
37 \gg 1 &= (100101) \gg 1 = (10010) = 18 = \lfloor \frac{37}{2} \rfloor \\
26 \gg 2 &= (11010) \gg 2 = (1101) \gg 1 = (110) = 6
\end{align*}
\]

Similarly, the left shift operator \(\ll \) adds 0s to the right end of its first operand. For example

\[
\begin{align*}
12 \ll 1 &= (1100) \ll 1 = (11000) = 24 = 2 \times 12 \\
13 \ll 2 &= (1101) \ll 2 = (11010) \ll 1 = (110100) = 52
\end{align*}
\]

Now, in order to prove the correctness of the algorithm, we have to prove for all inputs that satisfy the precondition, the postcondition holds after execution. But except the few initial assignments and a final return statement, the code implements a loop, so we have to focus on proving the correctness of the loop.

Partial Correctness: We know that proving the correctness of the loop requires us to prove the loop invariant. We have been suggested a loop invariant. Let’s see if it is a reasonable choice for proving the correctness.

1. Before the first iteration (iteration 0), we have \(x = m, y = n, \) and \(z = 0 = m \times n - x \times y \).

2. Upon loop termination \((x = 0)\), we have \(z = m \times n - 0 = m \times n \). But that is exactly what we want as the algorithm returns \(z \) after the loop.

So let’s prove this loop invariant.

Proof. We will prove by induction on the iteration number that \(z_i = m \times n - x_i \times y_i \) (loop invariant) in which the subscript \(i \) defines the iteration number and \(v_i \) is the value of \(v \) at the end of iteration \(i \).

Base case: At iteration 0 (before execution of loop), \(x_0 = m, y_0 = n, z_0 = 0 \) so...
\[z_0 = 0 = m \times n - m \times n = m \times n - x_0 \times y_0 \]

Induction step: Let \(k \geq 0 \) and suppose \(z_k = m \times n - x_k \times y_k \) at the end of iteration \(k \) (IH). We want to prove \(z_{k+1} = m \times n - x_{k+1} \times y_{k+1} \) at the end of iteration \(k + 1 \). Consider two cases:

Case 1: Assume there is no iteration number \(k + 1 \). Then \(z_{k+1} = z_k, x_{k+1} = x_k, y_{k+1} = y_k \). Hence by IH, the loop invariant holds.

Case 2: If there is an iteration number \(k + 1 \). Then by loop condition \(x_k \neq 0 \). Moreover, \(y_{k+1} = 2y_k \) (line 11) and \(x_{k+1} = \lfloor \frac{x_k}{2} \rfloor \) (line 12). Now, consider the following cases:

Subcase A: \(x_k \% 2 = 0 \) (\(x_k \) is even).

\[
\begin{align*}
z_{k+1} &= z_k \quad \text{(by IH)} \\
&= m \times n - x_k \times y_k \\
&= m \times n - \left(\frac{x_k}{2} \right) \times (2y_k) \quad \text{\(x_k \) is even} \\
&= m \times n - x_{k+1} \times y_{k+1} \quad \text{\(\text{line11-12} \)}
\end{align*}
\]

Subcase B: \(x_k \% 2 = 1 \) (\(x_k \) is odd).

\[
\begin{align*}
z_{k+1} &= z_k + y_k \quad \text{(by IH)} \\
&= m \times n - x_k \times y_k + y_k \\
&= m \times n - (x_k - 1) \times y_k \\
&= m \times n - \left(\frac{x_k - 1}{2} \right) \times (2y_k) \quad \text{\(x_k \) is odd} \\
&= m \times n - x_{k+1} \times y_{k+1} \quad \text{\(\text{line11-12} \)}
\end{align*}
\]

In all subcases, \(z_{k+1} = m \times n - x_{k+1} \times y_{k+1} \). Therefore, by induction, the loop invariant holds for all \(i \in \mathbb{N} \).

Termination: In order to prove the termination, we need to find a decreasing sequence of natural numbers. By the loop condition, the loop terminates at iteration \(i \) if \(x_i = 0 \). Moreover, by line 12, \(x_{i+1} = \lfloor \frac{x_i}{2} \rfloor \). For any natural number \(s > 0 \), it is easy to see that \(\lfloor \frac{s}{2} \rfloor \leq \frac{s}{2} < s \). Hence we can conclude that \(x_{i+1} < x_i \). By precondition, \(x_0 \in \mathbb{N} \) and hence \(x_i \) is a decreasing sequence of natural numbers and by theorem 2.5 in the textbook it should be finite, i.e., the loop terminates.

\(\square \)