
CSC236H1F Tutorial Solutions for Week 8 Fall 2015

1. Prove the correctness of the following algorithm.

1: function mult(m, n)
2: # Precondition: m ∈ N, n ∈ Z
3: x = m
4: y = n
5: z = 0
6: # Loop Invariant: z = m× n− x× y
7: while x 6= 0 do
8: if x % 2 == 1 then
9: z = z + y

10: end if
11: y = y � 1 . left shift, equivalent to y = y × 2
12: x = x� 1 . right shift, equivalent to x = bx2 c
13: end while
14: return z
15: # Postcondition: returns m× n
16: end function

Ans:Recall that the right shift operator � removes some number of bits from the right end of its first operand.
For example

37� 1 = (100101)� 1 = (10010) = 18 = b37

2
c

26� 2 = (11010)� 2 = (1101)︸ ︷︷ ︸
13

� 1 = (110) = 6

Similarly, the left shift operator � adds 0s to the right end of its first operand. For example

12� 1 = (1100)� 1 = (11000) = 24 = 2× 12

13� 2 = (1101)� 2 = (11010)︸ ︷︷ ︸
26

� 1 = (110100) = 52

Now, in order to prove the correctness of algorithm, we have to prove for all inputs that satisfy precondition,
postcondition holds after execution. But except the few initial assignments and a final return statement, the code
implements a loop, so we have to focus on proving the correctness of the loop.

Partial Correctness: We know that proving the correctness of the loop requires us to prove the loop invariant. We
have been suggested a loop invariant. Let’s see if it is a reasonable choice for proving the correctness.

1. Before the first iteration (iteration 0), we have x = m, y = n, and z = 0 = m× n− x× y.

2. Upon loop termination (x = 0), we have z = m× n− 0 = m× n. But that is exactly what we want as the
algorithm returns z after the loop.

So let’s prove this loop invariant.

Proof. We will prove by induction on the iteration number that zi = m×n− xi× yi (loop invariant) in which the
subscript i defines the iteration number and vi is the value of v at the end of iteration i.

Base case: At iteration 0 (before execution of loop), x0 = m, y0 = n, z0 = 0 so

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of 2



CSC236H1F Tutorial Solutions for Week 8 Fall 2015

z0 = 0 = m× n−m× n = m× n− x0 × y0

Induction step: Let k ≥ 0 and suppose zk = m × n − xk × yk at the end of iteration k (IH). We want to prove
zk+1 = m× n− xk+1 × yk+1 at the end of iteration k + 1. Consider two cases:

Case 1: Assume there is no iteration number k + 1. Then zk+1 = zk, xk+1 = xk, yk+1 = yk. Hence by IH, the
loop invariant holds.

Case 2: If there is an iteration number k + 1. Then by loop condition xk 6= 0. Moreover, yk+1 = 2yk (line 11)
and xk+1 = bxk

2 c (line 12). Now, consider the following cases:

Subcase A: xk % 2 = 0 (xk is even).

zk+1 = zk

= m× n− xk × yk (by IH)

= m× n− (xk/2)× (2yk) (xk is even)

= m× n− xk+1 × yk+1 (line11-12)

Subcase B: xk % 2 = 1 (xk is odd).

zk+1 = zk + yk

= m× n− xk × yk + yk (by IH)

= m× n− (xk − 1)× yk

= m× n− (xk−1
2 )× (2yk) (xk is odd)

= m× n− xk+1 × yk+1 (line11-12)

In all subcases, zk+1 = m× n− xk+1 × yk+1. Therefore, by induction, the loop invariant holds for all i ∈ N.

Termination: In order to prove the termination, we need to find a decreasing sequence of natural numbers. By
the loop condition, the loop terminates at iteration i if xi = 0. Moreover, by line 12, xi+1 = bxi

2 c. For any natural
number s > 0, it is easy to see that b s2c ≤

s
2 < s. Hence we can conclude that xi+1 < xi. By precondition, x0 ∈ N

and hence xi is a decreasing sequence of natural numbers and by theorem 2.5 in the textbook it should be finite,
i.e., the loop terminates.
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