Consider the following algorithm.

```
function \(\operatorname{Mystery}(\mathrm{A}, \mathrm{s}, \mathrm{f})\)
    \# A is a list and s,f are indices such that \(0 \leq s \leq f+1 \leq \operatorname{length}(A)\)
    if \(s>f\) then
        return 0
    end if
    \(m=\left\lfloor\frac{f-s+1}{4}\right\rfloor\)
    res \(=\operatorname{Mystery}(A, s, s+m-1)\)
    \# loop precondition goes here...
    for \(i=s+m, \cdots, f-m\) do
        res \(=\) res \(+A[i]\)
    end for
    \# loop postcondition goes here...
    res \(=\) res \(+\operatorname{Mystery}(A, f-m+1, f)\)
    return res
end function
```

1. State clear and precise preconditions for this algorithm.

Ans: If you look at the comment at the start of the algorithm, you can find a partial answer. Moreover line 10 suggests that elements of A must be numeric. We can experss these formally as

1. A is a list of numbers
2. s, f are integers that satisfy $0 \leq s \leq f+1 \leq \operatorname{length}(A)$
3. State clear and precise postconditions for this algorithm.

Ans: The indices of lines 7, 9 and 13 are consecutive values and we do sum values in these lines. Hence, we intuitively expect the algorithm to add all the elements of A together. More formally:

1. Mystery (A, s, f) returns $A[s]+\cdots+A[f]$
2. Prove the correctness of this algorithm.

Note: You may assume that the loop is correct without proof, as long as you state clear preconditions and postconditions specifically for the loop where indicated by comments.

Ans:
Loop precondition: res $=A[s]+\cdots+A[s+m-1]($ res $=0$ if $m=0)$
Loop postcondition: res $=A[s]+\cdots+A[f-m]$
By induction on $n=f-s+1$, we prove that $\operatorname{Mystery}(A, s, f)$ terminates and returns $A[s]+\ldots+A[f]$ for all lists of numbers A and integers s, f such that $0 \leq s \leq f+1 \leq \operatorname{length}(A)$.

Base Case: Suppose A is a list of numbers and s, f are integers such that $0 \leq s=f+1 \leq \operatorname{length}(A)$. Then, the call Mystery (A, s, f) executes only line 3 and returns 0 , and 0 is the sum of empty list. Hence, Mystery (A, s, f) terminates and returns $A[s]+\cdots+A[f]$.
Induction Step: Suppose $n \geq 1$ and, for all integers s, f such that $0 \leq f-s+1<n$, Mystery (A, s, f) terminates and returns $A[s]+\cdots+A[f]$ for all lists of numbers A such that $0 \leq s \leq f+1 \leq l e n g t h(A)$ (IH). Suppose $f-s+1=n$ and A is a list of numbers such that $0 \leq s \leq f+1 \leq \operatorname{length}(A)$. Then, Mystery (A, s, f) executes the test on line 1 and fails since $n \geq 1$ implies $f \geq s$. Then it executes lines 6 and 7 and hence make recursive
call on an input that satisfies the preconditions $0 \leq s \leq s+m-1+1=s+m \leq l e n g t h(A)$. The input size of the recursive call is exactly $s+m-1-s+1=m=\left\lfloor\frac{n}{4}\right\rfloor<n$ so by IH, we know that this call will terminate and return $A[s]+\cdots+A[s+m-1]$. This means that the loop on line 9 is entered with its preconditions satisfied. Hence, when the loop terminates, the postconditions are also satisified. In other words, res $=A[s]+\ldots+A[f-m]$ upon termination of the loop. When the recursive call on line 13 is made, the arguments meet the precondition $0 \leq f-m+1 \leq f+1 \leq \operatorname{len}(A)$ (since $m \geq 0$), and the input size is again exactly $\left\lfloor\frac{n}{4}\right\rfloor$. By the IH , this call terminates and returns $A[s-m+1]+\cdots+A[f]$. Therefore, the current call also terminates and returns

$$
A[s]+\cdots+A[f-m]+A[f-m+1]+\cdots+A[f]=A[s]+\cdots+A[f]
$$

Hence, for all s, f such that $f-s+1=n$, Mystery (A, s, f) terminates and returns $A[s]+\cdots+A[f]$, for all lists of numbers A such that $0 \leq s \leq f+1 \leq \operatorname{length}(A)$. In conclusion, by induction, Mystery (A, s, f) terminates and returns $A[s]+\cdots+A[f]$ for all lists of numbers A such that $0 \leq s \leq f+1 \leq \operatorname{length}(A)$.

