1. Consider the function $\mathrm{T}(\mathrm{n})$ defined by the following recurrence:

$$
T(n)= \begin{cases}2 & \text { if } n=1 \\ 3+T\left(\left\lceil\frac{n}{2}\right\rceil\right) & \text { if } n>1\end{cases}
$$

Prove that $T(n)$ is in $\Theta(\log n)$.
Ans: In order to prove $\Theta(\log n)$, we have to show $T(n) \in \Omega(\log n)$ and $T(n) \in O(\log n)$. We prove both by induction.
$[T(n) \in \Omega(\log n)]$ : We need constants $B, c>0$ such that $T(n) \geq c \log n$ for all $n \geq B$. But, how can we find these values? Imagine the final proof and see what we need for the inductive step and the base case. In the induction step, we will have

$$
T(n)=3+T\left(\left\lceil\frac{n}{2}\right\rceil\right)
$$

We should use the IH to say that $T(n) \geq 3+c \log \left(\left\lceil\frac{n}{2}\right\rceil\right)$. Then, we have to work with this to simplify:

$$
\begin{aligned}
T(n) & \geq 3+c \log \left(\frac{n}{2}\right) \quad \text { (because }\left\lceil\frac{n}{2}\right\rceil \geq \frac{n}{2} \text { and } \log \text { is an increasing function) } \\
& =3+c(\log n-\log 2) \\
& \geq 3+c \log n-c \log 2
\end{aligned}
$$

But our goal is to show $T(n) \geq c \log n$. So we have to able to set the following inequality:

$$
c \log n+(3-c \log 2) \geq c \log n
$$

If we solve this inequality for $c$, we find that $c \leq \frac{3}{\log 2}$.
Note: We are not done yet. We should double-check the base case to be sure it works. In this example, we choose $B=1$ as our base value.

$$
T(1)=2>=0=\log (1)=\frac{3}{\log 2} \log (1)
$$

so we're good. Now let's prove our statement assuming $c=\frac{3}{\log 2}$.
Proof. Define our predicte as $P(n): T(n) \geq c \log n, c=\frac{3}{\log 2}$. We use complete induction to prove that $P(n), \forall n \geq$ 1.

Base Case: $\quad T(1)=2 \geq 0=c \log (1)$.
Induction step: Let $k>1$ and suppose $T(j) \geq c \log j$ for $1 \leq j<k(\mathrm{IH})$. We know prove $T(k) \geq c \log k$.

$$
\begin{aligned}
T(k) & =3+T\left(\left\lceil\frac{k}{2}\right\rceil\right) & & (\text { by recurrence for } T, \text { since } k>1) \\
& \geq 3+c \log \left(\left\lceil\frac{k}{2}\right\rceil\right) & & \left(\text { by IH, since } 1 \leq\left\lceil\frac{k}{2}\right\rceil<k \text { for } k>1\right) \\
& \geq 3+c(\log k-\log 2) & & (\lceil x\rceil \geq x \Rightarrow \log \lceil x\rceil \geq \log x \text { for all } x) \\
& \geq c \log k & & (\text { by choice of } c)
\end{aligned}
$$

Hence, by induction, $T(n) \geq c \log n$ for all $n \geq 1$.
$[T(n) \in O(\log n)]:$ As above, we start with induction step to find constraints on $c$.

$$
\begin{aligned}
T(n) & =3+T\left(\left\lceil\frac{n}{2}\right\rceil\right) \\
& \leq 3+c \log \left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

But wait, there is a problem here, we cannot go any further as $\left\lceil\frac{n}{2}\right\rceil \geq \frac{n}{2}$ but it is ideal for us to have the reverse inequality. We can overcome this problem by trying $T(n) \leq c \log (n-1)$.

$$
\begin{aligned}
T(n) & =3+T\left(\left\lceil\frac{n}{2}\right\rceil\right) & & \\
& \leq 3+c \log \left(\left\lceil\frac{n}{2}\right\rceil-1\right) & & (\text { by IH }) \\
& \leq 3+c \log \left(\frac{n+1}{2}-1\right) & & \left(\left\lceil\frac{x}{2}\right\rceil \leq \frac{x+1}{2}\right. \text {-needs proof as a lemma) } \\
& \leq 3+c \log \frac{n-1}{2} & & \\
& \leq c \log (n-1)+(3-c \log 2) & &
\end{aligned}
$$

As before, $T(n) \leq c \log (n-1)$ iff $\frac{3}{\log 2} \leq c$. So we can pick $c=\frac{3}{\log 2}$. Similar to the previous part, we have to check the base case to make sure the choice of $c$ works. We choose $B=2$ as our base case. Notice that if we instead choose $B=1$, then the base case will be $T(1)=2 \leq c \log (1-1)$. But $\log 0$ is undefined!

$$
T(2)=3+T\left(\left\lceil\frac{2}{2}\right\rceil\right)=3+T(1)=5 \not \leq c \log (2-1)=c \log 1=0
$$

It seems like, the base case doesn't want to yield! But don't panic, we can slightly change our bound to fix this. Let's see if we can prove $T(n) \leq \log (n-1)+5$ instead! For the Base case:

$$
T(2)=5 \leq c \log (2-1)+5 .
$$

Yey! But wait, we should revisit the induction step.

$$
\begin{aligned}
T(n) & =3+T\left(\left\lceil\frac{n}{2}\right\rceil\right) \\
& \leq 3+c \log \left(\left\lceil\frac{n}{2}\right\rceil-1\right)+5 \\
& \leq 3+c \log (n-1)-c \log 2+5 \\
& =c \log (n-1)+5 \quad \quad \text { (by choice of } c \text { ) }
\end{aligned}
$$

Proof. Define predicate as $P(n): T(n) \leq c \log (n-1)+5, \forall n \geq 2$. We proof $\forall n \geq 2, P(n)$ by complete induction. Base case:

$$
T(2)=3+T\left(\left\lceil\frac{2}{2}\right\rceil\right)=3+2=5 \leq 0+5=c \log (1)+5
$$

Induction step: Let $i>2$ and suppose $T(j) \leq c \log (j-1)+5$ for all $2 \leq j<i(\mathrm{IH})$. We have

$$
\begin{aligned}
T(i) & =3+T\left(\left\lceil\frac{i}{2}\right\rceil\right) & & \\
& \leq 3+c \log \left(\left\lceil\frac{i}{2}\right\rceil-1\right)+5 & & (\text { by recurrence for } T, \text { since } i>2) \\
& \leq 3+c \log \left(\frac{i-1}{2}\right)+5 & & \left(\text { by IH and because } 2 \leq\left\lceil\frac{x}{2}\right\rceil<x \text { for } x>2\right) \\
& \leq 3+c(\log (i-1)-\log (2))+5 & & \left(\left\lceil\frac{x}{2}\right\rceil-1 \leq \frac{x+1}{2}-1=\frac{x-1}{2}\right) \\
& \leq c \log (i-1)+5 & & (\text { by choice of } c)
\end{aligned}
$$

Hence, by induction, $T(n) \leq c \log (n-1)+5$ for all $n \geq 2$. Since $c \log (n-1) \leq c \log n$, then $T(n) \in O(\log n)$.

