
CSC236H1F Tutorial Solutions for Week 3 Fall 2015

1. A complete binary tree is a binary tree in which every node has two children, except for the leaves (which
have no child), and every leaf is at the same depth (same distance from the root).

a) Give a recursive definition for the set of all complete binary trees.

b) Use structural induction on the definition of part a) to prove that, for all complete binary trees T , if h is the
height of T , then T contains exactly 2h+1 − 1 nodes.

Ans: a) Let Tc denotes the set of complete binary tree. The following is a recursive definition of Tc:

i A single node is a complete binary tree.

ii If T1 and T2 are complete binary trees of the same height such that nodes(T1) ∩ nodes(T2) = ∅ and r /∈
nodes(T1) ∪ nodes(T2), then the tree constructed by placing T1 and T2 under root node r is also a complete
binary tree.

iii Nothing else is a complete binary tree.

b)Define P (T ) : T contains 2h+1−1 nodes, where h is the height of T . Now we proceed with structural induction
as follows:

Base Case: T is a single node. Then T has height 0 (easy to check from the defintion of height) and contains
1 = 20+1 − 1 nodes.

Induction step: Assume T1 and T2 are complete binary trees of height k and both contain 2k+1 − 1 nodes (IH).
Consider the complete binary tree T with root r, that contains T1 and T2 as children of r. This tree by definition
of height is of height h(T ) = max(h(T1), h(T2)) + 1 = k + 1 and it contains (2h(T1)+1 − 1) + 1 + (2h(T2)+1 − 1) =
2h+1 + 2h+1 − 1 = 2h+2 − 1 nodes. which proves that P (T ).

Hence, by structural induction, every complete binary tree T contains exactly 2h(T )+1 − 1 nodes, where h(T )
is the height of the tree.

2. Let E be the set of well-formed algebraic expressions. i.e.,

i x, y, z ∈ E

ii If e1, e2 ∈ E, then (e1 + e2), (e1 − e2), (e1 ∗ e2), and (e1 ÷ e2) also belong to E

iii E contains nothing else.

For any expression e ∈ E, let vr(e) and op(e) denote the number of variable and operator occurrences in e. Prove
by structural induction over E that ∀e ∈ E, vr(e) = op(e) + 1.

Ans: Let’s check an example to get some idea regarding the statement of problem. It is easy to check that
((x + x) + y) ∈ E. Now, vr(((x + x) + y)) = 3 because the expression contains 2 occurrences of x and one
occurrence of y. Moreover, op(((x + x) + y)) = 2 because the operation + has occurred twice.

Now let’s prove the statement. For e ∈ E define P (e) : vr(e) = op(e) + 1.

Base case: Let e = x or e = y or e = z. In each case, vr(e) = 1 = 0 + 1 = op(e) + 1, so P (e) holds.

Induction step: Assume e1, e2 ∈ E and P (e1) and P (e2) (IH). Let e be an element defined recursively from e1 and
e2: either e = (e1 + e2), or e = (e1 − e2), or e = (e1 ∗ e2), or e = (e1 ÷ e2). In each case, vr(e) = vr(e1) + vr(e2)
and op(e) = op(e1) + op(e2) + 1. Hence,
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vr(e) = vr(e1) + vr(e2)

= (op(e1) + 1) + (op(e2) + 1) (by IH)

= (op(e1) + op(e2) + 1) + 1

= op(e) + 1

Therefore, by structural induction on E, ∀e ∈ E, P (e).

3. Give a recursive definition for the set {x ∈ Z : x is even} (the set of all even integers). Show that the
aforementioned set is uniquely defined by the recursive definition.

Ans: Consider the following recursive definition:

i 0 ∈ S

ii for all x ∈ S, x + 2 ∈ S and x− 2 ∈ S

iii nothing else belongs to S

In order to show that this definition uniquely defines the set of all even integers, we have to prove two things:

1. (⇒) every element in S is an even integer (S is a subset of the set in problem)

2. (⇐) every even integer belongs to S (the set in problem is a subset of S)

⇒: We will prove this by structural induction on set S. Let P (e) : e is even.
Base case: 0 is an even integer and by basis of the defintion 0 ∈ S. So P (0) holds.
Induction step: Let x be an element of S and let P (x). i.e., x is an even integer or ∃k ∈ Z such that x = 2k. Now
x + 2 = 2k + 2 = 2(k + 1) which means x + 2 is an even integer. x− 2 = 2k − 2 = 2(k − 1) which means x− 2 is
also an even integers. Hence P (x + 2) and P (x− 2) holds.

Hence by structural induction ∀x ∈ S, P (x).
⇐: This part is more complicated than it seems. In order to prove something for every even integer, we need to
use a form of induction. But in order to use induction, we need to have a recursive definition of the set of even
integers. But that’s what we’re trying to show is correct!

The solution is to do induction on another set whose recursive structure we already know is correct, e.g., N.
Then find a relationship between our set and N. In this case,

{x ∈ Z : x is even} = {x ∈ Z : ∃y ∈ Z, x = 2y}
= {x ∈ Z : ∃y ∈ N, x = 2y ∨ x = −2y}

Then, use simple induction to show that ∀y ∈ N, 2y ∈ S ∧ −2y ∈ S}.
Base case: 2× 0 = −2× 0 = 0 ∈ S
Induction step: for any y, if 2y ∈ S and −2y ∈ S (IH), then 2(y + 1) = 2y + 2 ∈ S (by IH) and −2(y + 1) =
−2y − 2 ∈ S (by IH).
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