
CSC236H1F Tutorial Solutions for Week 2 Fall 2015

1. A “prime factorization” of an integer n is a sequence of prime numbers whose product equals n, e.g., 84 =
2× 2× 3× 7. Prove all integers n ≥ 2 have a prime factorization.

Ans: The precise definition of predicate is

P (n) : ∃ prime numbers p1, p2, · · · , pk, n = p1 × p2 × · · · × pk

Base case: 2 is a prime number. The prime factorization of a prime number is the number itself. So P (2) holds.

Induction step: Assume for i ≥ 2, ∀1 < k ≤ i, P (k) (IH). There are two cases for i + 1

sub-case A: i+1 is a prime number. In this case, P (i+1) holds as every prime number is the prime factorization
of itself.

sub-case B: i + 1 is a composite number. Then there exist numbers a > 1 and b > 1 such that i + 1 = a× b.
By definition, a < n and b < n. Hence by IH there exist prime sequences p1, p2, · · · , pk and q1, q2, · · · , qs such that
a = p1 × p2 × pk and b = q1 × q2 × qs. Now, we can define the sequence p1, p2, · · · , pk, q1, · · · , qs such that

i + 1 = a× b = p1 × · · · × pk × q1 × · · · × qs

which proves P (i + 1) holds. Therefore, by complete induction ∀n, P (n).

2. What amounts of postages can be made exactly using only 3¢ and 5¢ stamps? Prove your claim by complete
induction.

Ans: Discovery Phase:

��@@1¢,��@@2¢, 3¢,��@@4¢, 5¢, 6¢,��@@7¢, 8¢, 9¢, 10¢, 11¢ · · ·

Conjecture: 3¢, 5¢, 6¢ and every postage amount greater than or equal 8¢ can be made.

Idea: Because the three consecutive amounts 8¢, 9¢, 10¢ can all be made, we can just keep adding 3c stamps to
get everything thereafter.

Proof: It is easy to see how we can make 3¢, 5¢, and 6¢ postages. So we just prove by complete induction that
∀n ≥ 8 the n¢ postage can be made using 3¢ and 5¢ stamps.

Define

P (n) : ∃a,∃b, 3a + 5b = n

Induction step: Assume i ≥ 8, ∀8 ≤ k < i, P (k) (IH). We want to prove P (i).
Either i = 8 or i = 9 or i = 10 or i ≥ 11.

Case 1: If i = 8, then i = 8 = 1× 3 + 1× 5, so P (8) holds (This covers the base case in the format of complete
induction that we covered in class).

Case 2: If i = 9, then i = 9 = 3× 3 + 0× 5, so P (9) holds.

Case 3: If i = 10, then i = 10 = 0× 3 + 2× 5, so P (10) holds.

Case 4: If i >= 11, then i− 3 ≥ 8 so there exist a and b be such that i− 3 = 3a + 5b (by IH). Then,

i = 3 + (i− 3)

= 3 + 3a + 5b

= 3(a + 1) + 5b

Hence, there exist a′ = a + 1 and b′ = b such that i = 3a′ + 5b′ and so P (i) holds.

3. Define

P (n) : In every set of n kids, all kids have the same eye colour

The following proof tries to use simple induction to show ∀n ∈ N, P (n). Can you explain why the proof is wrong?
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Base case: P (0) is vacuously true: in every set of 0 kids, all kids have the same eye colour.

Induction step: Let i ∈ N and suppose P (i) holds. Let S be a set of i + 1 kids, say S = {h1, h2, ..., hi+1}.
Consider {h1, h2, ..., hi}: this is a set of i kids, so by IH, all kids in that set have the same eye colour, say A. Now,
consider {h2, ..., hi, hi+1}: this is also a set of i kids, so by IH, all kids in that set have the same eye colour, say
B. Since kids h2, · · · , hi belong to both sets and cannot have two different eye colours, it must be that A = B.
This means every kid in S has the same eye colour.

Ans: Base Case is OK. But Induction step makes an implicit assumption about i. The reasoning only works if
i > 1. If i = 1, reasoning fails for S = {h1, h2} because there is no kid in the range h2, · · · , hn. This could be fixed
by considering two cases: i = 1 and i > 1. In the former case, P (1) is true because in every set of 1 kid, all kids
have the same eye colour. For the latter case, we still need to prove p(2) so that IH can connect with a base case
for which the truth is established. But P (2) cannot be proven. Hence, the proof fails.
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