1. A "prime factorization" of an integer n is a sequence of prime numbers whose product equals n, e.g., $84=$ $2 \times 2 \times 3 \times 7$. Prove all integers $n \geq 2$ have a prime factorization.

Ans: The precise definition of predicate is

$$
P(n): \exists \text { prime numbers } p_{1}, p_{2}, \cdots, p_{k}, n=p_{1} \times p_{2} \times \cdots \times p_{k}
$$

Base case: 2 is a prime number. The prime factorization of a prime number is the number itself. So $P(2)$ holds.
Induction step: Assume for $i \geq 2, \forall 1<k \leq i, P(k)(\mathrm{IH})$. There are two cases for $i+1$
sub-case $A: i+1$ is a prime number. In this case, $P(i+1)$ holds as every prime number is the prime factorization of itself.
sub-case B : $i+1$ is a composite number. Then there exist numbers $a>1$ and $b>1$ such that $i+1=a \times b$. By definition, $a<n$ and $b<n$. Hence by IH there exist prime sequences $p_{1}, p_{2}, \cdots, p_{k}$ and $q_{1}, q_{2}, \cdots, q_{s}$ such that $a=p_{1} \times p_{2} \times p_{k}$ and $b=q_{1} \times q_{2} \times q_{s}$. Now, we can define the sequence $p_{1}, p_{2}, \cdots, p_{k}, q_{1}, \cdots, q_{s}$ such that

$$
i+1=a \times b=p_{1} \times \cdots \times p_{k} \times q_{1} \times \cdots \times q_{s}
$$

which proves $P(i+1)$ holds. Therefore, by complete induction $\forall n, P(n)$.
2. What amounts of postages can be made exactly using only $3 \dot{c}$ and $5 \dot{c}$ stamps? Prove your claim by complete induction.

Ans: Discovery Phase:

Conjecture: $3 \dot{c}, 5 \dot{c}, 6 \dot{c}$ and every postage amount greater than or equal $8 \dot{c}$ can be made.
Idea: Because the three consecutive amounts $8 \grave{c}, 9 \grave{c}, 10 \dot{c}$ can all be made, we can just keep adding 3 c stamps to get everything thereafter.
Proof: It is easy to see how we can make $3 \dot{c}, 5 \dot{c}$, and $6 \grave{c}$ postages. So we just prove by complete induction that $\forall n \geq 8$ the n ¢ postage can be made using 3 ¢ and 5 ¢ stamps.

Define

$$
P(n): \exists a, \exists b, 3 a+5 b=n
$$

Induction step: Assume $i \geq 8, \forall 8 \leq k<i, P(k)(\mathrm{IH})$. We want to prove $P(i)$.
Either $i=8$ or $i=9$ or $i=10$ or $i \geq 11$.
Case 1: If $i=8$, then $i=8=1 \times 3+1 \times 5$, so $P(8)$ holds (This covers the base case in the format of complete induction that we covered in class).

Case 2: If $i=9$, then $i=9=3 \times 3+0 \times 5$, so $P(9)$ holds.
Case 3: If $i=10$, then $i=10=0 \times 3+2 \times 5$, so $P(10)$ holds.
Case 4: If $i>=11$, then $i-3 \geq 8$ so there exist a and b be such that $i-3=3 a+5 b$ (by IH). Then,

$$
\begin{aligned}
i & =3+(i-3) \\
& =3+3 a+5 b \\
& =3(a+1)+5 b
\end{aligned}
$$

Hence, there exist $a^{\prime}=a+1$ and $b^{\prime}=b$ such that $i=3 a^{\prime}+5 b^{\prime}$ and so $P(i)$ holds.
3. Define
$P(n)$: In every set of n kids, all kids have the same eye colour
The following proof tries to use simple induction to show $\forall n \in \mathbb{N}, P(n)$. Can you explain why the proof is wrong?

Base case: $P(0)$ is vacuously true: in every set of 0 kids, all kids have the same eye colour.
Induction step: Let $i \in \mathbb{N}$ and suppose $P(i)$ holds. Let S be a set of $i+1$ kids, say $S=\left\{h_{1}, h_{2}, \ldots, h_{i+1}\right\}$. Consider $\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$: this is a set of i kids, so by IH, all kids in that set have the same eye colour, say A. Now, consider $\left\{h_{2}, \ldots, h_{i}, h_{i+1}\right\}$: this is also a set of i kids, so by IH, all kids in that set have the same eye colour, say B. Since kids h_{2}, \cdots, h_{i} belong to both sets and cannot have two different eye colours, it must be that $A=B$. This means every kid in S has the same eye colour.

Ans: Base Case is OK. But Induction step makes an implicit assumption about i. The reasoning only works if $i>1$. If $i=1$, reasoning fails for $S=\left\{h_{1}, h_{2}\right\}$ because there is no kid in the range h_{2}, \cdots, h_{n}. This could be fixed by considering two cases: $i=1$ and $i>1$. In the former case, $P(1)$ is true because in every set of 1 kid, all kids have the same eye colour. For the latter case, we still need to prove $p(2)$ so that IH can connect with a base case for which the truth is established. But $P(2)$ cannot be proven. Hence, the proof fails.

