1. Prove that for all \(n \in \mathbb{N} \), every set of size \(n \) has exactly \(2^n \) subsets.

 Ans: The precise definition of predicate is

 \[P(n) : \text{all sets of size } n \text{ have } 2^n \text{ subsets} \]

 Base case: An empty set (set of size 0) has only one subset which is the empty set itself. So \(P(0) \) is true.

 Induction step: Assume for \(n \in \mathbb{N} \), \(P(n) \) is true (IH). In other words, assume all sets of size \(n \) have \(2^n \) subsets. Suppose \(S = \{a_1, a_2, \ldots, a_{n+1}\} \) is a set of size \(n+1 \). Subsets of \(S \) can be split into those that contain the element \(a_{n+1} \) and those that don’t. Any subset in the former can be converted to a unique subset in the latter by removing the element \(a_{n+1} \) and any subset in the latter can be converted to a unique subset in the former by adding the element \(a_{n+1} \). Therefore, there are an equal number of subsets in both categories. Now, each subset of \(S \) that does not contain \(a_{n+1} \) is a subset of \(S' = S - \{a_{n+1}\} = \{a_1, a_2, \ldots, a_n\} \). Moreover, any subset of \(S' \) is in fact a subset of \(S \) that does not contain the element \(a_{n+1} \). \(S' \) is a set of size \(n \) and by IH has \(2^n \) subsets. Therefore, both categories of subsets of \(S \) have a size of \(2^n \) and hence \(S \) has \(2 \times 2^n = 2^{n+1} \) subsets.

 Given the proofs for the base case and the induction step, we can conclude, by induction, that \(P(n) \) is true for all \(n \in \mathbb{N} \).

2. Prove that \(\forall n \geq 13, n^2 > 12n + 5 \).

 Ans: This examples requires the use of simple induction with a non-zero base. Because of that, we simply define the predicate as

 \[P(n) : n^2 > 12n + 5 \]

 and try to prove, as our base case, that \(P(13) \) holds (since \(n \geq 13 \)).

 Base case:

 \[13^2 = 169 \]

 \[> 161 = 156 + 5 = 12 \times 13 + 5 \]

 Therefore, \(P(13) \) is true.

 Induction step: Assuming that for \(n \in \mathbb{N} \), \(P(n) \) is true (IH). We will prove that \(P(n + 1) \) is also true.

 \[(n + 1)^2 = n^2 + 2n + 1 \]

 \[> 12n + 5 + 2n + 1 \quad \text{(by the IH)} \]

 \[\geq 12n + 5 + 26 + 1 \quad (n \geq 13) \]

 \[> 12n + 12 + 5 = 12(n + 1) + 5 \]

 Now, we have proved that \(P(n + 1) \) is true, so we can conclude by induction that \(\forall n \geq 13, n^2 > 12n + 5 \).