1. Prove that for all $n \in \mathbb{N}$, every set of size n has exactly 2^n subsets.

Ans: The precise definition of predicate is

P(n): all sets of size n have 2^n subsets

Base case: An empty set (set of size 0) has only one subset which is the empty set itself. So P(0) is true.

Induction step: Assume for $n \in \mathbb{N}$, P(n) is true (IH). In other words, assume all sets of size n have 2^n subsets. Suppose $S = \{a_1, a_2, \dots, a_{n+1}\}$ is a set of size n + 1. Subsets of S can be split into those that contain the element a_{n+1} and those that don't. Any subset in the former can be converted to a unique subset in the latter by removing the element a_{n+1} and any subset in the latter can be converted to a unique subset in the former by adding the element a_{n+1} . Therefore, there are an equal number of subsets in both categories. Now, each subset of S that does not contain a_{n+1} is a subset of $S' = S - \{a_{n+1}\} = \{a_1, a_2, \dots, a_n\}$. Moreover, any subset of S' is in fact a subset of S that does not contain the element a_{n+1} . S' is a set of size n and by IH has 2^n subsets. Therefore, both categories of subsets of S have a size of 2^n and hence S has $2 \times 2^n = 2^{n+1}$ subsets.

Given the proofs for the base case and the induction step, we can conclude, by induction, that P(n) is true for all $n \in \mathbb{N}$. \Box

2. Prove that $\forall n \ge 13, n^2 > 12n + 5$.

Ans: This examples requires the use of simple induction with a non-zero base. Because of that, we simply define the predicate as

 $P(n): n^2 > 12n + 5$

and try to prove, as our base case, that P(13) holds (since $n \ge 13$). Base case:

$$13^2 = 169$$

> 161 = 156 + 5 = 12 × 13 + 5

Therefore, P(13) is true.

Induction step: Assuming that for $n \in \mathbb{N}$, P(n) is true (IH). We will prove that P(n+1) is also true.

$$(n+1)^2 = n^2 + 2n + 1$$

> 12n + 5 + 2n + 1 (by the IH)
 $\geq 12n + 5 + 26 + 1$ (n ≥ 13)
> 12n + 12 + 5 = 12(n + 1) + 5

Now, we have proved that P(n+1) is true, so we can conclude by induction that $\forall n \geq 13, n^2 > 12n+5$. \Box