
CSC236H1F Lecture Summary for Week 12 Fall 2015

Regular Languages

Theorem 1. Let L be a language. The following statements are equivalent:

1. L = L(A) for some NFA A

2. L = L(A′) for some DFA A′

3. L = L(R) for some regexp R

Proof. We are not going to prove this theorem. However, we are going to talk about the main ideas of the proof.
You can look at Sections 7.4.2 and Sections 7.6 in the textbook for a foraml treatment of this theorem. To prove
the theorem we will use a chain of implications.

1 ⇒ 2: For any NFA A, create DFA A′ using subset construction. This ensures that computation of A′ simply
tracks computation of A, so L(A′) = L(A).

Example 1. Consider the following NFA:

q0start

q1

q2

q3

q4

0, 1
0

1

0

1

0, 1

0, 1

The corresponding DFA is:

q0start

q01

q02

q013

q024

q023

q014

q0234

q0134

0

1

0

1

1

0

0

1

1

0

1

0

1

0

1

0

0

1
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Note that all accepting states above trap in the sense that once the string is accepted, no input symbol can make
the DFA go back to rejecting state. So the DFA can be simplified as follows:

q0start

q01

q02

q

0

1

0

10

1

0, 1

2⇒ 3: We can find the regular expression that describes a DFA using state elimination construction – eliminate
intermediary states and replace transition labels with more general RE’s. More precisely, for each accepting state
q, eliminate all states except q and initial state to generate RE Rq (representing pattern for all strings accepted
at state q). RE for DFA consists of union of RE’s for all accepting states. As construction proceeds, labels on
transitions become more elaborate RE’s (starting from single symbols in original DFA).

Example 2. Consider the following DFA:

q0start

q1

q2

q3

0

1

0

10

1

0, 1

Let’s eliminate q1:

q0start

q2

q3
00

1 + 01

01

1 + 00

0 + 1

Dept. of Computer Science, University of Toronto, St. George Campus Page 2 of 5



CSC236H1F Lecture Summary for Week 12 Fall 2015

now, eliminate q2:

q0start q3
00 + (1 + 01)(01)∗(1 + 00)

0 + 1

Therefore, Rq3 = (00+(1+01)(01)∗(1+00))(0+1)∗. Since q3 was the only accepting state, this RE is equivalent
to DFA.

In general, you can follow the following instructions to derive the RE corresponding to the DFA:

• How to eliminate state q:

– let s1, · · · , sm be all states that have a transition into q, with labels S1, ..., Sm

– let t1, · · · , tn be all states that have a transition from q, with labels T1, ..., Tn (note: it is quite possible
to have si = tj for some i, j

– for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Ri,j be label of transition from si to tj (Ri,j = {} if no transition)

– let Q be label of loop on state q (Q = {} if no loop)

– remove q from FSA and for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, replace label Ri,j with Ri,j + SiQ
∗Tj

– special cases:

∗ if Ri,j = {}, simplifies to: si

SiQ
∗Tj︷︸︸︷→ tj

∗ if Q = {}, SiQ∗Tj , simplifies to: SiTj

• How to write down Rq for accepting state q:

– once all states removed except initial state q0 and final state q, only four possible transitions remain:

q0start q

R

S

T

Q

– Rq = R∗S(Q+ TR∗S)∗

– special case: q0 accepting leaves only one state with Rq0 = Q∗

q0start

Q
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3⇒ 1: start with the following NFA

q0start qR

then break up R into component pieces, adding states and transitions as necessary, until each transition labelled
by single symbols.

Example 3. Let R = (0 + 1)∗(00 + 11)(0 + 1)∗. so start with:

q0start q
(0 + 1)∗(00 + 11)(0 + 1)∗

Deal with top-level operators (concatenation) to get:

q0start q1q2 q3
(0 + 1)∗ 00 + 11 (0 + 1)∗

No transition out of q1 so deal with last transition next:

q0start q2 q3 q1
(0 + 1)∗ 00 + 11

0 + 1

Remove q1 (no incoming transition) and deal with first transition:

q0start q2 q3

00 + 11

0 + 1

00 + 11

0 + 1

Remove q2 (no incoming transition), replace ’+’ with multiple transitions:

q0start q3

11

0, 1

00

0, 1
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Deal with both concatenations:

q0start

q1

q2

q3

0

1

0, 1
0

1

0, 1

There is another way to handle this by introducing ε-transitions: transitions labelled by ε, that can be followed
without processing any input symbol. This introduces another form of non-determinism into the NFAs, but the
subset construction can be adjusted to account for it. And it makes the construction of NFAs from REs much
easier to describe– but resulting NFAs much more cumbersome (See the textbooks for details.)

Non-regular languages

As we pointed out in previous lectures, FSA have fixed, finite memory (states) and hence cannot remember
unlimited information about strings.

Example 4. L = {0n1n : n ∈ N} = {ε, 01, 0011, 000111, · · · } is not regular.

Proof. For a contradiction, suppose that L is regular. Then, there is a DFA A such that L(A) = L. Let k be
the number of states in A (so A’s states are {q0, q1, · · · , qk−1}, and consider the behaviour of A on input string
0k+11k+1:

qi0start qi1 qi2 · · · qik+1
qik+2 · · · qi2k+2

0 0 0 0 1 1 1

where qi0 , qi1 , · · · , qi2k+2
are states of A and qi2k+2

is acceping. Since A contains only k states, some state of A
must be repeated among qi0 , · · · , qik+1

– there must be some a < b ≤ k + 1 such that ia = ib. Schematically, the
sequence of states that A goes through on string 0k+1 looks like this:

qi0start · · · qia

qia+1· · ·qib−1

qib+1 · · · qik+1
0 0

0

....

0

0 0 0

But then, the behaviour of A on input string 0k+1+(b−a)1k+1 will be the same as on input 0k+11k+1, i.e., A accepts
some strings that are not in L! This contradicts our assumption that L(A) = L, so there can be no such DFA,
i.e., L is not regular.

Context-free grammars are more powerful ways to describe sets of strings and are used to represent many
natural-language constructs– in particular, all modern programming languages. Set L in the previous example
can be described by such grammars. I will leave a more thorough discussion of them to CSC463 and CSC448.
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