
CSC236H1F Lecture Summary for Week 8 Fall 2015

Iterative Algorithms:

We prove partial correctness for iterative algorithms by finding a loop invariant and proving that loop invariant
using induction on the number of iterations. The proof of termination for Iterative algorithms involves associating
a decreasing sequence of natural numbers to the iteration number. We can then conclude the termination from
the following theorem.

Theorem 1. Every decreasing sequence of natural numbers is finite.

Exercise. Prove the theorem using well-ordering principle.

Example 1. Algorithm to compute xy.

1: function Pow(x, y)
2: prod = 1
3: p = 0
4: while p < y do
5: prod = prod× x
6: p = p + 1
7: end while
8: return prod
9: end function

Precondition: x ∈ R and y ∈ N.

Postcondition: Returns xy. Moreover, we assume 00 = 1.

Ignoring the first few assignments in the algorithm, the majority part of this algorithm implements a loop.
Hence, the correctness of the algorithm is significantly dependent on the correctness of the loop. Let’s see what
this loop is doing.

iter num 0 1 2 3 4 · · ·

p 0 1 2 3 4 · · ·

prod 1 x1 x2 x3 x4 · · ·

Table 1: Values of interest as the function of iteration number.

The table suggests that we can prove “Pow” returns xy, if we can prove that, for x ∈ R and y ∈ N, starting
from prod = 1 (loop precondition) the loop terminates with prod = xy (loop postcondition).

Loop invariant: Many statements can be used as loop invariants. For example, prodi ≥ 0, y ≥ 0, pi = i, etc.
where vi denotes the value of v at the end of iteration i. But we have to pick the one that help us prove loop’s
postcondition (prod = xy). The values in Table 1 suggest that prod = xp can be a good candidate. Because by
the end of loop, p = y and hence prod = xy. Notice, the last conclusion has an implicit assumption, i.e., p ≤ y.
Therefore, the complete loop invariant should be stated as: p ≤ y and prod = xp. Now, let us prove this invariant.

Proof. We prove the loop invariant by induction on the iteration number. In what follows, the subscripts denote
the iteration number of the loop.

Base Case: Before the loop starts, p0 = 0 ≤ y ∈ N and prod0 = 1 = x0 = xp0 , so loop invariant holds.

Induction step: Suppose k ≥ 0 and loop invariant holds for kth iteration of loop, i.e., pk ≤ y and prodk = xpk

(HI). We will prove loop invariant holds after k + 1th iteration. Consider two cases.

Case 1: There is no iteration number k + 1. Then loop invariant for iteration k + 1 is equivalent to loop
invariant for iteration k. Since prodk+1 = prodk and pk+1 = pk then loop invariant holds by IH.

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of 4



CSC236H1F Lecture Summary for Week 8 Fall 2015

Case 2: There is an iteration number k + 1. Then, pk < y because the loop condition was true and from
algorithm, prodk+1 = prodk × x and pk+1 = pk + 1. Hence, pk+1 = pk + 1 ≤ y, and

prodk+1 = prodk × x

= xpk × x (by IH)

= xpk+1

= xpk+1

Hence, loop invariant holds at the end of iteration k + 1. Therefore, by induction, loop invariant holds after each
iteration.

When loop terminates, p ≥ y (from the loop test) and p ≤ y and prod = xp (from loop invariant) so p = y
and prod = xp = xy. This proves loop postcondition. Now, because the function returns prod after the loop, the
function returns xy which proves the partially correctness.

Termination: As discussed earlier, we have to find a quantity that is a decreasing function of iteration number.
We have three major variables p, prod and y. Table 1 suggests that p and prod are increasing functions of iteration
number while y remains constant. But as p gets larger, closer to y, d = y−p becomes smaller. By looop inveraince,
dk = y − pk ≥ 0. Moreover y and p are natural numbers and hence d ∈ N. If iteration k + 1 is performed,

dk+1 = y − pk+1 = y − (pk + 1) = y − pk − 1 = dk − 1 < dk

Hence, d is a decreasing sequence of natural numbers and by Theorem 1 it is finite. In other words, the loop
terminates and hence “Pow” terminates.

Example 2 (MergeSort). In previous lecture, we accepted, without proof, that assuming B[s..m] is sorted and
B[m + 1..f ] is also sorted, the following code merges these two sublists into A[s..f ] where A is sorted in a non-
decreasing order.

1: c = s
2: d = m + 1
3: for i = s, · · · , f do
4: if d > f or (c ≤ m and B[c] < B[d]) then
5: A[i] = B[c]
6: c = c + 1
7: else . d ≤ f and (c > m or B[c] ≥ B[d])
8: A[i] = B[d]
9: d = d + 1

10: end if
11: end for

Let’s prove this now.
The first two lines are just initializations. So we try to prove the correctnesss of the for loop.

Precondition: B[s..m] is sorted in non-decreasing order. B[m + 1..f ] is sorted in non-decreasing order. Moreover,
s ≤ f .
Postcondition: A[s..f ] contains element from B[s..m] and B[m + 1..f ] that are sorted in no-decreasing order.
Moreover s ≤ f .
Loop invariant: Looking at the body of the for loop and our postcondition, we can define the loop invariant
as: A[s..i − 1] contains elements from B[s..c − 1] and B[m + 1..d − 1], sorted in non-decreasing order where
i = c + d −m − 1. Moreover, the elements in A[s..i − 1] are less than or equal to elements in both B[d..f ] and
B[c..m].

Partial correctness: We prove partial correctness by induction. In what follows, the subscripts denote the iteration
number of the loop.

Dept. of Computer Science, University of Toronto, St. George Campus Page 2 of 4



CSC236H1F Lecture Summary for Week 8 Fall 2015

Proof. Base Case: Before the loop starts, c0 = s, d0 = m + 1 and i0 = s. Hence A[s..i0 − 1], B[s..c0 − 1 and
B[m+1..d0−1 are empty which means that loop invariant is vacuously true. Moreover i0 = s = s+m+1−m−1 =
c0 + d0 −m− 1.

Induction step: Suppose k ≥ 0 and loop invariant holds for kth iteration of loop, i.e., A[s..ik−1] contains elements
from B[s..ck − 1 and B[m+ 1..dk − 1] sorted in non-decreasing order. Moreover the elements of A[s..ik − 1] are no
greater than elements in both B[dk..f ] and B[ck..m] (HI). We will prove loop invariant holds after k+1th iteration.
Consider two cases.

Case 1: There is no iteration number k + 1. Then loop invariant for iteration k + 1 is equivalent to loop
invariant for iteration k. Since ik+1 = ik, ck+1 = ck and dk+1 = dk then loop invariant holds by IH.

Case 2: There is an iteration number k + 1. Then ik+1 = ik + 1 and hence ik+1− 1 = ik. Now, two things can
happen:

sub-case 1: B[ck] < B[dk]. Then A[ik] = B[ck], ck+1 = ck + 1 and we have

B[s..ck − 1] ⊆ A[s..ik − 1] (By IH)

⇒ B[s..ck] ⊆ A[s..ik − 1] ∪B[ck]

= A[s..ik − 1] ∪A[ik]

= A[s..ik]

⇒ B[s..ck+1 − 1] ⊆ A[s..ik+1 − 1]

We can also conclude that dk+1 = dk and hence

ik+1 = ik + 1 =︸︷︷︸
by IH

ck + dk −m− 1 + 1 = ck+1 + dk −m− 1 = ck+1 + dk+1 −m− 1

We can also show that

B[m + 1..dk − 1] ⊆ A[s..ik − 1] (By IH)

⊆ A[s..ik − 1] ∪A[ik]

= A[s..ik+1 − 1]

Moreover, by IH, A[s..ik − 1] ≤ B[ck]. Since B is sorted in non-decreasing order then B[ck] ≤ B[ck + 1..m] =
B[ck+1..m]. Hence by choice of A[ik], A[s..ik+1 − 1] = A[s..ik] ≤ B[ck] ≤ B[ck+1..m]. Moreover, A[s..ik+1 − 1] ≤
B[ck] ≤ B[dk] ≤ B[dk..f ].

sub-case 2: B[dk] < B[ck]. Then A[ik] = B[dk], dk+1 = dk + 1 and ck+1 = ck. The rest of the proof that
concludes loop invariant also holds in this case is similar to sub-case 1 with ck is replaced with dk and vice versa
(do it as an exercise). Therefore, by induction loop invariant holds at each iteration.

Upon termination ik = f +1 which can only happen if ck = m+1 and dk = f +1. Therefore, by loop invariant
A[s..ik − 1] = A[s..f ] contains elements of B[s..m] and B[m + 1..f ] sorted in non-decreasing order which proves
the partial correctness.

Termination: Because ik increase at each iteration, then f − ik is a decreasing sequence of iteration number and
hence we can conlude that loop terminates in finite steps.

Remark. If a loop consists of multiple loops, we can follow these steps:

1. Consecutive loops (not nested): Simply prove separate loop invariants one after the other, where proof of
second one can rely on first one being true at the end of the first loop.

2. Nested loops: Work inside-out. Prove termination and loop invariant for inside loop first, for arbitrary value
of the outside loop variables, and use that to prove termination and invariant for outside loop.

Dept. of Computer Science, University of Toronto, St. George Campus Page 3 of 4



CSC236H1F Lecture Summary for Week 8 Fall 2015

Remark. Remember that a counting loop (for x = a, · · · , b) is equivalent to

x = a
while x ≤ b do
· · ·
x = x + 1

end while

This affects how we write invariants and prove termination. In particular, value of x at end will be b + 1 (not b).

In practice, loop invariant is part of the code design, i.e., loop invariant is used to help us write the loop. Now,
let’s look at how to use loop invariants to “design” correct algorithms.

Example 3 (Iterative Binary Search). We start with a sorted list A and a value x which is comparable with
A[1..length(A)] (precondition). Upon termination the index 1 ≤ p ≤ length(A) is selected such that A[1..p− 1] <
x ≤ A[p..n] where n = length(A) (postcondition).

Within loop, we want to maintain a search range [s..f ] such that A[1..s−1] < x ≤ A[f + 1..n]. Comparing this
condition with our postconditions, it seems that this condition can be our loop invariant. Now, let’s start writing
our loop.

To satisfy the precondition, we can start: s = 1, f = n. It only make sense to continue our search as long as
range [s..f ] is not empty, i.e., s ≤ f . So

while s ≤ f do
· · ·

end while

To terminate the loop, we have to update s or f such that s > f at one point. Moreover, the name of algorithm
suggests that the body should make a binary decision. We choose to compare middel element with x:

m = (s + f)/2 . integer division
if A[m] < x then

s = m + 1
else

f = m− 1
end if

The condition of the if statement guarantees that loop invariant holds. Moreover, our update rule guarantees that
s ≤ f at each iteration which we can add to the loop invariant. The aforementioned logic cuts the search range
almost in half in each iteration which can be used to ensure that termination is also guaranteed. Now, we can
choose p = s = f + 1 upon termination of loop to guarantee that postcondition of algorithm holds. Putting it
altogether, we have:

1: function IterBSearch(A, x)
2: s = 1
3: f = length(A)
4: while s ≤ f do
5: m = (s + f)/2 . integer division
6: if A[m] < x then
7: s = m + 1
8: else
9: f = m− 1

10: end if
11: end while
12: p = s return p
13: end function

Dept. of Computer Science, University of Toronto, St. George Campus Page 4 of 4


