Divide and Conquer Algorithms (Continued)

Example 1 (Integer multiplication). Multiply two large integers x, y, given as sequences of bits $x_{0}, x_{1}, \ldots, x_{n-1}$ and $y_{0}, y_{1}, \ldots, y_{n-1}$ (low-order bit first, i.e., $x=x_{n-1} \ldots x_{1} x_{0}$ in binary, and similarly for y).

Ans: Before we describe a divide and conquer algorithm to do integer multiplication, let's see how a conventional iterative algorithm solves this problem.
Iterative algorithm: Multiply x by each bit of y, shift appropriately, then add the n results to each other.
The running time of this algorithm is $\Theta\left(n^{2}\right)$ (n additions of up to $2 n$ bits each). Let's see if we can do better with a divide and conquer approach.
Idea 1: For simplicity, assume n is a power of 2. Let $X_{0}=x_{\frac{n}{2}-1} \cdots x_{1} x_{0}$ and $X_{1}=x_{n-1} \cdots x_{\frac{n}{2}}$ denote the least significant half and most significant half of binary representation of x, respectively. Define Y_{0}^{2} and Y_{1} similarly. Then, $x=2^{\frac{n}{2}} X_{1}+X_{0}$ and $y=2^{\frac{n}{2}} Y_{1}+Y_{0}$. We can write

$$
x y=2^{n} X_{1} Y_{1}+2^{\frac{n}{2}} X_{1} Y_{0}+2^{\frac{n}{2}} X_{0} Y_{1}+X_{0} Y_{0}
$$

Do you see any pattern? The original problem (compute $x y$) is reduced to four subproblems of half size (compute $X_{1} Y_{1}, X_{1} Y_{0}, X_{0} Y_{1}, X_{0} Y_{0}$), together with some "shift" operations (multiplication by power of 2) and binary additions. Shift operations and binary additions can be done in linear time- i.e., $O(n)$ time. This yields the following recursive algorithm.

```
function Multiply1(x,y,n)}\quad\trianglerightx,y\mathrm{ are lists of size }
    if }n=1\mathrm{ then
        return }x\timesy\quad\triangleright\mathrm{ multiplication of 1-bit numbers
    else
        Define lists X }\mp@subsup{X}{1}{},\mp@subsup{X}{0}{},\mp@subsup{Y}{1}{},\mp@subsup{Y}{0}{}\mathrm{ as explained above
            p}=\operatorname{MULTIPLY1( }\mp@subsup{X}{1}{},\mp@subsup{Y}{1}{},\frac{n}{2}
            p}=\operatorname{MULTIPLY1 ( }\mp@subsup{X}{1}{},\mp@subsup{Y}{0}{},\frac{n}{2}
            p}=\operatorname{MULTIPLY1 ( }\mp@subsup{X}{0}{},\mp@subsup{Y}{1}{},\frac{n}{2}
            p
```



```
    end if
end function
```

Now, let's look at the running time of this algorithm? The recurrence relation for worst-case runtime $T(n)$ is:

$$
T(n)= \begin{cases}c & n=1 \\ 4 T\left(\frac{n}{2}\right)+\Theta(n) & \text { for } n>1\end{cases}
$$

where $4 T\left(\frac{n}{2}\right)$ is the time that is required to execute the four recursive calls, and $\Theta(n)$ is the time that algorithm spends on performing shifts and binary additions (in addition to initial splitting of input into sublists).

We can apply the Master Theorem to $T(n)$, with $a=4, b=2, d=1$. Because $a=4>2=b^{d}$, we have $T(n)=\Theta\left(n^{\log _{2} 4}\right)=\Theta\left(n^{2}\right)-$ by third case of Master Theorem. But this is No better than simple iterative algorithm! Should we give up?
Idea 2: If we can improve a such that $\log _{b} a$ becomes smaller, we can do better than $\Theta\left(n^{2}\right)$ - even if $a<b^{d}$. To decrease a, we need fewer recursive calls- i.e., fewer multiplications. Notice that

$$
\left(X_{1}+X_{0}\right)\left(Y_{1}+Y_{0}\right)=X_{1} Y_{1}+X_{1} Y_{0}+X_{0} Y_{1}+X_{0} Y_{0}
$$

This is almost correct expression, except for shifts, and it involves only 1 multiplication instead of 4. Because terms $X_{1} Y_{0}$ and $X_{0} Y_{1}$ shift by same amount, we can use this to save one recursive call:

$$
x y=2^{n} X_{1} Y_{1}+X_{0} Y_{0}+2^{\frac{n}{2}}\left(\left(X_{1}+X_{0}\right)\left(Y_{1}+Y_{0}\right)-X_{1} Y_{1}-X_{0} Y_{0}\right)
$$

This yields following recursive algorithm:

```
function Multiply2(x, y, n)
    if \(n=1\) then
        return \(x \times y\)
    else
        set lists \(X_{1}, X_{0}, Y_{1}, Y_{0}\) as explained above
        \(p_{1}=\operatorname{MULTIPLY} 2\left(X_{1}, Y_{1}, \frac{n}{2}\right)\)
        \(p_{2}=\operatorname{MULTIPLY} 2\left(X_{1}+X_{0}, Y_{1}+Y_{0}, \frac{n}{2}+1\right)\)
        \(p_{3}=\operatorname{MULTIPLY} 2\left(X_{0}, Y_{0}, \frac{n}{2}\right)\)
        return \(2^{n} p_{1}+2^{\frac{n}{2}}\left(p_{2}-p_{1}-p_{3}\right)+p_{3}\)
    end if
end function
```

The worst-case running time $T^{\prime}(n)$ of this algorithm satisfies:

$$
T^{\prime}(n)= \begin{cases}c & n=1 \\ 3 T^{\prime}\left(\frac{n}{2}\right)+\Theta(n) & n>1\end{cases}
$$

Remark. This recursive relation is not exact because, depending on the value of n, the recursive calls can be on input sizes of $\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$. Moreover, the second recursive call for $p 2$ is on input size $\frac{n}{2}+1$. But as we saw in the proof of Master Theorem, these issues does not affect the final answer.

Remark. The constant hidden by the term $\Theta(n)$ is larger than for the first recursive algorithm (we perform more binary additions)

What is the running time of the new algorithm? The Master Theorem still applies but with $a=3, b=2$, $d=1$. Since $a>b^{d}$, the third case of Master Theorem yields $T^{\prime}(n)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.58 \ldots}\right)$, which is strictly better than $\Theta\left(n^{2}\right)$.

Algorithm Correctness

We say a program is correct if it produces a correct output on every acceptable input. In order to specify what are the acceptable inputs of a program and what are the correct outputs for each acceptable inputs, we use preconditions and postconditions.

Precondition: Statement specifying what conditions must hold before an algorithm is executed (i.e., describes valid inputs).

Postcondition: Statement specifying what conditions hold after an algorithm executes (i.e., describes expected output).

Remark. In general, we want the weakest reasonable precondition (i.e., put as few constraints as possible, only specify what is strictly necessary) and strongest reasonable postcondition (i.e., specify as much as possible).

Algorithm correctness with respect to specific preconditions and postconditions is usually broken down into two components:

1. Termination: If preconditions hold before execution, then algorithm eventually finishes executing
2. Partial Correctness: If preconditions hold before execution, then postconditions hold after execution

Recursive Algorithms:

We usually prove termination and partial correctness of recursive algorithms, by induction on size of input. The induction proof techinque matches the recursive structure of algorithms.

Example 2 (Binary search algorithm). Consider the following recursive implementation of binary search algorithm:

```
function \(\operatorname{RecBSEarch}(x, A, s, f)\)
    if \(s==f\) then
        if \(x==A[s]\) then
            return \(s\)
        else
            return -1
        end if
    else
        \(m=(s+f) / 2 \quad \triangleright\) Integer Division
        if \(x \leq A[m]\) then
            return RecBSearch (x, A, s, m)
        else
            return RecBSearch(x, \(A, m+1, f)\)
        end if
    end if
end function
```

Precondition:

1. Elements of A comparable with each other and with x
2. Assume array indices start at 0 and hence $0 \leq s \leq f<\operatorname{length}(A)$
3. Array A issorted in nondecreasing order $(A[s] \leq \cdots \leq A[f])$

Postcondition: RecBSearch (x, A, s, f) terminates and returns index p such that:

1. $s \leq p \leq f$ or $p=-1$
2. If $s<p$, then $A[p-1]<x$
3. If $s \leq p \leq f$, then $x=A[p]$
