CSC 236 H1F Lecture Summary for Week 6 Fall 2015

Divide and Conquer Algorithms (Continued)

Example 1 (Integer multiplication). Multiply two large integers x, y, given as sequences of bits xg, X1, ..., Tn_1
and Yo, Y1, -, Yn—1 (low-order bit first, i.e., x = xp_1...x120 in binary, and similarly for y).

Ans: Before we describe a divide and conquer algorithm to do integer multiplication, let’s see how a conventional
iterative algorithm solves this problem.

Tterative algorithm: Multiply x by each bit of y, shift appropriately, then add the n results to each other.
The running time of this algorithm is ©(n?) (n additions of up to 2n bits each). Let’s see if we can do better with
a divide and conquer approach.

Idea 1: For simplicity, assume n is a power of 2. Let Xy = Tn_q--- 2120 and X1 = xp—1-- “Tn denote the least
significant half and most significant half of binary representation of x, respectively. Define Yy and Y7 similarly.
Then, z = 22 X, 4+ Xo and y = 22Y; + Yy. We can write

zy =2"X1Y: + 22 X1Yy + 22 XoYs + XoYo

Do you see any pattern? The original problem (compute zy) is reduced to four subproblems of half size (compute
X117, XqYo, XoY1, XoYp), together with some “shift” operations (multiplication by power of 2) and binary
additions. Shift operations and binary additions can be done in linear time- i.e., O(n) time. This yields the
following recursive algorithm.

1: function MurTIPLY1(Z, ¥, n) > x, y are lists of size n
2: if n =1 then

3: return z X y > multiplication of 1-bit numbers
4: else

5: Define lists X7, X, Y1, Yy as explained above

6: p1 = MULTIPLY1(X;, Y1, )

T: p2 = MULTIPLY1(X1, Yo, 5)

8: p3 = MULTIPLYl(X(), Y1, %)

9: p4s = MULTIPLY1(X,, Yo, 5)

10: return 2"p; + 2%p2 + 2%])3 + p4

11: end if

12: end function
Now, let’s look at the running time of this algorithm? The recurrence relation for worst-case runtime 7'(n) is:

c n=1
T(n)=

4T(5) +0O(n) forn>1
where 47(%) is the time that is required to execute the four recursive calls, and ©(n) is the time that algorithm
spends on performing shifts and binary additions (in addition to initial splitting of input into sublists).

We can apply the Master Theorem to T(n), with a = 4, b = 2, d = 1. Because a = 4 > 2 = b?, we have

T(n) = O(n!°92%) = ©(n?)- by third case of Master Theorem. But this is No better than simple iterative algorithm!
Should we give up?

Idea 2: If we can improve a such that log, a becomes smaller, we can do better than ©(n?)- even if a < b, To
decrease a, we need fewer recursive calls— i.e., fewer multiplications. Notice that

(X1 + Xo)(Y1 4+ Yo) = XuY1 + Xa Yo + XoY1 + XoYo.

This is almost correct expression, except for shifts, and it involves only 1 multiplication instead of 4. Because
terms X1Yy and XY shift by same amount, we can use this to save one recursive call:

zy = 2"X Y1 + XoYo + 22 (X7 + Xo) (Y1 + Yo) — X1V1 — XoYp)

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of 3



CSC 236 H1F Lecture Summary for Week 6 Fall 2015

This yields following recursive algorithm:

1: function MULTIPLY2(X, y, n)

2: if n =1 then
return z X y

else
set lists X1, Xg, Y1, Yy as explained above
p1 = MULTIPLY2(Xy, Y1, 5)
p2 = MULTIPLY2(X; + Xo, Y1 + Yo, § + 1)
p3 = MULTIPLY2(X,, Yo, 5)
return 2"p; + 22 (p2 — p1 — p3) + p3

10: end if

11: end function

The worst-case running time 7”(n) of this algorithm satisfies:

c n=1

T (n) =
37"(5) +O(n) n>1

Remark. This recursive relation is not exact because, depending on the value of n, the recursive calls can be on
input sizes of | 5] or [§]. Moreover, the second recursive call for p2 is on input size § + 1. But as we saw in the
proof of Master Theorem, these issues does not affect the final answer.

Remark. The constant hidden by the term ©(n) is larger than for the first recursive algorithm (we perform more
binary additions)

What is the running time of the new algorithm? The Master Theorem still applies but with a = 3, b = 2,
d = 1. Since a > b?, the third case of Master Theorem yields T"(n) = O(n'°823) = ©(n!58+), which is strictly
better than ©(n?). O

Algorithm Correctness

We say a program is correct if it produces a correct output on every acceptable input. In order to specify what
are the acceptable inputs of a program and what are the correct outputs for each acceptable inputs, we use
preconditions and postconditions.

Precondition: Statement specifying what conditions must hold before an algorithm is executed (i.e., describes
valid inputs).

Postcondition: Statement specifying what conditions hold after an algorithm executes (i.e., describes expected
output).

Remark. In general, we want the weakest reasonable precondition (i.e., put as few constraints as possible, only
specify what is strictly necessary) and strongest reasonable postcondition (i.e., specify as much as possible).

Algorithm correctness with respect to specific preconditions and postconditions is usually broken down into
two components:

1. Termination: If preconditions hold before execution, then algorithm eventually finishes executing

2. Partial Correctness: If preconditions hold before execution, then postconditions hold after execution

Dept. of Computer Science, University of Toronto, St. George Campus Page 2 of 3



CSC 236 H1F Lecture Summary for Week 6 Fall 2015

Recursive Algorithms:

We usually prove termination and partial correctness of recursive algorithms, by induction on size of input. The
induction proof techinque matches the recursive structure of algorithms.

Example 2 (Binary search algorithm). Consider the following recursive implementation of binary search algo-
rithm:

1: function RECBSEARCH(z, A, s, f)

2: if s == f then

3: if © == Als| then

4: return s

5 else

6: return —1

7 end if

8: else

9: m=(s+f)/2 > Integer Division
10: if © < Alm| then
11: return RecBSearch(z, A, s, m)
12: else
13: return RecBSearch(z, A, m + 1, f)
14: end if
15: end if

16: end function

Precondition:

1. Elements of A comparable with each other and with x

2. Assume array indices start at 0 and hence 0 < s < f < length(A)

3. Array A issorted in nondecreasing order (A[s] < --- < A[f])
Postcondition: RecBSearch(z,A,s,f) terminates and returns index p such that:

l.s<p<forp=-1

2. If s<p,then A[p—1] <z

3. If s <p< f, then x = Alp]

Dept. of Computer Science, University of Toronto, St. George Campus Page 3 of 3



