
CSC236H1F Lecture Summary for Week 5 Fall 2015

Recursively Defined Functions (Continued)

Example 1. What is the running time of MergeSort algorithm as defined below:

1: function MergeSort(A,s,f)
2: if s == f then
3: return
4: else
5: m = (s + f)/2 . Integer Division
6: MergeSort(A,s,m)
7: MergeSort(A,m+1,f)
8: # merge sorted A[s..m] and A[m + 1..f ] back into A[s..f ]
9: for i = s, · · · , f do

10: B[i] = A[i]
11: end for
12: c = s
13: d = m + 1
14: for i = s, · · · , f do
15: if d > f or (c ≤ m and B[c] < B[d]) then
16: A[i] = B[c]
17: c = c + 1
18: else . d ≤ f and (c > m or B[c] ≥ B[d])
19: A[i] = B[d]
20: d = d + 1
21: end if
22: end for
23: end if
24: end function

Ans: Recall that the worst-case running time of a for loop

for i = s, · · · , f do
BODY

end for

is (f − s + 1)× TB where TB is the worst-case running time of BODY.

Hence, worst-case runtime T (n) of MergeSort satisfies:

T (1) = 2 (lines 2-3)

T (n) = k (all constant time work outside recursive calls)

+T (bn2 c) (line 6)

+T (dn2 e) (line 7)

+n (lines 9-11)

+3n (lines 14-21)

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of 4



CSC236H1F Lecture Summary for Week 5 Fall 2015

Repeated substitution:

T (n) = 2T (
n

2
) + 4n + k

= 2(2T (
n

4
) + 4(

n

2
) + k) + 4n + k

= 4T (
n

4
) + 2× 4n + 3k

= 4(2T (
n

8
) + 4(

n

4
) + k) + 2× 4n + 3k

= 8T (
n

8
) + 3× 4n + 7k

Educated guess: After i steps

T (n) = 2iT (
n

2i
) + 4n× i + (2i − 1)k

the base case is reached when n
2i

= 1 or i = log2 n.

T (n) = 2log2 nT (n/n) + 4n log2 n + (2log2 n − 1)k

= T (1)n + 4n log2 n + kn− k

= 4n log2 n + (2 + k)n− k

Hence we expect T (n) ∈ Θ(n log n). In other words, we have to prove T (n) ∈ O(n log n) and T (n) ∈ Ω(n log n).

[T (n) ∈ Ω(n log n)]: We need a B, c > 0 such that T (n) ≥ cn log n. Since we are working with powers of 2 in this
problem and log n = log2 n/ log2 e, we can change the base and try to prove T (n) ≥ cn log2 n instead. The value
of c in the new statement is just a multiple of the c in the original statement and we only need the existene of “a”
c value. Now, Let’s look at the induction step.

T (n) = T (dn2 e) + T (bn2 c) + 4n + k

≥ c(dn2 e log2dn2 e) + c(bn2 c log2bn2 c) + 4n + k

≥ c(dn2 e+ bn2 c) log2bn2 c+ 4n + k

= cn log2bn2 c+ 4n + k

≥ cn log2
n−1
2 + 4n + k (bn2 c ≥

n−1
2 )

≥ cn log2(n− 1)− cn log2 2 + 4n + k

≥ cn log2
n
2 + (4− c)n + k (x ≥ 2⇒ x− 1 ≥ x

2 )

≥ cn log2 n + (4− 2c)n + k

but to conclude that the last line is ≥ cn log2 n, we need:

(4− 2c)n + k ≥ 0⇒ c ≤ 2 +
k

2n

Let’s choose c = 2. Are we done? No! we have to check the base case which in this case will be n = 2 since we
exploit the fact that n ≥ 2 in our analysis of the induction step.

T (2) = k + 2× T (1) + 8 = k + 2× 2 + 8 = k + 12 > 4 = 2× 2× log2 2

Good. Let’s proof T (n) ≥ 2n log2 n for all n ≥ 2.

Dept. of Computer Science, University of Toronto, St. George Campus Page 2 of 4



CSC236H1F Lecture Summary for Week 5 Fall 2015

Proof. For n ≥ 2 define P (n) : T (n) ≥ 2n log2(n).
Base case: T (2) = 12 + k ≥ 4 = 2× 2× log2 2.
Induction step: For i > 2, suppose T (j) ≥ 2j log2 j for all 2 ≤ j < i. For P (i) we have

T (i) = T (d i2e) + T (b i2c) + 4i + k

≥ 2(d i2e log2d i2e) + 2(b i2c log2bn2 c) + 4i + k (by IH)

≥ 2(d i2e+ b i2c) log2b i2c+ 4i + k

= 2n log2b i2c+ 4i + k

≥ 2i log2
i−1
2 + 4i + k (b i2c ≥

i−1
2 )

≥ 2i log2(i− 1)− 2i log2 2 + 4i + k

≥ 2i log2
i
2 + 2i + k (x ≥ 2⇒ x− 1 ≥ x

2 )

≥ 2i log2 i− 2i + 2i + k

≥ 2i log2 i (k > 0)

Hence by complete induction P (n) holds for all n ≥ 2 which means that T (n) ∈ Ω(n log n).

[T (n) ∈ O(n log n)]: A backward process similar to the one that we did to to prove T (n) ∈ Ω(n log n) results in
statement T (n) ≤ cn log2 n for c = 6+k

2−log2 3
and all n ≥ 2.

Proof. Define P (n) : T (n) ≤ cn log2 n for c = 6+k
2−log2 3

. We want to prove by complete induction that ∀n ≥ 2, P (n).
Base case:

T (2) = T (1) + T (1) + 4 + k

= 12 + k

< 12 + 2k

< 12+k
log2

4
3

(log2
4
3 < log2 2 = 1)

= 6+k
2−log2 3

× 2 log2 2

Induction step: Let i > 3 and suppose T (j) ≤ cj log2 j for 2 ≤ j < i (IH). We want to prove P (i) is true.

T (i) = T (d i2e) + T (b i2c) + 4i + k

≤ c(d i2e log2d i2e) + c(b i2c log2b i2c) + 4i + k (by IH)

≤ ci log2d i2e+ 4i + k

≤ ci log2
3i
4 + 4i + k (2 ≤ x⇒ dx2 e ≤

x+1
2 ≤

3x
4 )

= ci log2 i− ci log2
4
3 + 4i + k

≤ ci log2 i− (6 + k)i + 4i + k (by choice of c)

= ci log2 i− (2 + k)i + k

≤ ci log2 i− (2 + k) + k (2 ≤ i)

≤ ci log2 i

Dept. of Computer Science, University of Toronto, St. George Campus Page 3 of 4



CSC236H1F Lecture Summary for Week 5 Fall 2015

Therefore, by complete induction T (i) ≤ ci log2 i and hence T (n) ∈ O(n log n).

Now that we have proved that T (n) ∈ O(n log n) and T (n) ∈ Ω(n log n), we can conclude that T (n) ∈ Θ(n log n).

Divide and Conquer Algorithms

MergeSort and RecBSearch functions are two examples of a general class of algorithms that use a problem-solving
techinque known as “divide and conquer”. To solve a large instance of a problem, a divide and conquer techinque
splits up the instance into smaller instances, often of the same size, solves subproblems recursively and combine
solutions to the smaller instances to construct a soluton for the large instance.

The worst-case running times of such algorithms satisfy recurrences of the form:

T (n) =

K if n ≤ B

a1T (dnb e) + a2T (bnb c) + f(n) if n > B
(1)

for constants K > 0, a1 ≥ 0, a2 ≥ 0, b > 1, B > 0 from the algorithm. We expect a divide and conquer algorithm
to make at least one call. Hence a1 + a2 > 0.

Remark. To simplify the analysis and understanding of worst-case running time of divide and conquer algorithms,
in (1), the base cases are assumed to have similar running time. This assumption does not limit the application
of (1) as one can always assume that T (n) ≥ mini≤B T (i) or T (n) ≤ maxi≤B T (i) for n ≤ B. Both of these
assumptions will not change the order of asymptotic bounds and can only affect the constants in these bounds.

In our discussion, so far, we have seen instances of (1) for which a closed-form formula was achievable. But
can we find a closed-form formula for the general case?

Theorem 1 (Master Theorem). If f(n) = Θ(nd) for constant d ≥ 0, and a = a1 + a2, then the recurrence T (n)
above has closed-form solution:

T (n) =


Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

Reading. Please see the textbook, pages 87–90, for a proof of this theorem.

Remark. You will see a more general form of this theorem in CSC263.

Dept. of Computer Science, University of Toronto, St. George Campus Page 4 of 4


