
CSC 236 H1F Lecture Summary for Week 4 Fall 2015

Recursively Defined Functions

A recursive defintion of function f(·), defines a value of function at some natural number n in terms of the function’s
value at some previous point(s).

Example 1. Consider the fibonacci function F : N→ N defined as follows:

F (n) =


0 if n = 0

1 if n = 1

F (n− 1) + F (n− 2) if n > 1

Notice that if we drop any of the conditions in the definition of fibonacci function, we end up with an improper
definition that does not allow us to find the value of F at each natural number n.

For some of the recusively defined functions, we can find a closed-form formulas. In some cases, the closed-form
formulas can be found by doing an initial exploration and then an educated guess. However, one cannot often
rely on educated-guesses and needs more powerful tools (more on this later). The constructive nature of recursive
defintions allows us to use induction to prove the equivalence of the the recursive definition and the closed-form
formula.

Example 2. Find a closed-form formula for the following recursively defined function.

F (n) =

1 if n = 1

1 + F (n− 1) if n > 1

Ans:
Repeated substitution:

F (n) = 1 + F (n− 1)

= 1 + 1 + F (n− 2)

= 1 + 1 + 1 + F (n− 3)

Educated Guess: If we continue our substitution, a pattern starts to emmerge. After i substitutions F (n) =
i + F (n − i). If we check the validity of this claim using i = 1, we can see that it gives us the definition of the
function F . But this is only guess, not proof.
Proof: We will prove our guess by induction. Formally, we will prove that F (n) = n,∀n ≥ 1.

Proof. Base Case: n = 1. By definitionn, F (1) = 1 = n.
Induction Step: Let n > 1 and assume F (k) = n for 1 ≤ k < n (IH).

F (n) = 1 + F (n− 1) (by recurrence since n > 1) = 1 + n− 1 (by IH since 1 ≤ n− 1 < n) = n

Hence, by induction, F (n) = n for all n ≥ 1.

Exercise. Let F (n) denote the fibonacci function. For any n ∈ N, prove F (n) = φn−φ̂n√
5

, where φ = 1+
√
5

2 and

φ̂ = 1−
√
5

2 .

Recursively defined functions are used to define the complexity (worst-case running time) of recursive algo-
rithms.

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of 3



CSC 236 H1F Lecture Summary for Week 4 Fall 2015

Example 3 (Factorial). Consider the following recursive algorithm:

1: function Fact(n)
2: if n == 0 or n == 1: then
3: return 1
4: else
5: return n× Fact(n-1)
6: end if
7: end function

The Worst-case running time of factorial satisfies the following recurrence:

T (n) =

1 if n = 1 or n = 0

1 + T (n− 1) if n > 1

Can you spot the relation between the T (n) and F (n) in Example 2? What is the closed-form formula?

Example 4 (Binary search algorithm). Consider the following recursive implementation of binary search algo-
rithm:

1: function RecBSearch(x, A, s, f)
2: if s == f then
3: if x == A[s] then
4: return s
5: else
6: return −1
7: end if
8: else
9: m = (s+ f) / 2 . Integer Division

10: if x ≤ A[m] then
11: return RecBSearch(x, A, s, m)
12: else
13: return RecBSearch(x, A, m + 1, f)
14: end if
15: end if
16: end function

We will discuss the correctness of this algorithm later in the course.
Now, Let’s define the worst-case running time of RecBSearch over all inputs of size n = f − s+ 1. (Why the

“+1”? Otherwise size = 0 when s = f– even though there is 1 element in that case!)
line 2, lines 3 − 4, lines 5 − 6, line 9 and line 10 are chunks of code. How about lines 11 and 13? These lines

are recursive calls and hence has a worst-time complexity of: T (dn2 e) steps for line 11 and T (bn2 c) steps for line
13. Hence, T (n) satisfies recurrence:

T (1) = 2

T (n) = 3 + max{T (bn
2
c), T (dn

2
e)}, n > 1

This equation doesn’t seem like the kind of recursion that we have seen so far. Can we Simplify? If we knew T is
increasing (i.e., ∀x ≤ y, T (x) ≤ T (y))) then we could say T (bn2 c) ≤ T (dn2 e) so T (n) = 1 +T (dn2 e). But this would
require proof!

Let’s derive a closed form formula. Having a closed form formula may answer the validity of our assumption
regarding T (n). Assuming that T is strictly increasing, we can have a simplified recurrence for worst-case runtime
as follows:
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T (n) =

2 if n = 1

3 + T (dn2 e) if n > 1

Let’s follow the steps of Example 2.
Repeated substitution: For now, we make the simplifying assumption that we can ignore ceilings so that we can
come up with an educated guess.

T (n) ≈ 3 + T (
n

2
)

≈ 3 + 3 + T (
n

4
)

≈ 3 + 3 + 3 + T (
n

8
)

Educated Guess: We can guess that after i substitutions T (n) ≈ 3i+ T ( n
2i

). In the limit

n

2i
= 1⇔ n = 2i ⇔ log2 n = i

If we substitute this in our formula:

T (n) ≈ 3 log2 n+ T (1) = 3 log2 n+ 2.

This cannot be the exact solution, because of the simplifications that we made and also the fact that T (n) is
always an integer. But we expect T (n) ∈ Θ(log n) (for exact value T (n)).
Proof: In order to prove that T (n) ∈ Θ(log n), we have to prove that:

1. T (n) ∈ Ω(log n), which means that we have to find constants B, c > 0 such that T (n) ≥ c log n ∀n >= B.

2. T (n) ∈ O(log n), which requires us to find constants B, c > 0 such that T (n) ≤ c log n ∀n ≥ B.

The actual proofs will be done in the tutorial.
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