
Teaching Dossier

Alicia M. Grubb
Department of Computer Science, University of Toronto

December 7, 2017
Version 1.1

Contents

1 Introduction 2

2 Teaching Philosophy 2

3 Teaching Experience 3
3.1 Instructor and Teaching Assistant . 3
3.2 TA Training and Curriculum Development . 4

4 Evidence of Professional Development 6
4.1 Writing Training Workshops . 6
4.2 Course on Professional Instruction . 6
4.3 Other Workshops . 6

5 Evidence of E�ective Teaching 7
5.1 Summary of Evaluation Data . 7
5.2 Student Comments and Feedback . 8

6 Diversity Statement 10

7 Sample Teaching Materials 11
7.1 Lecture . 11
7.2 Evaluation/Examination . 12
7.3 Syllabus . 16

8 Sample Training Materials 23
8.1 First-Year Teaching Assistant Training . 23
8.2 Writing Teaching Assistant Training . 26

Alicia M. Grubb Teaching Dossier 2

1 Introduction
I am deeply passionate about university life and the personal development it a�ords. I feel elated when my learners
make connections between concepts and see the world anew. My first exposure to pedagogy and teaching “at
scale” occurred in my undergraduate degree when I worked as a tutor. Seeing the explicit coordination e�orts
and structuring of the course ignited my interest in curriculum development. This early experience helped me
contextualize my e�orts, and I began to reflect on each experience. Since then, I have had extensive experience in
teaching and curriculum development, as I describe below.

I am poised to teach software engineering courses, for example, requirements elicitation and specification, mod-
eling, design, and project management. I am confident to teach foundational computer science (CS) courses, such
as programming principles, logic, algorithms, and hardware. In addition to these, I am also in a position to teach
critical thinking, technical writing, applied statistics, and the social impacts of computing. In the remainder of this
document, I discuss my teaching philosophy and experience.

2 Teaching Philosophy
My teaching philosophy is a manifestation of my core values: authenticity, equity, contribution, collaboration,

transparency, improvement, and evidence.
I aim to create an equitable and inclusive classroom. I make my course content accessible by providing a variety

of examples from di�erent domains, and I try not to make assumptions about the background of my learners. I aim to
ensure that non-native English speakers are not disadvantaged in rubric design. I believe everyone can contribute,
and we can all learn something from the lived experiences of each other. I thus lead with humility and focus on
outcome-based learning. I value collaboration and am grateful for the contributions of my learners and my critics.
I openly seek feedback, and acknowledge the impact of my mentors on my success. I strive to be transparent in
my teaching and expectations of my learners. I use clear wording in assignments and tests, and communicate clearly
and directly with my colleagues. I am honest when I make a mistake, and I share my weaknesses with my learners.
I believe excellence in teaching is constantly evolving, adapting, and improving. Just as I want my learners to
develop their critical thinking skills, I think we as educators must question whether our interventions are e�ective. I
am data-driven and use evidence-based design science techniques to develop and evaluate education initiatives. I
recognize the limitations of measurement and value constructivist views of evidence. Finally, I believe it is imperative
to be my authentic self as an educator, and to embrace my own history and what makes me unique. I teach what
I am passionate about and connect with learners because education is transformative.

Alicia M. Grubb Teaching Dossier 3

3 Teaching Experience

3.1 Instructor and Teaching Assistant
While a graduate student at the University of Toronto, I worked as a teaching assistant (TA) every year. I strategically
chose a variety of courses across all years of the CS program, but also service courses for non-CS majors (see Tbl. 1
for the full list). Rather than discuss my history chronologically, I highlight experiences, grouped by activity.
Large Group Instruction (Lecture / Tutorial). Upon starting graduate school, I was very excited to get in
front of students and teach tutorials, and started with CSC258: Computer Organization. I focused on working
through examples with the participants and creating an interactive experience. On my TA evaluations in 2008 (see
my Evidence of E�ective Teaching), one student commented “Alicia is the best TA I have had; she is well-prepared,
teaches e�ectively, and appears genuinely excited about the course material”, but I still believed that my teaching
evaluations could become stronger. I didn’t receive any negative or constructive comments before the end of the term
when one student commented “talks too fast => erases board too fast”. This was a formative experience, where I
learned that I needed to actively solicit feedback if I wanted to improve. In the next term, I focused on my board
skills, pacing my explanations, and checking in with my learners. My evaluations in 2009 improved, and one student
noted “goes through the examples and explains them slowly and clearly. The tutorials helped to make clear the
material greatly”.

Working as a tutorial and lab TA for CSC104: The Why and How of Computing also proved formative because
it was my first in-depth CS teaching experience with non-CS majors. Suddenly, my tacit assumptions about the
prior knowledge of my learners were invalid. I loved the challenge of having to come up with analogies for concepts
and applications of CS. For example, why would an art history major need macros in spreadsheets? I now believe
all learners can benefit from computational or algorithmic thinking as a method of problem solving. This experience
prompted me to seek my first instructorship with non-CS majors.

I taught first year chemical engineers as an instructor, for two o�erings of APS106: Fundamentals of Computer
Programming. My goals were to be an e�ective educator, and to excite my learners about programming. I changed
the way I presented materials to accommodate di�erent note-taking styles, and made all of my lecture content
available online before lecture. My notes were a continuous document, which, unlike the slides used in other sections,
gave learners extra time to take notes. I used active learning techniques (e.g., Think, Pair, Share) and brought visual
props or demonstrations into the classroom. I used cue cards six times per term to get quick feedback from the
students, asking targeted questions about course content, and soliciting general feedback about the course. These
cards allowed me to anonymously assess the needs and progress of my learners, but also to directly address concerns.
In an attempt to increase engagement, I used examples from a variety of domains including chemical engineering.

After the first year (2012), my teaching evaluations for APS106 were similar to those I had received as a TA,
and better than the average for other instructors in the department and faculty1 (see my Evidence of E�ective
Teaching). In the second year (2013), I was able to focus on my teaching, and saw evidence of my improvement
in my evaluations. One student later wrote “She is thorough and clear in her explanations and teaches with energy
which keeps students awake and interested. She often brought up examples from chemical engineering to make the
class more interesting and relevant to our program. Overall she was my favourite instructor in first year engineering
and I always looked forward to attending her class”.
One-on-one Instruction. I have experiences with one-on-one instruction through o�ce hours and the help centre
as well as mentorship and projects. In the help centre, I focused on assessing the state of the learners understanding,
and the help I could provide. Most of the time, I helped them frame their problem and reviewed course content.
Sometimes, they needed space to explore their ideas or someone to listen to them; other times, it was an authentic
connection over a shared joy or struggle. All these moments were important for retaining learners.

I have had the pleasure of supervising five undergraduate researchers (2015–2017). Since each arrived with their
own strengths and history, I tailored my instruction to their needs. With the goal of having a substantial research
contribution, we focused on setting goals, managing each others’ expectations, and openly discussing issues. These
experiences were guided by the learner. I mentored some in professional development, others in improving their
writing, and all in choosing whether graduate school was the right fit for them. At the end of each collaboration,
they had the option to co-author an abstract or a workshop paper if they were interested (see my CV for the full
list).

In addition to mentoring undergraduate researchers, I have mentored other course instructors interested in creating
a more equitable classroom experience. For example, I reviewed their lectures and assignment examples that
presumed that CS students had common interests (i.e., the geek culture). One instructor later wrote “Alicia helped

1
Department of Mechanical and Industrial Engineering, Faculty of Engineering

Alicia M. Grubb Teaching Dossier 4

me become a better educator by showing me how to reflect critically on my conduct and behaviour, especially in the
face of the intersections of imbalanced power dynamics”.

Table 1: Teaching Experience in the Department of Computer Science, University of Toronto

Course Instructor
Term Course Course Coordinator
Winter 2013 APS106: Fundamentals of Computer Programming Markus Bussmann
Winter 2012 APS106: Fundamentals of Computer Programming J. Christopher Beck

Teaching Assistant
Term Course Supervising Instructor
Fall 2015 CSC300: Computers and Society Mathew Zaleski
Winter 2015 CSC300: Computers and Society Mathew Zaleski
Fall 2014 CSC300: Computers and Society Mathew Zaleski
Summer 2014 CSC108: Introduction to Computer Programming Craig Hagerman
Winter 2014 CSC300: Computers and Society Susan Elliott Sim
Fall 2012 CSC258: Computer Organization Steve Engels
Winter 2012 PMU199: Climate Change - Software, Science and Society Steve Easterbrook
Fall 2011 CSC209: Software Tools and Systems Programming Alan Rosenthal
Winter 2011 CSC302: Engineering Large Software Systems Jennifer Horko�
Fall 2010 CSC104: The Why and How of Computing Alan Rosenthal
Winter 2010 CSC104: The Why and How of Computing Alan Rosenthal
Fall 2009 CSC490: Capstone Design Project Gregory V. Wilson
Winter 2009 CSC258: Computer Organization Alan Rosenthal
Fall 2008 CSC258: Computer Organization Alan Rosenthal

Other Teaching Positions
Term Position Supervisor
Fall 2017 First Year Help Centre TA François Pitt
Winter 2017 First Year Help Centre TA François Pitt
Fall 2015 TA Trainer Michelle Craig
2015–2016 Writing Fellow (Lead Writing TA) Andrea Williams
Winer 2015 Mentorship TA Diane Horton
Winter 2015 TA Trainer Michelle Craig
Fall 2014 TA Trainer Michelle Craig
2014–2015 Writing Fellow (Lead Writing TA) Andrea Williams

3.2 TA Training and Curriculum Development

Writing Instruction for TAs. As the Computer Science Writing Fellow (2014–2016), I was given a mandate
to create a “culture of writing” by training Teaching Assistants on teaching and evaluating writing, and working
with course instructors to create writing-specific content as part of a broader Writing Across the Curriculum (WAC)
program. In workshops, I taught course-specific training modules (e.g., Giving E�ective Feedback, Using Rubrics,
Low Stakes Writing, Reverse Outlining, and Working with Language Learners) and held benchmarking/feedback
meetings. Benchmarking is when TAs and instructors meet to discuss an assignment and its rubric, and mark
sample assignments together. In feedback meetings, TAs and instructors swap previous assignments and give each
other feedback on how to improve their comments for learners (i.e., feedback-on-feedback). I tailored subsequent

Alicia M. Grubb Teaching Dossier 5

workshops based on recommendations, and TA impressions2 of my workshops improved from 3.95/5 in 2015 to 4.33/5
in 20163. This experience reinforced the importance of peer learning and collaboration. The WAC coordinator was
so impressed with my e�cient reuse of past training materials from other disciplines, that she invited me to train
the future writing fellows across the faculty on project planning and time management.
Department TA Training. I coordinated and led the TA Training for all incoming CS TAs in 2014 and 2015. In a
3-hour workshop, I covered active learning techniques, running tutorials/labs, getting/giving feedback, marking and
plagiarism, and professionalism and harassment. 180 TAs attended my training sessions and my training materials
are still being used. On a five point scale3, TAs rated these workshops highly (4.22), as they did my instruction (4.53),
and their learning (3.88). In their feedback, TAs consistently reported the workshop as beneficial, and were very
enthusiastic about additional training opportunities. For example, one wrote, “Good learning experience. Answered
some questions I had and some I didn’t know I had”, while another wrote, “Engaging & fun, yet also useful”.
Curriculum Development and Review. While I have participated in various curriculum initiatives, I will
focus here on the one I spearheaded in 2014. After grading the written assignments and term papers for CSC300:
Computers and Society, for which the quality varied dramatically, I recognized the potential to engage students
in writing and critical thinking as part of CSC300. I focused on structured technical writing of arguments rather
than sentence-level mechanics. I improved the syllabus and introduced learning objectives throughout the course.
I sca�olded the assignments, such that each assignment was built on the previous one while not penalizing past
performance. I also introduced benchmarking sessions, similar to those discussed above, to ensure learners received
specific and targeted constructive feedback on assignments in a timely manner. In the first term, we only saw
limited improvements in the assignment quality. In later o�erings, we o�ered opportunities for learners to resubmit
their work, encouraging them to consider our suggestions to strengthen their argument, which resulted in visible
improvements. We also introduced a debate component, giving our learners practice presenting their arguments
verbally. We introduced writing, public speaking and debate into the tutorial exercises to give learners structured
practice. Thus far, around 900 learners have received formative feedback as a result of this e�ort, and I continue to
receive positive reviews from the course instructors.
Curriculum Research. The Department of Computer Science at the University of Toronto has a culture of
education-based research and measuring the impact of teaching interventions. As the Computer Science Writing
Fellow, I examined how students perceive authoring course blogs in the context of a large and linguistically diverse
introductory computer science course. Prior course evaluations indicated that many students were resistant to writing
in general and saw writing as unrelated to programming. Over two years, I collected student and teaching assistant
survey data (N=Pre/Post, Year 1=350/206, Year 2=766/308). I found that writing course blogs improved students’
confidence in their own ability to write, but did not improve the quality of their writing or understanding of course
concepts. More research is required to investigate how to persuade students to value writing activities. My research
into students’ engagement with writing connects directly with improving the curriculum of CSC148: Introduction to
Computer Science. In connecting with other instructors, I have also learned from the other active initiatives (e.g.,
inverted classrooms), and these studies have influenced my research interests in improving CS education.

2
Feedback form asked: “Please describe your overall impression of this workshop.”

3
Scale: 1. poor, 2. fair, 3. good, 4. very good, 5. excellent.

Alicia M. Grubb Teaching Dossier 6

4 Evidence of Professional Development
Professional development is important in staying current with pedagogical practises and generating new ideas. While
professional development often happens informally by connecting with colleagues and reviewing the latests literature,
formal workshops have played a valuable role in my improvement.

4.1 Writing Training Workshops
As a writing fellow (2014–2016), I participated in nine days of training over two years on writing instruction. I also
attended the Writing Instruction for TAs Showcase. In training we discussed a wide variety of topics and had many
breakout sessions. My favourite sessions were the following:

• Theories of Writing Development
• Working and Communicating with Faculty & TAs
• Writing to Learn: Low Stakes
• Keeping it Real (and Fresh): Training and Empowering New & Experienced TAs

I also presented two sessions, Assessments & Research Projects: Highlights & Samples, and Planning and Managing
your Hours for Maximum Impact.

4.2 Course on Professional Instruction
I audited APS1003: Professional Education and Instruction in 2013. I attended lectures, completed writing reflec-
tions, quiz, and exams. The course covered many areas, including the following topics:

• Models and theory of adult learning
• Learning styles and situational factors
• Developing learning outcomes
• Assessment and teaching for transfer
• Design of learning experiences
• Instructional methods
• Feedback concepts and methods
• Basics of mentoring.

This course improved how I thought about my curriculum development e�orts, and gave me several frameworks on
which to structure my initiatives.

4.3 Other Workshops
The Teaching Assistants’ Training Program o�ers a series of workshops for TAs to gain expertise. I attended the
following workshops.

• Active Learning in Math-based Environment, 2011
• Making Your Syllabus Work for You and Your Students, 2012
• Preparing Your Teaching Dossier, 2012

In 2014 I participated in a workshop entitled Developing Learning Outcomes o�ered by the Faculty of Engineering’s
Teaching Methods and Resources Committee. The goal of this workshop was to help instructors define learning out-
comes specifically for their labs and tutorials and connect them with curriculum goals and engineering accreditation
requirements.

Alicia M. Grubb Teaching Dossier 7

5 Evidence of E�ective Teaching
While a graduate student at the University of Toronto (2008–2017), I worked on a variety of courses (see Tbl. 1 for
the full list). Here I provide evidence of teaching e�ectiveness in the form of student evaluations.

5.1 Summary of Evaluation Data
The data provided in Tbl. 2 includes my evaluations as a teaching assistant (TA) and instructor. Overall, I found
the quantitative evaluations helpful in benchmarking my progress as an educator. TA evaluations were only collected
for six terms in my department4, but I believe this data demonstrates my conscious e�ort to improve each term.

I received full evaluations when I taught APS106: Fundamentals of Computer Programming. In my first year as an
instructor (2012), my teaching evaluations for APS106 were comparable to those I had received as a TA, and better
than the average for other instructors in the department and faculty5 (see Tbl. 2). In my second year (2013), I changed
aspects of my teaching (described in detail with student feedback), and saw evidence of improvement. My evaluation
response rate (a proxy for class attendance) also improved, and was 20% higher than the department/faculty average
in 2013. My learners’ enthusiasm was unchanged in 2012; however, in 2013 my learners’ enthusiasm increased (by
0.48) while the department/faculty average went down in both years (see Tbl. 2).

Table 2: Teaching Evaluations. APS106 evaluations also give department (Dep.) and faculty (Fac.) averages5.
Scale: 1. extremely poor/inadequate, 2. very poor, 3. poor, 4, adequate, 5. good, 6. very good, 7. outstanding.

Teaching Assistant4 Instructor5

CSC258 CSC104 CSC302 CSC209 CSC300 APS106
Fall Winter Fall Winter Fall Fall Winter Winter
2008 2009 2010 2011 2011 2015 2012 2013

Ins. (Dep.|F ac.) Ins. (Dep.|F ac.)
Num. Responses 15 22 17 2 5 7 49 66
Overall 4.60 5.86 6.41 5.50 6.40 6.29 5.84 (5.18|5.26) 5.95 (5.28|5.38)
Presentation 4.27 5.59 6.18 5.50 5.60 6.71 5.31 (4.85|4.94) 5.60 (4.96|5.04)
Clarity 4.73 5.91 6.06 5.50 6.20 6.57 5.27 (4.88|4.98) 5.50 (4.96|5.09)
Enthusiasm 4.93 6.55 6.59 5.50 6.60 6.57 6.20 (5.39|5.54) 6.29 (5.58|5.70)
Question Handling 4.33 5.77 6.35 6.00 5.60 6.67 6.02 (5.09|5.27) 6.05 (5.21|5.41)
Response Rate 53% (53%|48%) 61% (37%|39%)
Enthusiasm-Pre 4.50 (4.10|4.46) 4.17 (4.36|4.66)
Enthusiasm-Post 4.50 (3.95|4.34) 4.65 (4.25|4.56)
Di�erence (Enthusiasm-Post ≠ Enthusiasm-Pre) 0.00 (-0.15|-0.12) 0.48 (-0.11|-0.10)

Teaching Assistant Questions:
Presentation Your teaching assistant presents material in an organized, well planned manner.
Clarity Your teaching assistant explains concepts clearly and with appropriate use of examples.
Enthusiasm Your teaching assistant appears enthusiastic and interested in the course material.
Question Handling Your teaching assistant attends to questions and answers them clearly and e�ectively.
Overall All things considered, your teaching assistant performs e�ectively.

Instructor Questions:
Presentation The presentation of the material in an organized, well planned manner was
Clarity The clarity of explanation of the subject matter was
Enthusiasm The instructor’s enthusiasm and interest in the course material was
Question Handling The attention to students’ questions in the classroom and the clarity of the answers was
Overall What is your overall rating of this instructor as a teacher
Enthusiasm-Pre Your level of enthusiasm for taking this course, at the time of initial registration
Enthusiasm-Post Your level of enthusiasm now that you have completed the course

Enthusiasm-Pre/Post Scale: 1. very low, 2. low, 3. below average, 4, average, 5. above average, 6. high, 7. very high

4
Department of Computer Science, Faculty of Arts and Science

5
Department of Mechanical and Industrial Engineering, Faculty of Engineering

Alicia M. Grubb Teaching Dossier 8

5.2 Student Comments and Feedback
The comments provided below were included in my evaluations as a teaching assistant and instructor. For the purpose
of improving my teaching, I have found periodic in-class feedback (e.g., filling out a ‘ticket-out-the-door’) from stu-
dents to be more helpful than the end of term comments. This being said, I did take the feedback I received seriously.

TA Feedback. Tbl. 3 lists the comments I received as a TA, arranged by course. As a result of the feedback I
received for CSC258: Computer Organization, I focused on my board skills, pacing my explanations, checking in
with my learners, and being more informed about the assignment and lecture details.

Table 3: Comments received on TA evaluations (2008–2015).

CSC258: Computer Organization Fall 2008
“Alicia is the best TA I have had; she is well-prepared, teaches e�ectively, and appears genuinely
excited about the course material.”
“Very helpful with the examples used in the tutorial.”
“talks too fast => erases board too fast”
CSC258: Computer Organization Winter 2009
“She is fun but sometimes is unable to answer some questions, but generally answers them by the
next tutorial. She also goes through the examples and explains them slowly and clearly. The tutorials
helped to make clear the material greatly.”
“Alicia could be a little more prepared for tutorials.”
CSC 209: Software Tools and Systems Programming Fall 2011
“Very eccentric and enthusiastic, always entertaining.”
CSC 300: Computers and Society Fall 2015
“I felt the TA was to harsh when marking”
“Alicia is great, one of the best TAs I’ve ever had.”

Instructor Feedback. As an instructor for APS106: Fundamentals of Computer Programming, I received positive,
detailed, and helpful comments (see Tbl. 4). The students appreciated my enthusiasm, notes, examples, and the
respectful space I created. Students wanted more examples, and for me to compile and execute these examples
in class. As a first time instructor, I struggled with pacing and understanding what could be expected as prior
knowledge. Of particular concern to me, were a few comments I received about showing favouritism. I was seeking
to achieve a delicate balance between calling on students directly with the potential risk of embarrassing them, and
calling on the subset of students who raised their hands. In 2013, I worked on establishing policies and adding
additional activities to my class, so that everyone could participate. I calibrated my expectations and taught to
learners who had no programming experience. My pacing was better and only a few students commented that I went
too fast. Students still wanted more examples and additional contact time, but overall the feedback I received in 2013
was markedly better. If I taught this course again, I would add a summative example (as one student suggested). I
would also hold additional o�ce hours, because they were well attended and both the students and I enjoyed them.

Alicia M. Grubb Teaching Dossier 9

Table 4: Representative Student Feedback from APS106: Fundamentals of Computer Programming

APS106: Fundamentals of Computer Programming Winter 2012

“• very funny • friendly environment • love coming to lectures • goes at a great pace, quick, but more e�cient
than anything • love her • helpful • always tries very hard to accommodate for the students schedule and learning
needs”

“...The practice problems should [be] interesting programs other than simple programs. Picking on students who
are unsure of the material is a little bit embarrassing. There is a sense of favoritism in the classroom. ... Don’t
assume prior knowledge of computer science from the students.”

“• goes through material too quickly! • but, I like how she is self-aware and encourages feedback + improvement
on her teaching skills • AMAZING encouragement of the class involvement + class participation that facilitates
learning very well”

“• very enthusiastic, keeps the class very interesting by adding humor • responds to any questions that the class
has • improvement by showing us the code run more often”

“Thanks for doing examples di�erent from the textbook. Your examples are really helpful.”

“You were by far my favourite prof this year. You always gave students the respect and attention that they
deserved and made the lecture hall into a space where people had no fear of asking questions. Your passion and
knowledge was very apparent to all of the students. At the beginning of the course I was expecting the worst but
you made the whole learning experience so positive for my classmates and I. Thank you sooo much and please
keep teaching!!!”

APS106: Fundamentals of Computer Programming Winter 2013

“Your enthusiasm for this course really was very infectious. Even when people didn’t seem interested you brought
interest to the room. Thank you for the dedication to this course.”

“Although I hate programming and have never done it before, you actually made the course interesting and fun
to learn. You were very enthusiastic when teaching which made me more into this course. You addressed all the
students needs and were very helpful. Good job overall, you were one of the few profs who actually knows how
to teach!”

“I want to thank you for accommodating our needs as students. You did a great job explaining every aspect of
this course. The enthusiasm you showed helped keep us interested. Thanks again.”

“You made me excited to program and feel like I could do it when I started the course with no confidence/expe-
rience. Now I’m thinking about taking a course in the summer and am excited about programming. Thank you!
You taught subjects with clarity and vigour. It was refreshing to have such an excellent and inspiring professor.
:)”

“The format of the lecture (weekly slides which are explain in class) is excellent. More examples are always
welcome. A suggestion would be to create a code from the beginning (or the semester) and to add new concepts
as it was taught. At the end of every new topic, (end of week) the ‘summative’ code would contain all the topics
so far. An improvement would be to have a greater interaction with the TAs and lab TAs. There is a significant
communication gap.”

“Alicia Grubb is an excellent instructor and is definitely very well suited to be a Full Professor. She’s always
so enthusiastic and very approachable. What makes her unique is that she makes the most dull and boring
complicated concepts easy and fun to understand. She keeps the class as involved as possible and even when I’m
very behind and tired I still look forward to her class. This course I find can be di�cult as I’m a slow learner so
as a word of evidence I hope she does more basic examples to help refresh everybody on track. Definitely cares a
lot about her students though which I greatly appreciated as I sometimes struggled with course concepts, which
is better them my other professors.”

“Alicia Grubb is very likeable, and also an amazing teacher because she makes computer languages easy to
comprehend. Also she’s a pretty groovy cat. Very useful notes, helpful analogies, and in-depth explanations of
examples. The best professor I’ve had (out of 16).”

“The instructor was very good overall and provided many opportunities for student feedback and questions. The
attention to student questions and ensuring students understand the material was superb.”

“The course material is interesting. The way Alicia teaches is good as you can understand everything clearly.
She’s available for help too. I would suggest that she increases the o�ce hours during the week”

Alicia M. Grubb Teaching Dossier 10

6 Diversity Statement
I believe the key to mentoring a diverse student body is to educate oneself about the issues faced by minority groups
and broader societal context, and to listen to each student and their diverse perspective. Here I will discuss how my
personal relationship with diversity has evolved and the ways I have worked to create change.

Within the context of computer science (CS), I am a member of an underrepresented minority. In my MSc and
the early years of my PhD, I was actively involved in the women’s group in my department (DCS Women) and
mentorship. I also had the privilege of representing the Department at both the CRA-W Grad Cohort (2009, 2010)
and the Grace Hopper Celebration of Women in Computing (2009). After meeting such a diverse group of women in
CS, I realized that I had been trying to be and act like a man to feel a sense of belonging in the CS community. It
was during this period that I took and audited several courses in sociology and political science (i.e., globalization,
human development, international trade, and social network theory), while engaging with queer and gender theory
discussion groups. I began to engage with the concept of equity and the historical and systematic oppression of
people. Taking o� the blinders, I recognized the persistent prejudice and biases that still exist today. I engaged in
broader conversations about colonialism, the patriarchy, ableism, racism, classism, homophobia, and transphobia,
and how people are a�ected by the intersectional nature of their identities. I learned that to address structural
inequalities, there needs to be both structural (i.e., institutional) change and a shift in the unconscious biases and
resulting behaviour of everyone. I finally acknowledged my own unconscious bias against women and other minorities
in STEM, and in 2014, I made a commitment to explore my authentic self and value the diverse experiences of those
around me. Since then, I fundamentally think di�erently about my own actions, my teaching, and my research. I
believe a just society must give each member the support they need to achieve their maximum potential
(as described in John Rawls’ A Theory of Justice).

In my teaching, I spent significant time thinking about how lectures and assignment examples may exclude
individuals by presuming that CS students had common interests (i.e., the geek culture, video games, and other
cultural references). I also thought about how many students are unduly influenced in examinations by priming and
stereotype threat. In my lectures, I became cognizant of the power of language and the importance of addressing
hate speech. I also became aware of who was participating and started using active learning techniques to encourage
as many learners to participate as possible. In curriculum development, I thought about how access to a computer
and early programming experience advantaged some students, while cultural and societal expectations disadvantages
others (e.g., first in the family). In choosing undergraduate research assistants, I had to check my own biases to
ensure that I wasn’t choosing students who had similar interests to me, and ensure that I evaluated their experience
relative to when they discovered CS.

I have also focused on making subtle changes that can impact all members of my department. I volun-
teered to coordinate and teach the training for incoming CS teaching assistants (TAs) in 2014 and 2015 to ensure
that topics of harassment, micro-aggression, and hurtful language were introduced and discussed. The goal was to
empower TAs to voice opposition to such inappropriate behaviour. 180 TAs attended my training sessions. In their
feedback TAs consistently reported valuing the ‘scenario part’ where we included these topics. For example, one TA
wrote that the scenarios “brought to [their] attention issues that [they] had not thought about before”. In the Fall
2015 term, I advocated for the introduction of an Equity in Computer Science module in CSC300: Computers and
Society. I designed the module and presented it in the first year (my slides are available online). The lecture explores
structural inequalities within CS education. Thus far around 500 students have now been exposed to the concept of
equity through CSC300.

The activities in the previous paragraph were not directly visible to other students. To increase such visibility,
I served on two ‘Women in CS’ Panels: one at the 2017 Canadian Undergraduate Computer Science Conference and
one for the undergrad Women in CS Club (2017). As a result, I have received multiple requests for mentorship and
unexpected gratitude for my honesty and insights. I chose to work as a TA in the First Year Help Centre over the last
year, specifically to be visible as a woman in CS and to lend my support. At a broader advocacy level, I was a member
of the Engineering Positive Space Committee and organized Pink T-Shirt Day (an anti-bullying initiative) in 2014 &
2015. I also volunteered to give a work history testimonial as part of the Engineering Instructional Innovation Project
(2014–2015) so that first year students could learn from the negative experiences I faced in industry. Finally, I have
informally mentored several peers and encouraged them to explore their own assumptions and bias. One later wrote,
“Alicia Grubb taught me many things, most crucially to examine critically my own conduct and behaviour” [Famelis,
2016, p. iv]. I fully support women-only spaces as a way to nurture women already in STEM and have continued
participating and contributing to DCS Women. I am proud to have worked with and learned from a number of
outstanding individuals. While there have been some setbacks and there will be future challenges, I intend to
continue working toward equity in CS and a just society.

http://www.hup.harvard.edu/catalog.php?isbn=9780674000780&content=bios
http://www.cs.toronto.edu/~amgrubb/archive/Equity-2015.pdf
https://famelis.files.wordpress.com/2008/06/famelis_michail_201606_phd_thesis1.pdf
https://famelis.files.wordpress.com/2008/06/famelis_michail_201606_phd_thesis1.pdf

Alicia M. Grubb Teaching Dossier 11

7 Sample Teaching Materials

7.1 Lecture
The examples in this section come from my work as an instructor for APS106: Fundamentals of Computer Program-
ming. The course objective was to teach students how to program in C, but I also saw this course as a way to teach
students about problem solving and algorithms. APS 106 was a required course for first year chemical engineers
and many students felt it was outside the scope of their program. In an attempt to increase engagement, I used
examples from a variety of domains including chemical engineering. To set the tone for the term, I used both these
examples in the first two weeks of class when I was teaching data types, arithmetics (i.e., arithmetic, rational, and
logical operators), formatting input and output (i.e., scanf and printf).

Kg-Moles-Atoms Example.
Students really liked the Kg-Moles-Atoms example. I liked it because I could use it later in the term when I introduced
reading from a file, where the goal was to read the element number, name, and molar mass from a file.

Write a program in C to help users convert from mass in Kg to moles and number of atoms.

Your program should have the following sample output for Gold:
Input the mass in Kg: 2.0
Input the molar mass (g/moles): 196.97
2.00 Kg of your substance is the same as 10.1538 mole.
2.00 Kg of your substance has 6.1146e+024 atoms in it.

Equilibrium Constant (KT) Example.
When I introduced the Equilibrium Constant example, which uses the Habor-Bosch process (a fundamental example
in physical chemistry), some of my learners were hostile to my expectation that they would remember content
discussed in a previous term. I repeatedly assured them that the material was to showcase how they could use
programming concepts, and that they didn’t actually have to remember the process because all required information
was provided. Despite their initial resistance, I believe these examples helped me engage my learners.

Write a program in C that calculates the Equilibrium Constant (KT) for the Haber-Bosch Process
(N2 + 3H2 … 2NH3) at a given temperature (in C).

Your program should have the following sample output:
Input the temperature in C: 20.0
The Equilibrium Constant for the Haber-Bosch Process at 20.0 degrees Celsius is 7.2797e+05.

Notes:
Gibbs Energy G = ≠RT ln K (solve for K).
TEMP C TO K = 273.15
GIBBS ENERGY = -32.9E3
GAS CONSTANT = 8.3145

Alicia M. Grubb Teaching Dossier 12

7.2 Evaluation/Examination
The examples in this section come from my work as an instructor in 2012 and 2013 for APS106: Fundamentals of
Computer Programming. The course objective was to teach students how to program in C. APS106 was a required
course for most first-year engineers. In 2012 I created part of the midterm exam and part of the final exam. In 2013,
I took on a leadership role in creating the midterm exam and did not work on the final exam.

2012 Final Exam Q4.
The primary objective of Q4 is to test the students ability to merge two arrays creating a third. It also tested their
ability to use loops and format printed text. This question combined understanding code and writing code. Since
I knew that I would be marking over 500 answers, I focused on making it straight forward and clear. Generally
students understood the question. In my original marking scheme, I had to consider both *(z+1) array notation as
well as z[i] array notation. Solution in red.

This program starts with two sorted int arrays, x and y. The program then merges the two sorted arrays
into a third sorted array z. Assume there are no duplicates in arrays x and y.

The program output is:
The first array is: 5 22 26 41 57 60 77 79 95 100
The second array is: 0 15 23 25 42 58 67 78 86 99
The merged array is: 0 5 15 22 23 25 26 41 42 57 58 60 67 77 78 79 86 95 99 100

Consider the following code:

include <stdio.h>

void printArray (int size , int parray [size]);

void merge(int xsize , int ysize , int x[xsize], int y[ysize],

int z[xsize + ysize]);

int main(void)

{

int xsize = 10;

int ysize = 10;

int zsize = xsize + ysize;

int x[] = {5 ,22 ,26 ,41 ,57 ,60 ,77 ,79 ,95 ,100};

int y[] = {0 ,15 ,23 ,25 ,42 ,58 ,67 ,78 ,86 ,99};

int z[zsize];

printf (" The first array is: ");

printArray (xsize , x);

printf (" The second array is: ");

printArray (ysize , y);

merge(xsize ,ysize ,x,y,z);

printf (" The merged array is: ");

printArray (zsize , z);

}

Question continues on the next page.

Alicia M. Grubb Teaching Dossier 13

2012 Final Exam Q4 continued.
Solution in red.

PART A [3 marks]: Write the function printArray in the space provided.

void printArray (int size , int parray [size])

{

int k;

for (k = 0; k < size; k++)

printf ("%d ", parray [k]);

printf ("\n");

}

PART B [5 marks]: Write the function merge in the space provided.

void merge(int xsize , int ysize , int x[xsize], int y[ysize],

int z[xsize + ysize])

{

int i;

int x1 = 0;

int y1 = 0;

for (i = 0; i < xsize+ysize; i ++){

if (x1 == xsize)

*(z+i) = *(y+(y1 ++));

else if (y1 == ysize)

*(z+i) = *(x+(x1 ++));

else if (*(x+x1) < *(y+y1))

*(z+i) = *(x+(x1 ++));

else

*(z+i) = *(y+(y1 ++));

}

}

Alicia M. Grubb Teaching Dossier 14

2013 Midterm.
I was unsatisfied with the 2012 Midterm exam because I felt it did not cover su�cient breath of the course content.
In 2013 I advocated for a wide range of question, including the three presented here (Q1, Q5, and Q7). There were
eight questions on the midterm.

2013 Midterm Exam Q1.
Q1 tests their ability to convert numbers between binary and decimal. I felt this was an important concept to include
on the midterm, because later in the course we would talk about memory allocation and address space.

Part A [1 mark]: Convert the following binary number to decimal (base 10): 0100100110

284

Part B [1 mark]: Convert the following decimal number to hexadecimal (base 16): 908

38C

2013 Midterm Exam Q5.
Q5 specific test and reinforces the students ability to connect while loops with for loops. Students found it easier
to convert from a for loop to a while loop so we tested them in the opposite direction. This was considered a short
answer question.

[2 marks]
Rewrite the following while loop as a for loop:
int i = 1;

int j = 1;

while (i <= 15){

j *= i;

printf ("i is %d and j is %d\n", i, j);

i++;

}

// Enter solution below.

int i;

int j = 1;

for (i = 1; i <= 15; i++) {

j *= i;

printf ("i is %d and j is %d\n", i, j);

}

Alicia M. Grubb Teaching Dossier 15

2013 Midterm Exam Q7.
Q7 was one of two challenging questions on this midterm. It tested the students ability to write a complete C
program and to construct a small algorithm. Specifically the question tested their ability to use printf and scanf
statements, as well as loops and arithmetic operators.

[5 marks]
Write a complete C program that prompts the user for a positive integer using the message
“Give a positive integer:” and computes the sum of all the odd integers between zero and
the provided integer (inclusive).
An odd number is an integer which is not a multiple of two (e.g., 1, 3, 5, ...).
Your program should output two lines (other than the prompt):
- the first line prints the odd integers, each separated by a space
- the second line prints the sum of the odd numbers

Here is an example output from the execution of the program:

Give a positive integer: 10
1 3 5 7 9
25

include <stdio.h>

int main () {

int num , n = 0, sum = 0;

// Prompt user and read input

printf (" Give a positive integer : ");

scanf ("%d", &num);

// Check all numbers up to num

while(n <= num){

// Check if it is odd

if(n % 2 != 0){

printf ("%d ", n); // Print it

sum = sum + n; // Sum it up

}

n++;

}

printf ("\n");

printf ("%d\n", sum); // Print the sum

}

return

Alicia M. Grubb Teaching Dossier 16

7.3 Syllabus
In this section I present three syllabi. The first two syllabi are from my supervision of research students taking
CSC494:Computer Science Project. This course is meant to give students a closer look at computer science research
and involves any significant project in a area of CS. I co-create each syllabus with the individual student, adapting
it to their goals and needs. The syllabus then works as a rubric for evaluating the student at the end of the term.
The first syllabus CSC494 Fall 2017: BloomingLeaf Tool Extension Project Course Outline was a coding-based
course. This student had concerns about their presentation skills and writing abilities. I agreed to allow them to
contribute wiki pages to the project rather than to the original report. We both felt this would help the student
focus on the type of writing they might do in industry.
I included the second syllabus CSC494 Fall 2017: Evolving Goal Models Course Outline, because it is an example
of how I would structure a research-based syllabus for a student who wants to do empirical methods. This student
wanted to do a case study comparing two research methods. This syllabus really helped keep the project in check
because I had included all the tasks needed to complete the study and a general order of completion.
The third syllabus (4 pages) is a more traditional syllabus and comes out of my work as a teaching assistant (TA)
for CSC300: Computers and Society. After grading the written assignments and term papers for which the quality
varied dramatically, I recognized the potential to engage students in writing and critical thinking. The following term
a new instructor (Mathew Zaleski) took over the course and I asked if I could spearhead a curriculum development
e�ort. The syllabus on the following page is the joint e�ort of Dr. Zaleski and I.

I included this syllabus because it showed how we carefully structured the course. I sca�olded the assignments,
such that each assignment was built on the previous one. Page 2 shows this sca�olding and our transparency for
when assignment handouts would be available. We introduced writing, public speaking and debate into the tutorial
exercises to give learners structured practice. Page 4 of the syllabus, shows the timeline for the term and what would
be covered in each tutorial. This syllabus worked as an excellent skeleton for later o�erings, where we o�ered students
the opportunity to resubmit their work and also told them when each of their assignments would be returned.

CSC494	Fall	2017:		BloomingLeaf	Tool	Extension	Project	
Course	Outline	

Course Description

This course involves improving the functionality and implementing new features/extensions for a pre-
existing software tool with a large code-base, “BloomingLeaf”. The BloomingLeaf tool allows users to
draw and analyze goal-oriented requirements models with temporal elements as part of a model-based
Software Engineering Methodology. Student(s) will work on one of several projects related to
BloomingLeaf: expanding the ability of the tool to facilitate and visualize reasoning, adding assignment
of multiple time points in a path, allowing multiple views over a single model, and improving the overall
functionality/usability of the tool. By the end of the course students will have gained experience in the
following:

• Working with a large code base
• Working with a git and the ticketing system in github
• Interpreting and expanding on requirements
• Evaluating User Interfaces
• Several technologies:

o JavaScript and clientIO Libraries
o CGI with Python
o HTML, CSS, and other web-based technologies

Course Evaluation

15% Participation:

Participating will include attending weekly meetings, devoting at least ten hours per week to the
project, using the bug system, and being reasonably available via electronic communication.

45% Progress:

40% Contributions: Students will be evaluated on their contributions to the code-base, keeping in
mind the learning curve that comes with working with a large body of pre-existing code.

5% Weekly Updates: Students will be asked to provide written weekly updates and document their
goals and progress.

5% Testing:

Students will be expected to provide the means to test their progress, either through automated unit
tests, developing a set of test examples, or written GUI test instructions.

15% Documentation:	

Students will also be asked to add sufficient documentation to code via comments. Students will be
required to create instructional videos for the tool and their features.

20% Reports:	

Students will be asked to prepare two reports:
5% Requirements Description: A two-page analysis of the tools’ usability with suggestions on how

to improve the tool and the details of which updates will be included in this project. Due: Last day of
September.

15% Final Report: Add five to six-pages to the GitHub wiki, describing in detail how to use the tool
and each feature, as well as the projects progress, plan changes, and obstacles. This can include a
modified version of the Requirements Description. Due: Last day of classes in December.

Alicia M. Grubb Teaching Dossier 17

CSC494	Fall	2017:	Evolving	Goal	Models	Course	Outline	
Course Description

This course involves studying techniques for understanding how the evaluations of goals in a goal model
change over time. Two tools and their respective techniques will be investigated. GrowingLeaf uses
conventional iStar (or i*) notation and allows for multiple types of analysis. BloomingLeaf uses Tropos
like semantic with the visual notation of iStar intentions to perform constraint-based analysis.

The course project involves doing a comparison between these two tool as well as conducting a full user-
study to the impact of the change in the underlying semantics, asking questions such as “Does the
transformation from iStar to Tropos make things more reasonable?”

By the end of the course students will have gained experience in the following:

• Working with two large code bases
• Designing, conducting, and analyzing an empirical study
• Completing the protocol submission for the Research Ethics Board at the UToronto
• Working with a gitHub and Slack
• Interpreting and expanding on requirements
• Evaluating User Interfaces
• Iterative writing of research findings
• (Optional) Student may gain exposure to several technologies:

o JavaScript and clientIO Libraries
o CGI with Python
o HTML, CSS, and other web-based technologies

Course Evaluation

10% Initial Evaluation: A one to two page description of the requirements for the specific project they
will undertake. The student should show understanding of the tools and techniques and list/analyze their
differences.

10% Study Design Document: Specify research questions, study protocol, and a discussion of what data
will be collected in the study and how it will be analyzed. Including a brief literature review.

10% REB Protocol Submission: Complete the protocol submission process and approval.

10% Study Materials: All questionnaires, videos, letters, posters, and any other study materials.

20% Participant Observation and Recruitment: Students will be graded on how they conduct the in-
person portion of the student and their ability to recruit participants.

20% Study Analysis and Write-Up: Students will provide an complete analysis of study data, and results
should be written up for a workshop submission.

15% Participation and Professionalism: The participating will include attending weekly meetings, and
being reasonably available via electronic communication.

5 % Progress Updates: Students will be asked to provide written weekly updates and document their
goals and progress. Students will also be asked to reflect on their experiences in the course.

Alicia M. Grubb Teaching Dossier 18

COMPUTERS AND SOCIETY! ! CSC 300

CSC 300 !
Computers and Society!
Fall 2014!

General Information!
Instructor! ! Mathew Zaleski! ! ! matz@cs.toronto.edu!

Lectures (L0101)! Wednesdays 3-5pm @ SS2127! !

Tutorials! ! Wednesdays 5-6pm SS2127, T0101a@SS1084, T0101b@SS1086!

Office Hours! ! Wednesdays 6-7 pm (by appointment only)!

WWW! ! https://piazza.com/utoronto.ca/fall2014/csc300h/home!

This term we will be using Piazza for class discussion. The system is intended to get you help
quickly and efficiently from classmates, the TA, and the instructors. Rather than emailing
questions to us, I encourage you to post your questions on Piazza.!

Overview!
This course is an exploration of how computer related technologies are shaping society and the
ways in which society can evaluate such technological change. While this is not a philosophy
course, various reasoning frameworks will be introduced as tools to consider alternate points of
views that will help the student produce a more comprehensive analysis of any particular
problem introduced by computer related technologies with the objective of enriching their own
decision making. !

Our approach through the course is to discuss recent developments in the computer industry
that present a particular ethical challenge while we explore a consistent method to evaluate
their potential impact into society. !

Topics to be covered during the course include social networks, intellectual property, privacy,
pervasive computing, security and open systems, among others.!

Recommended Reading!
Ethics for the Information Age, 6th Edition by Quinn, Michael J (ISBN 978-0-13-374162-9)!

NB: less expensive 180 day “rental” available at coursesmart.com!

!
PAGE " OF " ! ! FALL 20141 4

Alicia M. Grubb Teaching Dossier 19

COMPUTERS AND SOCIETY! ! CSC 300

Prerequisites!
There are no particular prerequisites for this course, but every student will be expected to
participate verbally throughout the term as well as write short essays with a solid argument
around a number of topics, so we expect a good level of proficiency in the English language. !

Students are encouraged to take advantage of their college writing centres.  
See http://www.writing.utoronto.ca/writing-centres!

 !
Marking!
Course grade will be determined as follows:!

Assignment/Project Policies!
1. Participation mark is earned by preparing each class using the reading list.!

2. The Mid-Term Debates will be done in groups of 3 to 5 students. Each group will be
assigned a topic and a position to defend during the debate. All members of the group
must participate in the debate to earn a mark. !

3. All the essays are to be prepared individually. The essays will be based on a term-long
project that will explore an issue chosen by each student and analyzed according to the
methodology learned during class. !

4. Essays are due at midnight on their due date.!

5. All deliverables should be submitted electronically.!

6. Late course work. No assignment will be accepted after the deadline.!

7. Re-marking. The TA’s will hold a special re-marking session shortly after assignments are
handed back to students. If you are still dissatisfied after talking to the TA, then set an
appointment with the instructor. All re-marking should be complete within one week of
the date when the marked assignment is available for hand-back. No assignment will be
re-marked after this period.!

Weight Out Due

Participation 0.1

Mid-Term Debate 0.2 Oct 22/29

Essay I - Proposal 0.1 Oct 1 Oct 8

Essay II - Ethical Framework 0.15 Oct 8 Oct 29

Essay III - Final Report 0.15 Nov 5 Nov 19

Final Exam 0.3

PAGE " OF " ! ! FALL 20142 4

Alicia M. Grubb Teaching Dossier 20

COMPUTERS AND SOCIETY! ! CSC 300

8. Communications. Students are encouraged to use an electronic forum to discuss the
contents of each class and the appropriate channels to do so will be discussed in class.
When communicating with the professor please use email and expect a 48hr turn around.!

9. The Final Exam is worth 30% of the overall mark for the course. Students must earn at
least 20% on the final exam in order to pass the course.!

10. Cheating/Plagiarism. The academic policies of the University of Toronto will be in effect.
See http://academicintegrity.utoronto.ca. All work that you or your group submit must be
your own. When you submit an assignment with your name on it, you are certifying that
you have done the work on that assignment yourself. (Keep in mind that the penalty for
cheating is always worse than handing in the assignment late.)!

!

PAGE " OF " ! ! FALL 20143 4

Alicia M. Grubb Teaching Dossier 21

COMPUTERS AND SOCIETY! ! CSC 300

Schedule!

Date Topic Notes

September 10 Introduction - The Last 20
Years

September 17 The Next 20 Years Tutorial: How to debate

September 24 Introduction to Ethics Tutorial: scenario

October 1 Applying Ethical theories Tutorial: essay methodology I!

Essay I: OUT

October 8 Networked Communications Tutorial: essay methodology II!

Essay I: DUE - Essay II: OUT

October 15 Intellectual Property Tutorial: scenario

October 22 Privacy Debate

October 29 Open Source Principles Debate!

Essay II: DUE

November 5 Computer Crime / Security Tutorial: essay methodology III!

Essay III: OUT

November 12 System Failure Tutorial

November 19 Disruption Tutorial!

Essay III: DUE

November 26 Review Tutorial

PAGE " OF " ! ! FALL 20144 4

Alicia M. Grubb Teaching Dossier 22

Alicia M. Grubb Teaching Dossier 23

8 Sample Training Materials

8.1 First-Year Teaching Assistant Training
I worked as a Teaching Assistant (TA) trainer for the Department of Computer Science (2014–2015). I coordinated
and led the TA Training for all incoming CS TAs in a 3-hour workshop broken down into two time slots. This work-
shop covered active learning techniques, running tutorials/labs, getting/giving feedback, marking and plagiarism,
and professionalism and harassment. Each training session had approximately 40 attendees.

Marking Activity. When evaluating student answers there were often multiple correct answers (although usually
one was considered the best answer). Some students made individual mistakes in an answer but other students
came up with unique ways of answering. In working with both undergraduate and graduate teaching assistants,
I observed that many TAs had trouble evaluating answers that were incorrect in a non-standard way. Since most
TAs excelled in the courses they were working with, they were unaware of the variety of student responses and were
dismissive of these non-standard responses. I hoped to demonstrate that these non-standard answers could convey
partial understanding deserving of part marks, even if the initial rubric did not clearly allow for it. By the end of this
activity, I hoped that TAs will be able to: (a) apply the given marking scheme, (b) di�erentiate between standard
and non-standard answers, and (c) identify how non-standard answers vary from the given marking scheme.

The marking activity (see Department of Computer Science TA Training - Session 2) was placed in the last hour
of training and was planned to take 30 minutes. After giving a presentation on both the structural and technical
details of how to grade assignments in the department, my co-trainer and I gave the TAs the opportunity to practise
grading. TAs organized themselves into groups of 3 or 4, and created a marking scheme. Each TA read and indi-
vidually graded all answers on the handout. Then the TAs were given time to discuss and compare grades. Lastly,
as a whole group again, we picked a few answers and asked everyone (by a show of hands) what grade they gave
for a given answer, and took questions. Note: We told the TAs that they would get 10 minutes to grade individual
answers, but we actually gave them 15 minutes. At the end of the activity we pointed out to them that they took
15 minutes and grading took much longer than they expected.

Skill Development

• practice following a rubric and reviewing student answers
• learn how to approach and evaluate non-standard answers
• learn from peers how to improve evaluation

Benefits

• allows TAs an opportunity to practice grading
• give TAs an awareness of budgeting time to grade answers
• allow TAs to compare answers and understand how subjective grading can be
• foster a collaborative approach to grading within courses

Challenges

• issues arising from TAs not knowing whether they will be grading code or proofs
• issues arising from TAs being reluctant to form groups
• concerns/anxieties of TAs about sharing their evaluations

Activity Improvements. The handout included is from the first-time we used this activity. In subsequent o�erings
we only used Activity 2: Grading and giving feedback and removed Activity 1: Creating a marking scheme. I felt
that having the TAs create a rubric distracted from the point of the activity. Also, first-time TAs were rarely asked
to make rubrics and so it was deemed unnecessary for training.

Note: The Session 2 handout was developed with my co-trainer Brian Law.

Department of Computer Science TA Training - Session 2

ACTIVITY 1: CREATING A MARKING SCHEME

Create a marking scheme (in the space below) given the following advice and Question:

Advice: “Mark this question out of five, mark only for correctness and programming style, and make sure they
handle all the special cases.”

Implement the following function, according to its docstring: (5 marks)

def truncate(string1, substring1, i, substring2):
""" (str, str, int, str) -> str
This function finds the i-th occurrence of substring1 in string1, and then truncates string1 after
that occurrence, replacing everything after the i-th occurrence with substring2.

If there is no i-th occurrence of substring1 in string1, the function should return the original
string1 unchanged.

Example:
>>> truncate("Today I will study and eat and sleep.", "nd", 2, " study some more.")
"Today I will study and eat and study some more."
"""

index = -1
for counter in range(i):
 index = string1.find(substring1, index+1)
 if index == -1:
 return string1
if index != -1:
 index += len(substring1)
 string1 = string1[:index] + substring2
return string1

MARKING SCHEME:

Alicia M. Grubb Teaching Dossier 24

ACTIVITY 2: GRADING AND GIVING EFFECTIVE FEEDBACK
In the space provide grade each of the answers below using your making scheme from Activity #1. Write down
some useful feedback for the student.

Alicia M. Grubb Teaching Dossier 25

Alicia M. Grubb Teaching Dossier 26

8.2 Writing Teaching Assistant Training
I worked as the Computer Science Writing Fellow (2014–2016) as part of a broader Writing Across the Curriculum
program, locally called WIT (Writing Instruction for Teaching Assistants). The sample material in this section are
both from my course specific training session for CSC148: Introduction to Computer Science in January 2016. In this
session I introduced the goals of WIT, and talked about Using Rubrics and Low Stakes Writing. I used a slide deck
(not included but available upon request) to introduce concepts and display the course rubric. The two documents
that follow are the handout I gave to participants in the training session, entitled CSC148 WIT TA Information, and
my summary report of the training session, entitled CS WIT Training Session: Participant Feedback. I included the
handout as an example of how I clearly communicate my expectations to my TAs. The handout also lists the plans
for subsequent training sessions and dates. After each training session, I created a report of my overall impressions of
the workshop and a summary of the participants’ feedback. By writing these reports after each session, I could look
back on them before preparing the next workshop. They also helped when I transitioned my training responsibilities
to others. I included this report as an example of the reports I write. They have proved valuable and I plan to
continue writing them for future training sessions.

CSC148 WIT TA Information
Winter 2016

WIT GOALS:
“Improved teaching of writing and other presentation skills, as well as the information literacy skills that interact
with effective development and communication of ideas.”

TERM GOALS:
Encourage students to engage with writing in CS.
Give helpful feedback.
Improve/create a culture of writing/communication.

PRIOR TO THE END OF WEEK 3 LAB:
Create a Tumblr account/blog.
Share your Tumblr URL (for example http://slog123.tumblr.com) with your lab students and ask them to
follow you. Follow students who are following you.

DURING IDLE LAB TIME:
Like all SLOG posts on your Tumblr feed (within reason).
Re-Blog the best ones or a couple different students each week.
When students ask interesting questions in lab, encourage them to write about their question on their
SLOG.

PRIOR TO YOUR WEEK 4 LAB:
Mark week 3 SLOGs and record the grades.
Select 3+ SLOGs and make photocopies (or take pictures) of the submissions, after you have added your
feedback question.
Email them to amgrubb@cs.toronto.edu or drop off physical copies with Sarah in BA4283.

MARKING INFORMATION
Students will hand in paper submissions of their slogs in weeks 3, 7, and 11. You will grade each of these
submissions.

WEEK 3 MARKING (~1 HOUR):
• Grade each SLOG out of 1 (Low Stakes Writing):

1 - Complete and made good or great attempt.
0.5 - Submitted but did not give sufficient effort.
0 - Did not submit.

• Respond to each SLOG submission with a question. Most questions should be unique.
• Reason for 0.5: only one sentence, not about the course.

WEEK 7 MARKING (~2 HOURS):
We will evaluate the students’ writing in terms of content, structure, and style (more at March training).

SESSION #2: GIVING FEEDBACK, ELL FEEDBACK
Friday March 4th 4-5pm in BA7172 **** Note the room change.
Tuesday March 8th 5-6pm in BA5256

WEEK 11 MARKING (~5 HOURS):
We will evaluate the students’ SLOGs in terms of content, engagement with course material, connections with
other students, structure, and style (more at April training).

SESSION #3: FEEDBACK-ON-FEEDBACK, RUBRIC MARKING
Friday April 1st 4-5pm in BA5256
Tuesday April 5th 5-6pm in BA5256

Alicia M. Grubb Teaching Dossier 27

CS WIT Training Session: Participant Feedback
Department: Computer Science Trainers: Alicia Grubb
Session Title: WIT January Training Duration: [1 hour] x 2 groups
Number of participants: 24 Dates: January 22 & 26, 2015

Quantitative Data.
General rating of the workshop (useful ideas about and/or strategies for teaching writing):
1. poor 2. fair 3. good 4. very good 5. excellent
 0 0 4 8 12
Average: 4.33

Which aspect(s) of the workshop did you find most useful?
All of it. **

The SLOG has changed a lot so this is a good overview.
Knowing the purpose of WIT.

Explaining how to cultivate a culture of writing.
The focus on the importance of writing.
Idea of “low stakes” writing.
Pedagogical reasons / studies / statistics.

Instructions & Tips on how to approach the SLOGs & how to respond to them & grade them.
Going through examples of how to read, encourage, and respond to students slogs. **
Marking scheme and how exactly is SLOG organized. **
Coming up with questions to ask to student’s posts. *****
Analyzing past SLOGs.

How to Tumblr / Setting up Tumblr ****

Were there any aspects of the workshop you think should be changed or
revised? If so, how?
Greatest workshop I’ve ever been to.
Have more time for activities.
More time with examples and more examples of students SLOGs. ***
Maybe give some reasons for why blogging is fun for students?
Don’t need motivations for making Tumblr.
TAs could create Tumblr accounts and their own time.
More careful walk through expectations (liking, re-blogging).

How will you use what you learned today to help engage your students in
writing?
• Learned how to encourage students to participate in the SLOGs.
• I will inform them of the applications/usage.
• Get them excited about slogging, interact with them online, get them motivated by providing

questions, comments & likes.
• I will try to engage them and make them excited about writing.

Alicia M. Grubb Teaching Dossier 28

• Use a similar approach to devising questions as we did today.
• Use my TA slog extensively to motivate them.
• Showing enthusiasm and encouragement.
• Focus on motivating them to write often for communication.
• I will ask insightful questions & encourage students to build our own community.
• Be as enthusiastic as possible so they are in turn excited to learn.
• Be excited and focus on creating community.
• Knowing most don’t think it’s fun, will make effort to show them how fun it is.
• I’ll try to participate in the tumblr thing.
• Encouraging students to write SLOGS related to questions they have in lab to help build community.

Please suggest areas you’d like additional training in, related to writing
instruction.
How to evaluate technical writing specifically. ****
How to evaluate content if the writing is not well written. How much should the penalty be based on
poor writing vs. the idea? / How do I mark people who are fluent and non-flint on the same level?
What constitutes a good / useful CS blog post.
How to deliver constructive criticism.
I’d like to get training on methods of encouraging students to write more enthusiastically. I feel that their
SLOGs are forced.
Writing for specific audiences.
Commenting on quizzes, explaining where they went wrong, etc.
Leading labs.

Facilitator Notes:
The first session had 6 participants. Two were returners and needed space to air grievances from last
year. This resulted in us being a bit rushed for time. One participant had a lot of trouble grasping the
concepts and rubric for grading the SLOGs.

The second session went slightly faster than expected, everyone seemed really engaged and on board.
I felt very relaxed at this session.

I think my slide deck has just enough intro to motivate WIT.

On a whim, I decided to talk about low-stakes writing as a metaphor for encouraging students to blog. I
think this was a really great idea and this was new material for all participants. In the first session, one
participant could not make the connection that it was a metaphor, and thought we were doing it all
wrong. In the second session, participants seemed excited and intrigued that they had never heard of
low-stakes writing before.

My intuition after these two training sessions is that we should never start training by saying “we are
going to go fast through the material”, even if that is the case. Instead just say “there is enough time for
everything”, even if we know we are going to go through it pretty fast.

Alicia M. Grubb Teaching Dossier 29

	Introduction
	Teaching Philosophy
	Teaching Experience
	Instructor and Teaching Assistant
	TA Training and Curriculum Development

	Evidence of Professional Development
	Writing Training Workshops
	Course on Professional Instruction
	Other Workshops

	Evidence of Effective Teaching
	Summary of Evaluation Data
	Student Comments and Feedback

	Diversity Statement
	Sample Teaching Materials
	Lecture
	Evaluation/Examination
	Syllabus

	Sample Training Materials
	First-Year Teaching Assistant Training
	Writing Teaching Assistant Training

