
Understanding Challenges and Tradeoffs in iStar
Tool Development

Tong Li1, Alicia M. Grubb2, and Jennifer Horkoff3

1 Beijing University of Technology, Beijing, China
litong@bjut.edu.cn

2 University of Toronto, Toronto, Canada
amgrubb@cs.toronto.edu

3 City University London, London, UK
horkoff@city.ac.uk

Abstract. Many iStar-based modeling and analysis tools have been de-
veloped for specific iStar-related purposes (e.g., tools enumerated in iStar
wiki). Despite the proliferation of tools, new tools keep being built, tak-
ing resources and time and possibly “reinventing the wheel” in terms
of tool functionality. To gain an in-depth understanding of this situa-
tion, we are interested in the challenges and tradeoffs in creating iStar
tools. In this paper, we examine three diverse tools as case studies, il-
lustrating the challenges and tradeoffs from the developer’s perspective.
Based on such studies, we establish a goal model to capture the collected
knowledge, which can help researchers to make informed decisions and
optimize their tool development.

1 Introduction

The iStar modeling language is suitable for modeling and analyzing stakeholders’
requirements in the early phase of system development. Over the past decade,
many researchers have extended the syntax and created new analysis techniques
for a variety of purposes (e.g., TROPOS, PRiM, and RiSD [7]). Researchers
have built and continue to build a variety of tools in order to validate these
new extensions. The iStar wiki [1] list 26 tools, yet many recent tools (i.e.,
MUSER [15], Leaf [8], and pistar[13]) are not yet listed.

When embarking on tool development, it is important for researchers to con-
sider development technologies that will satisfy their requirements and mitigate
common challenges for modeling tools (i.e., usability, model scalability, instal-
lation, and maintenance). Related work has reviewed iStar tool functionality,
evaluating the coverage of syntactic constructs [2], to facilitate tool selection
from the user point of view. However, such work does not discuss the underlying
development of these tools.

In this paper, we examine technical tradeoffs in tool development choices
from a developer point of view. As active tool developers, we (the authors of this
paper) are intensely involved and have in-depth expertise. We examine our tools,
profiling their development rationale, to understand how technology tradeoffs
impact tool qualities. We contribute a goal model to explore the tradeoffs of



tool development and an initial list of desirable qualities for iStar tools, with the
intention of helping researchers make informed decisions about adopting existing
tools or developing their own new tools. We hope that this work helps to create
a discussion in the iStar community about tool development, sharing, and reuse.

2 Examination of iStar Tools

In this section we introduce and discuss selected iStar tools. We cover tools
in which the authors have particular expertise. Future versions of this study
should have systematic inclusion and exclusion criteria, covering a wider range
of tools. For each tool, we first briefly describe its features; and then present
its architecture, design, and used technologies; finally, we discuss pros and cons
based on qualities desired by its developers.

OpenOME is an Eclipse-based tool [12] for the creation and analysis of iS-
tar models using the iStar Framework syntax described in the iStar Wiki [1].
The tool allows users to create iStar models graphically using a palette of
shapes. OpenOME imports and exports models in the GMF .ood and .oom
format, the Q7 textual modeling language, and the iStarML interchange for-
mat [3]. OpenOME supports the forward and backward interactive, qualitative
iStar analysis procedures described in [11]. Visualizations have been added to
highlight model leaves and roots (potential starting points for analysis), areas of
human judgment, and the intentions involved in a conflict in backward analysis.

OpenOME uses the Eclipse platform, taking advantage of the Eclipse Mod-
eling and Graphical Modeling Frameworks (EMF & GMF). Use of these frame-
works allows us to automatically generate code from an iStar metamodel. This
code has been customized and expanded to support features specific to iStar
modeling. OpenOME architecture takes advantage of the Eclipse package en-
vironment, allowing for extension or customization with the addition of new
packages.

We can use our experience to examine the pros and cons of OpenOME devel-
opment. On one hand, the Eclipse platform (including EMF & GMF) provides
metamodel support, and supports automatic code generation reducing develop-
ment effort. In theory, one should be able to use Eclipse as a modeling tool
without coding. In practice, the iStar modeling capability provided by the de-
fault GMF functionality is non-optimal: no support for collapsing actors, special
behaviour and look of links and softgoals. As a result much of the code had to
be customized, and since the auto-generated code was difficult to understand,
further customization proved difficult. When the metamodel was updated (main-
tainability) bugs were often introduced, affecting tool stability, and the interface
between the generated and custom code had to be manually analyzed and fixed.

Users had to download a full version of Eclipse with OpenOME embedded,
having a negative effect on ease of installation (the alternative was to make
OpenOME available as a downloadable Eclipse project, requiring users to already
have Eclipse installed and understand project installation). For users with a
technical background, this was fine, but less technical users were forced to use a
heavy-weight, large and complex tool, impeding usability.



MUSER is a prototype tool which is designed to support three-layer security
requirements analysis [15]. Specifically, it helps analysts to model security re-
quirements with an extended iStar language, and supports automatic security
requirements refinement and operationalization (as specified in [14]).

By extending OmniGraffle4, a specialized and powerful diagramming appli-
cation, the development of MUSER focused exclusively on investigating model
reasoning. A Java and AppleScript-based program was developed on top of Om-
niGraffle to manage graphical models in the canvas using corresponding APIs.
Specifically, the program transforms graphical models into Datalog and performs
inferences. All inference results are reflected in the canvas, e.g., highlighting crit-
ical security goals, and creating new refinements of security goals.

We examine the pros and cons of MUSER development. The loosely-coupled
architecture helps to improve extensibility, allowing developers to incrementally
add new modeling notations or inference tasks to corresponding modules. In
addition, the tool inherits good usability from OmniGraffle, such as automatic
layout, batch selection of similar elements, and copy/paste, facilitating the mod-
eling practices. OmniGraffle also provides comprehensive and detailed manuals,
contributing to learnability of the tool. The tool supports model scalability, al-
lowing modelers to create and browse large-scale models. This is the most de-
sired quality by the developer, as the tool is used to model and analyze security
requirements for large Socio-Technical Systems (STSs) which normally involve
several hundred elements. On the other hand, OmniGraffle, as an indispensable
component of MUSER, is a commercial application which only functions in Mac
OS, impairing ease of installation and the desire to be cross-platform. Moreover,
the metamodel is embedded in the tool restricting users from making edits.

Leaf (Beta) is intended to be a simple web-based iStar modeling tool [8]. The
basic tool contains a palette of iStar concepts, and a canvas where elements can
be drawn. The developers have plans to update the palette to conform to the
latest version of the iStar 2.0 core [4].

Leaf (beta) uses both JointJS and the Rappid diagramming framework5.
JointJS is available via an open license, while Rappid is a commercial product,
but provides free academic licenses. Code is written in JavasScript, using CSS
and HTML files for formatting and interfacing with the Web. The Leaf code
has been expanded and adapted for two separate projects: Creative Leaf and
GrowingLeaf.

Creative Leaf aims to combine the benefits of established creativity tech-
niques with iStar modeling for enhanced requirements engineering [10]. The Leaf
code has been modified and adapted, e.g., to add ideas and assumptions, and
to add a creativity panel to allow users to use structured creativity techniques
within the tool. Creative activities are aimed to support either divergent cre-
ativity, generating ideas, or convergent creativity, selecting, combining and de-
veloping ideas.

4http://www.omnigroup.com/omnigraffle
5http://www.jointjs.com

http://www.omnigroup.com/omnigraffle
http://www.jointjs.com


GrowingLeaf models the evolution of goal models over time. Using iStar
Strategic Rationale diagrams it extends the static notion of iStar by allowing
the qualitative evaluation of intentional elements (i.e., goals, tasks, qualities) to
change over time (as described in [9]). In addition to enabling users to model
dynamicity, GrowingLeaf allows users to create simulations based on either the
initial states of the model (using a random simulation), or desired intermediate
or final states of the model (by encoding the model as a Constraint Solving
Problem).

We consider the pros and cons of the Leaf-family of tools together. Leaf tools
are lightweight in that they are used in the browser and do not contain many lines
of auto-generated code. They are simpler and have better usability compared to
more heavy-weight tools like OpenOME. Installation is trivial. On the downside,
there is no explicit support for metamodel representation or extension. From a
developer point of view, development is easy or hard depending on the level of
familiarity with JavaScript, CSS and HTML. The use of JointJS and Rappid,
with their accompanying documentation, gives a good starting point for general
modeling functionality, but customizations and extensions are still needed. Like
all browser-based tools, there is the challenge of making the tool compatible with
all browsers. Thus far, functionality has only been carefully tested in Chrome.

3 Analysis Model for Tool Development

Based on our experiences in developing and working with the previously de-
scribed tools, we built an initial goal model (using the iStar 2.0 language guide [4]),
illustrating challenges and tradeoffs of alternative technical choices, which is
shown in Fig. 1. In particular, each tool is modeled as a task. The desired qual-
ities of tools are modeled as qualities, which can be positively/negatively influ-
enced by alternative tools. Note that all such qualities were identified and high-
lighted in italic in Sec. 2, and we leave the detailed explanation of these qualities
and contributions to future work. Finally, specific technologies/languages that
were required in developing each tool (e.g., Java and Datalog) are modeled as re-
sources. The qualities we have identified are not independent (e.g., a Lightweight
tool helps Reduce Development Effort). Thus, we omit the interactions between
qualities to keep the model simple, in this version.

The qualities in Fig. 1 can be used as a checklist by future iStar tool develop-
ers, helping them to elaborate their tooling requirements. Once developers decide
what qualities they desire in their tool, they can check whether existing tools
can adequately satisfy such qualities. Developers can either incrementally build
their tool on top of those existing tools, inheriting all of the tool’s characteris-
tics, or develop a new tool from scratch. When building new tools, developers
may find it helpful to review the particular techniques used by existing tools and
understand their tradeoffs, in order to choose an optimal technical solution.

4 Related Work

The iStar wiki tool list, currently summarizes 26 iStar tools [1]. Each tool has
been examined in terms of features, e.g., whether the tool allows SR/SD model-



make

MUSER

JavaDatalog

make

make breakhurt

help

break

Leaf-
family

AppleScript JavaScript

OpenOME

EMF/GMF

make

make

OmniGraffle Eclipse

hurt
hurt

hurt

hurt
hurt

JointJS Rappid

make
hurthelpmake

hurt

hurt

make
help

help

help

hurt

Model
Scalability Extensibility Ease of 

Installation

Maintainability Stability

Reduce 
Development

Effort

Meta-Model
Support

Lightweight Open Source

Browser
Compatibility 

Cross-Platform
Usability

Legend

Task Resource
make
help

break
hurt

NeededByQualityGoal

SAT Solver CSP Solver

hurt

Fig. 1: Tradeoffs among different techniques

ing. In addition to this summary, Almeida et al. surveyed six iStar tools, exam-
ining the coverage of syntactic constructs of each tool [2]. Both of these studies
focused on the features of iStar tools from the user’s perspective, which are
intended to help researchers to find a suitable iStar tool to use. De Gea et al.
surveyed existing Requirements Engineering (RE) tools [5], assessing how and to
what degree each tool supports the RE process by means of concrete capabilities.
Our work departs from these previous studies in that we focus on the tradeoffs
and challenges in developing iStar tools from the developer’s perspective, with
the aim of facilitating the development of new iStar tools.

iStarML offers an XML compliant format to represent iStar diagram, en-
abling the interoperability among iStar variants [3]. With the help of iStarML, re-
searchers can easily exchange models that are built using different meta-models.
When it comes to tool development, iStarML, as a common file interface, can
contribute to collaborative tool development.

A diverse collection of tools can be a sign of a prosperous research commu-
nity, but we have also witnessed the “death” of iStar tools. According to the
iStar wiki, 8 out of 25 tools are no longer available. This situation also appears
in other research communities. For example, Eichelberger et al. performed a
comprehensive survey starting with an initial set of 200 existing UML tools, and
found that only 68 of them were available for use [6]. The continuous creation
and “death” of iStar tools might be an inevitable part of a maturing field. Af-
ter enough competition, the surviving tools should become de facto baselines,
on top of which new tools can be incrementally built, promoting the maturity
of iStar tooling. In order to accelerate this procedure, iStar researchers should
try to consolidate iStar 2.0 tools, establishing an open iStar tool that can be
extended by the community.

5 Conclusions and Future Work

In this paper, we examine a selection of technical choices for creating iStar tools
from the developer’s perspective, understanding the challenges and tradeoffs.



This is ongoing research, we are planning to study further existing iStar tools
in depth (e.g., jUCMNav6), mapping out a full picture of available techniques.
Specifically, we intend to evaluate our study with potential tool developers, for
example, PhD students who work on iStar models and need tooling support in
their thesis. We believe this and future studies can help researchers justify their
iStar tool development choices, avoid reinventing the wheel, and optimize their
development process.

Acknowledgments. Jennifer is supported by an ERC Marie Skodowska-Curie Intra
European Fellowship (PIEF-GA-2013-627489) and a Natural Sciences and Engineering
Research Council of Canada Postdoctoral Fellowship (Sept. 2014 - Aug. 2016).

References

1. i* tool wiki. http://istarwiki.org/tiki-index.php?page=i%2A+Tools.
2. C. Almeida, M. Goulao, and J. Araújo. A systematic comparison of i* modelling

tools based on syntactic and well-formedness rules. In Proc. iStar’13, pages 43–48,
2013.

3. C. Cares, X. Franch, A. Perini, and A. Susi. Towards interoperability of i* models
using istarml. Computer Standards & Interfaces, 33(1):69–79, 2011.

4. F. Dalpiaz, X. Franch, and J. Horkoff. iStar 2.0 Language Guide. arXiv:1605.07767,
2016.

5. J. M. C. De Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert, and A. Vizcáıno.
Requirements engineering tools: Capabilities, survey and assessment. Information
and Software Technology, 54(10):1142–1157, 2012.

6. H. Eichelberger, Y. Eldogan, K. Schmid, and M. Platz. A Comprehensive Survey
of UML Compliance in Current Modelling Tools. Software Engineering, 143:39–50,
2009.

7. G. Grau, C. Cares, X. Franch, and F. Navarrete. A comparative analysis of i*
agent-oriented modelling techniques. In Proc. of SEKE’06, pages 657–663, 2006.

8. A. M. Grubb. Leaf (beta): An istar modeling tool. http://www.cs.toronto.edu/

~amgrubb/leaf, 2015. Accessed: 2016-07-28.
9. A. M. Grubb and M. Chechik. Looking into the Crystal Ball: Requirements Evo-

lution over Time. In Proc. of RE’16, 2016.
10. J. Horkoff and N. Maiden. Creative Leaf: A Creative iStar Modeling Tool. In Proc.

of iStar’16, 2016.
11. J. Horkoff and E. Yu. Interactive goal model analysis for early requirements engi-

neering. Requir. Eng., 21(1):29–61, 2016.
12. J. Horkoff, Y. Yu, and E. Yu. OpenOME: An Open-source Goal and Agent-

Oriented Model Drawing and Analysis Tool. In Proc. of iStar’11, pages 154–156,
2011.

13. João Pimentel. pistar. http://www.cin.ufpe.br/~jhcp/pistar/, 2016. Accessed:
2016-07-28.

14. T. Li and J. Horkoff. Dealing with security requirements for socio-technical sys-
tems: A holistic approach. In Proc. of CAiSE’14, pages 185–200, 2014.

15. T. Li, J. Horkoff, and J. Mylopoulos. A prototype tool for modeling and an-
alyzing security requirements from a holistic viewpoint. In Proc. of CAiSE’14
(Forum/Doctoral Consortium), pages 185–192, 2014.

6http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

http://istarwiki.org/tiki-index.php?page=i%2A+Tools
http://www.cs.toronto.edu/~amgrubb/leaf
http://www.cs.toronto.edu/~amgrubb/leaf
http://www.cin.ufpe.br/~jhcp/pistar/
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

	Introduction
	Examination of iStar Tools
	Analysis Model for Tool Development
	Related Work
	Conclusions and Future Work

