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Abstract—Goal modeling has long been used in the literature
to model and reason about system requirements, constraints
within the domain and environment, and stakeholders’ goals.
Goal model analysis helps stakeholders answer ‘what if’ questions
enabling them to make tradeoff decisions about their project
requirements. However, questions concerning the evolution over
time of stakeholder requirements or changes in actor inten-
tionality are not explicitly addressed by current approaches. In
this paper, we tackle this problem by presenting a method for
specifying changes in intentions over time, and a technique that
uses simulation for asking a variety of ‘what if’ questions about
such models. Using the development of a web-based modeling tool
as an example, we demonstrate that this technique is effective
for debugging goal models and answering stakeholder questions.

I. INTRODUCTION

In early-phase requirements engineering (RE), goal mod-
eling helps stakeholders understand and evaluate potential
project scenarios, and the system’s interactions with its sur-
rounding environment. Specifically, goal modeling elicits and
connects stakeholders’ intentions and social needs with tech-
nical requirements. Goal modeling has long been used in
the literature to model and reason about system require-
ments, constraints within the domain and environment, and
stakeholders’ goals. Within the goal-oriented requirements
engineering community, different approaches and notations
have been developed [1]-[5]. These approaches differ in
their purpose and application, for example, [1] and [2] deal
with only qualitative information, while the rest can also
evaluate quantitative information. [4] and [5] do not support
dependencies between actors, but have formal semantics. [3]
and [4] have automated analysis procedures. [6] gives a more
comprehensive comparison of these approaches.

In early-phase RE, these approaches do not explicitly model
the evolution of goal evaluations over time. When planning
for changing project scenarios, stakeholders can, in principle,
reason about time in an ad-hoc manner, by considering the
state of the model before or after the change. But this is
insufficient to understand trends over the model. Thus, goal
models without an explicit modeling of time may lead to
incorrect results because they do not account for variations
in intentions’ satisfaction. It is important to provide analysis
to allow stakeholders to consider alternatives over time.

Motivating Scenario: Waste Management Example
(WME). Consider a city evaluating its waste management
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Fig. 1: Early RE model for the Waste Management Example.

infrastructure. The city currently has a landfill (dump) that has
not reached capacity and is considering investing in building a
new one as well as a recycling and composting facility. Fig. 1'
shows the partial Strategic Rationale iStar goal model [1]
of the City and its Citizens, consisting of their intentional
elements (intentions): goals, tasks, resources, and soft-goals;
and connections between their intentions: dependency, decom-
position, and contribution links (see Legend for representations
of intentions and connections). The city wants to satisfy
Manage City Waste (MCW), Comply with Standards, Reduce
Operating Costs (ROC), Have Workers Union Contract, and for
their citizens to Enjoy City (HC) (i.e., their root-level goals).

Several elements in this model change over time. For
example, the Willingness to Separate Waste will become more
satisfied over time, but Environmental Concern (EC) will vary
substantially depending on external factors. As the dump gets
used, the Space in Dump (SiD) will become less satisfied, and
if the city decides to build a new dump at some point, it will
need to Purchase Land either near the city where prices are
high or far away from the city, where prices are lower, or both.
Buying land farther away from the city results in increased
garbage transportation costs.

The city wants to understand how these goals changing over
time impact its decision making, by exploring the following
seven questions: (EQ1) Is it feasible to first Build Green Centre
(BGC) and then build a dump (Build Large Dump (BLD) or
Build Small Dump (BSD))? (EQ2) Does the order of these
developments (Process Green Waste (PGW) and Use New
Dump (UND)) matter? (EQ3) Which possible scenarios always
satisfy MCW even if SiD becomes denied in the future? (EQ4)

'Dependums have been removed from the model to save space.



How do changes in EC affect the city’s root-level goals over
time? (EQ5) Can all root-level goals eventually be satisfied?
(EQ6) Given the initial results from answering EQI1-EQS, is
there another way to answer these questions?

Current Approaches. Many techniques for analyzing goal
models already exist [7]. Generally, approaches either deter-
mine the evaluation of root-level intentions given evaluation
assignments to leaf-level intentions, called forward analysis,
or determine possible evaluations of leaf-level intentions given
evaluation assignments of root-level intentions, called back-
wards analysis. Variations of forward and backwards analysis
have been created for interactive qualitative analysis [7], and
automated qualitative and quantitative analysis [4], [8].
Current goal model analysis approaches can answer some of
the City’s questions to a limited extent. For example, we could
use forward analysis to answer EQ1 (and similarly EQ2) by
creating an initial model before anything is built and additional
models for each combination of BGC, BSD, and BLD, but
manual comparison of these models is fraught with errors
and does not account for the elapsed time between models.
Forward analysis could also be used for EQ4 by exhaustively
propagating evaluation labels, but again does not say how the
individual labels connect, and comparison between propagated
models is difficult. Backwards analysis would partially answer
EQ3, by providing possible solutions with and without the
denial of SiD, and EQS could also be answered by setting
all root-level goals to be satisfied and finding values for
the remaining intentions using backwards analysis. However,
backwards analysis would not be able to inform stakeholders
how (or in what order) to satisfy these goals. In each of these
and other cases, standard techniques cannot explicitly answer
the city’s questions and cannot provide a path to achieve
their satisfaction values. Furthermore, no current approaches
explicitly allow the exclusion of multiple previous solutions
(EQ6), which is vital in grasping the full range of tradeoffs.

Strategies for Analysis. We believe goal model analysis can
be improved by allowing stakeholders to consider alternatives
over time through path-based strategies. Based on the time-
based questions we have encountered, we consider three
simulation strategies: (AR1) create a random path given initial
states in the model; (AR2) create a path given desired proper-
ties of the intermediate state (with optional properties over the
initial or final state); (AR3) create a path which is different
than the previously seen path over the same constraints.

In order to understand the effect of building a green centre
and then building a dump (EQ1), we need an exploration of
the model, handled by AR1. We can also use AR1 to explore
how changes in EC affect the city’s root-level goals (EQ4).
But in order to find simulations that always result in the future
satisfaction of MCW (EQ3), we need to find a path given a
desired final state, which is the approach of AR2. Similarly,
we use AR2 when we want to find a path where all root-level
goals are FS in the final state (EQS5). AR2 can also be used
for intermediate states to test if the ordering of events matters
(EQ?2). Finally, if we have an initial result and want to know if

there is another answer to our questions (EQ6), then we need a
strategy that takes previous results into account; this is handled
by AR3. We discuss these mappings further in Sect. IV.

Contributions and Organization. We contribute terminology
that enables stakeholders to ask questions about model dynam-
ics over time, and strategies that enable answering time-based
questions. By developing a simulator that implements these
strategies, we demonstrate the effectiveness and scalability of
our approach by evaluating it with a variety of goal models.

The remainder of this paper is organized as follows. Sect. II
introduces relevant goal modeling background. Sect. III ex-
plores representation of dynamic intentions and relationships.
Sect. IV introduces our simulation strategies to answer stake-
holder questions. Sect. V reports on the effectiveness and
scalability of our approach. Sect. VI connects our approach
to related work. We conclude in Sect. VII.

II. BACKGROUND

We introduce relevant goal modeling background. An iStar
model is a tuple M =< I,R, A,V >, where I is a set of
intentions, R is a set of relations between intentions, and A is a
set of actors [9], [10]. V' is a set of initial qualitative evaluation
labels. Intentions (i.e., goals, tasks, resources, and soft-goals)
are the elements in the model that can be evaluated using
the qualitative evaluation labels Fully Satisfied (FS), Partially
Satisfied (PS), Partially Denied (PD), Fully Denied (FD),
Conflict (CF), Unknown (U), and None (N) in the absence
of other labels. Evaluation labels can be assigned by modelers
(i.e., in the set V) and can be propagated throughout the model
via the relations between intentions (i.e., links). Propagation
occurs through either forward analysis or backwards analysis
(discussed in Sect. I).

Decomposition links separate intentions into sub-
components. A single intention can be decomposed with
either AND-Decomposition or OR-Decomposition links but
not both. In propagation, AND-Decomposition propagates
the minimum values of the sub-components, and OR-
Decomposition propagates the maximum values. Dependency
links connect intentions between actors and propagate
the minimum satisfaction value from the dependee to the
depender. Contribution links propagate values to soft-goals.
There are four types of contribution links: Makes (Breaks)
propagates sufficient evidence in support (against) of a
soft-goal and Helps (Hurts) propagates insufficient evidence
in support (against) of a soft-goal.

Actors can have relationships between them based on their
type (i.e., Role or Agent). While we do not use actor types or
relationships in our analysis, we do present them for clarity
in visual models.

ITII. EXPRESSING DYNAMICS IN GOAL MODELS

In order to apply simulation strategies, we must first identify
how dynamism occurs in goal models and develop a way
of specifying it. We illustrate this process using the Waste
Management Example (WME).



TABLE I: Definitions of Dynamic Function Types for Inten-

tions and Relationships

Elementary Functions

Constant (C)
Increase (I)
Decrease (D)

Stochastic (R)

the satisfaction evaluation remains constant at
constantValue

changes in satisfaction evaluation become
“more true” to a maxValue as time progresses
changes in satisfaction evaluation become “less
true” to a minValue as time progresses
changes in satisfaction evaluation are stochas-
tic or random

General Compound Function

User-Defined
(UD)

its value is a stepwise function defined by a se-
quence of other functions, repeating behaviour
can be specified over a subset of the function

Common Compound Functions

Satisfied-
Denied (SD)
Denied-
Satisfied (DS)
Stochastic-
Constant (RC)

Constant-
Stochastic

(CR)
Monotonic Pos-
itive (MP)

Monotonic Neg-
ative (MN)

the satisfaction evaluation remains FS until t;
and then remains FD

the satisfaction evaluation remains FD until ¢;
and then remains FS

changes in satisfaction evaluation are stochas-
tic or random until ¢; and then remains con-
stant at constantValue

the satisfaction evaluation remains constant at
constantValue until t; and then changes in
evaluation are stochastic or random

changes in satisfaction evaluation become
“more true” to a maxValue at t; and then
remains constant at constantValue

changes in satisfaction evaluation become “less
true” to a minValue at t; and then remains
constant at constantValue

Relationship Dyn:

amics

Multi-
Relationship

the link between source and destination is re-
lationshipA until ¢;, at which point it becomes
relationshipB

A. Definition of Epoch and Epoch Boundary

For the purpose of defining dynamic functions, we discretize
time into intervals, called Epochs, defined as the period from
the start time tgiart (inclusive) to the end time tgng (exclusive).
An Epoch Boundary (EB) is an identifiable time point (i.e.,
teng) Where there is a transition between epochs. For example,
tggc defines the time at which Build Green Centre (BGC)
is assigned a FS satisfaction label for the first time. When
creating dynamic functions, we reserve ty to denote the start
of the function (initial evaluation) and ¢, to denote the end
of the function (final evaluation).

B. Defining Dynamic Functions for Intentions

Here we introduce dynamic function types for intentions —
ways of describing changes in the evaluation of intentions over
time (see Tbl. I). A preliminary version of some of these has
been presented in [11].

Elementary Functions. Between two consecutive EBs, a
value of the intention can become more true, or Increase (I),
become more false, or Decrease (D), remain Constant (C),
or change randomly, displaying a Stochastic (R) pattern. For
example, UCD remains constant from the initial time point ¢,
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F? 2: An illustration of the UD function type for GW
Education Program.

to tycp when a decision is made not to use the dump. Yet
EC’s state is not known over any Epoch, so we model it as R.

General Compound Function. We enable modelers to create
compound functions by defining an ordered list of elementary
functions using the User-Defined (UD) function type. For
example, BGC is C with the value FD from g until {ggc
and then C with the value FS until ¢{,,. For GW Education
Program, the function (illustrated in Fig. 2) is C with the value
FD from ty until tggg, C with the value PS until tggp, C with
the value FS until tgrp, and C with the value PS until ¢.

Functions with Repeating Behaviour. When creating a UD
function, modelers have the option to specify repeating be-
haviour over the evaluation of an intention. Suppose a resource
is available (FS) for an epoch, then not available (FD) for
another epoch, then again available (FS) and so on. Have
Workers Union Contract follows this pattern. Currently, we
do not allow users to specify the duration or the number
of iterations for a repeating interval, but we do allow them
to specify EBs to start and stop the repeating behaviour.
This gives modelers the option of specifying non-repeating
behaviour before and after a single repeating segment by
specifying the EBs of the repeating segments. If ¢y and ¢, are
given as the repeating segment, it is assumed that the behaviour
repeats for the entirety of the simulation. The union contract
could be specified as C with FS for ¢, to tg and C with FD for
tR to to, With ¢y and t, as the repeating EBs. Modelers can
use repeating functions to understand cyclic behaviour, such
as changes in the season and quarterly business cycles.

Common Compound Functions. Finally, we can define
functions that capture common patterns in goal models. For
example, the pattern for BGC discussed above is common, and
we define it as Denied-Satisfied (DS). Another common pattern
is Stochastic-Constant (RC) where the value is unknown (R)
until an EB and then it is known with a user-specified constant
value (C). When the evaluation value of an intention increases
in satisfaction until it reaches its maximum value and then
remains constant at that value, we define this as Monotonic
Positive (MP). See Tbl. I for a full list of common compound
functions. We enhanced these functions (over the presentation
in [11]) to enable stakeholders to declare the min, max, or
constant evaluation label within a function. For example, we
can define an MP function with the maximum value PS.

Completeness of Function Types. Our set of function types
is not complete. For example, a stakeholder may want to
describe a function with a repeating function until an EB,
followed by an epoch with non-repeating behaviour and then



a second unique repeating function. However, we have not
yet encountered such phenomena. We expect the usability of
function types to be improved as new common compound
function types are defined through case studies.

C. Other Definitions and Process

Defining Relationship Dynamics and Model Evolution. We
understand relationship dynamics as changing the structure of
the relationship over time. We allow modelers to specify this
multi-relationship by extending iStar link types as specified in
Tbl. I and adding the No-Link type to indicate that no relation-
ship exists across this link. However, in implementing these
new relationships, we restrict the relationship combinations to
valid iStar relationships. For example, all relationship types
(i.e., Dependency, AND-Decomposition, OR-Decomposition,
and Contribution Links) can be combined with the No-Link
type, but only Contribution Links (i.e., Makes, Helps, Hurts,
Breaks) can be combined with each other.

We indirectly represent model evolution where goals are
removed from the model and/or new goals appear in the model
through dynamic functions and relationships. For example, if
we want the goal Comply with Standards to appear at tcws,
we add the element to the original model and give it a
function type (such as CR) where the initial epoch is a constant
evaluation of N until t{cws. We also add that Comply with
Standards to MCW has no relationship (No-Link type) until
tocws and a Dependency relationship after. Thus, we use the N
evaluation and the No-Link relationship to represent intentions
not present over specific epochs.

Defining Constraints between Intentions. In order to achieve
more realistic model evolutions, we allow users to specify
an ordering over symbolic constants associated with EBs. We
know that Update Truck Route is completed (FS) before either
the UND or the PGW tasks are FS, but neither depend on
an updated route. Given that Update Truck Route is modeled
as RC with the value FS at tytgr, and UND is modeled as
RC with the value FS at tynp, we can add the constraint
that tytr occurs before tynp. Similarly, we can say that
two EBs occur at the same time. Symbolic constraints can
be ordered using operators from the set {=,<>,<, <=},
enabling stakeholders to express constraints in chronological
order from left to right. These constraints should not be used
to specify dependency or decomposition relationships. Their
purpose is to communicate correlations between timed events
for the purpose of simulation.

Defining Queries between Intentions. Not all interactions
between intentions are known in early-phase requirements. We
enable modelers to construct queries over constrains in the
model using the ? symbol. For example, to answer EQ2 (see
Sect. I), the modeler wants to know if the order between PGW
and UND matters and if satisfying solutions exist for each
order. If PGW is FS at tpgw and UND is FS at tynp, then we
ask (tpagw 7 tunp)-

Elicitation Process. We elicit these dynamics through meet-
ings with stakeholders. Once initial actors and dependencies

have been established, we help stakeholders discover dynam-
icity and expand their model by asking four questions: (1)
Which evaluation labels are currently correct (matching the
real world values) and which are not? (2) For those currently
correct, are there any guarantees that they will stay static? (3)
Identify which elements in this model change over time? (4)
How do each of these elements change?

IV. ANALYSIS PROCESS

In this section, we describe the process of analyzing goal
models with dynamics.

A. Path Definition

In order to define the notion of a path, we extend the
definition of a goal model discussed in Sect. II, such that each
intention ¢ € I also maps to one Dynamic Function Type in the
set, I — DynamicFunction, where DynamicFunction = {I, D,
R, C, UD, SD, DS, RC, CR, MP, MN } (see Sect. III-B). See
the supplemental material online® for a discussion of the iStar
meta-model extension. We define an evaluation state w(t) as
an evaluation of a goal model M at time t.

A path is a sequence of evaluation states w(t;) for an
ordered sequence of times (ti,t2,t3,...) with transitions
between states. We compute paths by selecting times and
evaluations of the model at those times. Times are selected
randomly while respecting declared constraints within the
model’s dynamic functions.

B. Encoding

We encode an iStar goal model into Constraint Solving
Problem (CSP) as a series of constraints over an array of
IntVar[] for each intention. Each intention has an IntVar
for each time step of the form N<IntentionID>_<TimeStep>.
Intention evaluations are mapped to integers: FD-0, PD-1,
PS-2, FS-3, etc. having the range {0..6}. Epoch boundaries
(E<EpochID>) have the number of time steps as their range.
The initial state is specified for all intentions, and the dynamic
functions are encoded over the intention set with identified
EBs for transitions between elementary functions. Then the
model structure, i.e., links between intentions, is added. Fi-
nally, constraints between EBs are added, specifying a partial
order over the EBs. For example, three encoding fragments
of the WME are shown in Fig. 3. Fragment (1) shows the
initial state encoding for Use Current Dump (NOQ0O1). It is
assigned the value FS-3 for time step 0. To create a DS
function (shown as fragment (2)), an EB is created (E0011)
and a constraint is added for each time step (in this case
Build Green Centre NOO11 for time step 1). The constraint says
that if the EB is greater than or equal to the current time
step, then the intention is assigned FD-0, else the intention
is assigned FS-3. A constraint between two EBs is directly
mapped into CSP. Fragment (3) says that Update Truck Route’s
E0019 is constrained to be less than Use New Dump’s E0002.
The complete encoding of the WME is described online?.

2 http://www.cs.toronto.edu/~amgrubb/archive/RE16- Supplement
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(1) XeqC3:XeqC (N0O001_0::{0..6}, 3)

(2) IfThenElse2:IfThenElse (
XgteqCl3:XgteqC (E0011::{0..10}, 1),
XeqC50:XeqC (NO0O11 1::{0..6}, 0),
XeqgC51:XeqC (NOO11l_1::{0..6}, 3))

(3) X1tY2:X1tY (E0019::{0..10}, E0002::{0..10})

Fig. 3: Segment of CSP encoding from WME.

Once we have encoded the model, CSP determines a total
order over the EBs and assigns values to every intention
evaluation at every time point. We do not encode any actor
information in CSP as it is not needed for the analysis. We
allow the modeler to configure CSP to either pick the evalu-
ation labels for each intention randomly from AnalysisLabels
or select the maximum valid value based on the ordering
(FS> PS> PD >FD > CF > U > N).

C. Strategies

Given our definition of a path, we discuss the implementa-
tion of our strategies below. We show how to use the strategies
to answer questions asked in the motivating example.

1) ARl — A random path given initial states: The first
strategy is to create a random path given initial states in the
model, with the goal of giving stakeholders a sense of model
evolution over time. Modelers see one possible outcome of
their model and can try different dynamic functions for leaf-
level goals. By running multiple simulations, modelers can see
possible scenarios that may result, as well as experiment with
multiple dynamic function types to better understand how the
goal will become satisfied.

This strategy creates a path starting from the initial state.
Given a state, we calculate the next state by randomly selecting
intentions to update, given their dynamic functions, and then
check the resulting values against the model constraints, to
ensure that the path is valid. Finally, we propagate the values
throughout the goal model. If no values in the model can be
further updated, or we have reached the requested number of
simulation steps, we complete and return the calculated path.

We can use ARI to answer the question EQ1 (Is it feasible
to first BGC and then build a dump BSD/BLD?), by initializing
values and adding the constraints tggw < tgLp and tpgw <
tgsp. The model already had tytr < tunp and tyTR < tpgw as
constraints. The strategy generates a path where BGC happens
before BSD or BLD. This answer shows that it is feasible to
first BGC and it results in the FS of the root-level goals with
the exception of EC which becomes PS. We also answer EQ4
(How do changes in EC affect the city’s root-level goals over
time?) by initializing values for the leaf nodes and following
the strategy. EC affects the city’s root-level goals ROC and
HC through PGW. Stakeholders can see in the resulting path
that when EC becomes FD, QWS is affected. Since WSW also
has a Makes relationship with QWS, QWS becomes FD or U
affecting ROC and HC through propagation. It does not affect
the other root-level goals, thus answering EQ4.

2) AR2 — A path given desired properties of the interme-
diate state(s): The second strategy is to create a path given
desired properties of the intermediate state(s) (with optional
properties over the initial or final state). This strategy allows
stakeholders to set desired goals and see paths that satisfy
those goals, if they exist.

In addition to model M, a mapping from intentions to
dynamic functions, a list of constraints between intentions,
the initial evaluation state, the maximum number of simulation
steps (maxTime), and the maximum value of an EB (maxEB),
this strategy takes selection type (i.e., random or maximizing
goals) and optional queries (introduced in Sect. III-C).

We encode maxTime and maxEB into CSP. CSP then finds a
model evaluation for each time step, so if maxTime = maxEB,
all EBs are guaranteed to occur within the path, and the
final state is found given ¢, for the dynamic function type
for each intention. This is important in enabling modelers to
generate shorter paths, by making maxTime < maxEB, which
is important in understanding short-term impacts.

After encoding the rest of the inputs into CSP, as discussed
in Sect. IV-B, we then ask CSP to find a total order over the
constraints and values for each state in the path. If the modeler
includes any queries, then CSP is repeatedly called with each
query. A path for each valid option is returned to the modeler.

This strategy produces a valid path when one is available.
Depending on the constraints specified by the user, a valid
path may not be possible. EQ2 asks whether the order of PGW
and UND matters. Using the query function and this strategy,
we generate solutions for each ordering. The solution where
UND became FS first (via BSD), resulted in the model being
satisfied. The solution where PGW became F'S first, resulted in
SiD becoming FD, which in turn resulted in MCW becoming
FD. Answering EQ2, stakeholders learn that the order does
not matter, and that SiD is not fully represented in the model.

Since PGW has an impact on SiD which is not represented
by the model, stakeholders ask EQ3: Which possible scenarios
always satisfy MCW even if SiD becomes denied in the future?
This strategy shows that one of BSD or BLD must be F'S prior
to the denial of SiD. Since BSD results in the PS of ROC and
PD of BLD, BSD becomes slightly preferred.

Finally, we used this strategy to understand if all root-level
goals can eventually be satisfied (EQS5). Encoding this question
resulted in no valid path because we included the requirement
that HC and ROC became FS, which is not possible given the
model’s structure. Once relaxing these desired values to PS,
we did not find a solution that resulted in the PS of ROC and
HC at the same time. We could achieve one but not both, thus
not all root-level goals can be satisfied. Stakeholders can use
this information to evaluate priorities between root-level goals.

3) AR3 — Path given a previous path: The third strategy
is to create a path which is different from the previously
seen path over the same constraints. Allowing stakeholders
to construct new alternative paths enables them to understand
other possible evolutions that exist. This is especially useful
when dealing with stochastic variables and to understand the
ordering of epochs.



This strategy works the same way as AR2 but has the added
input of the previous path(s). The previous path’s EBs are
negated to tell CSP not to pick them again. If a new valid
path exists, CSP returns it to the modeler. Each intention gets
a slightly different negation constraint based on the intentions’
dynamic function. For example, a C intention can not be
negated because it will break the constraints of the model.

As we discussed EQ2 above, we noted that several different
solutions existed for the ordering of PGW and UND. We can
use AR3 to understand what other results (if any) exist as
asked in EQ6: Given the initial results EQ1-EQS5, is there
another way to answer the question? When selecting PGW, this
strategy showed stakeholders alternative solutions to whether
or not each of BSD and BLD became satisfied (answering
EQ6). This strategy is especially useful when maxTime <
maxEB, and not all EBs occur by the end of analysis. Also,
using AR3 improves the modeling process because it removes
the need for manual comparison of models when generating
unique solutions.

4) Summary: In Sect. I, we introduced and mapped six
questions from the motivating example onto our strategies
(ARI1-3). Using ARI on our example, we found out that it
would be feasible to build a green centre prior to building a
dump (EQ1). We then used AR2 to determine that the success
is not affected by the order of these events (EQ2) but that either
a small or a large dump must be built before the space in the
current dump runs out (EQ3). By stochastically changing the
citizens’ environmental concern in a random path simulation
(AR1), we were able to determine that it affects two root-level
goals: (1) to have citizens enjoy the city, and (2) for the city to
reduce its operating costs (EQ4). At this point, we used AR2
to determine that all root-level goals could not be eventually
satisfied (EQS5). Thus, stakeholders must make the tradeoff
decisions between reducing operating costs and having their
citizens enjoy the city, a typical trade off for many cities. We
then used AR3 to explore what other simulations could result
when we process green waste prior to using a new dump,
and concluded that it would be best to build a green centre
followed by a small dump (EQ6).

V. VALIDATION

In this section, we discuss the effectiveness of our approach
(by analyzing a large example) and show its scalability (by
justifying that using CSP as the underlying solver is feasible
for realistic models). Throughout Sect. IV, we showed how
ARI1-3 effectively answer EQ1-6 from the Waste Management
example and so we depart from this example to further
demonstrate effectiveness.

In order to evaluate our approach, we built a new web-
based goal modeling and analysis tool [12] available at http:
/Iwww.cs.toronto.edu/~amgrubb/growing-leaf.

A. Effectiveness: GrowingLeaf Analysis

In the absence of a real-world case study, we show our anal-
ysis with a goal model for developing our tool GrowingLeaf.

Example Background. In order to evaluate our time-based
analysis, we decided to build a new iStar goal modeling tool
replacing OpenOME [13] and had already decided not to
build it on top of other existing goal modeling tools. The
primary functionality goals of the tool were to enable users
to build goal models, run forward analysis over models, run
time-based simulation over the models, and save/share the
models between sessions. We wanted to evaluate alternatives
for the tool based on five qualities: development speed, ease
of installation, effectiveness, usability, and maintainability. We
had to decide whether to build the tool as an Eclipse plugin
or as an online tool in the browser. If we chose the Eclipse
plugin option for development then we would be restricted
to interacting with the Eclipse framework. If we chose the
browser approach, we could completely separate the analysis
from the front-end, but would need to have a way to connect
them back.

We modeled the intentionality of the first author and pos-
sible users of GrowingLeaf using iStar (not shown). After
analyzing the models, we found that using Eclipse would be
the best option given the expertise available in the group. Later,
we discussed our plans with others and they told us of the
difficulties of collaborating and extending Eclipse-based tools.
In our previous analysis, we had not considered how our tool
could evolve over time.

Applying Dynamics. We considered the motivations of po-
tential collaborators and the types of web technologies to use.
We explicitly considered how evolution of the environment,
development expertise, and relationships between stakeholders
might change over time. An iStar model with some of these
new dynamics is shown in Fig. 4° and has 9 actors, 74
intentions, and ~100 links. We evaluated our model based on
three scenarios in which we and our collaborators (a) chose
Eclipse, (b) chose Web-based technologies, and (c) chose other
technologies. Fig. 4 shows the scenario where we both picked
Web-based technologies.

We capture the dynamic function of an intention using the
format (initialValue, dynamicFunction(max/min/const.Value)).
The Lead Dev had expertise in Java (FS, C(FS)) and had
no expertise in web development but was willing to learn
(FD, MP(FYS)). Eclipse development expertise was available
through another developer who was willing to help (FS, R)
(but can be more precisely modeled as a UD function with
repeating SD behaviour). Each of the tasks in the Leaf actor
can be modeled as (FD, SD).

Analyzing the Model. Next we show that simulation produces
meaningful results by discussing some of the questions we
explored while developing the tool.

Our first question is “If the Local Developer’s Eclipse
Expertise has a repeated UD dynamic function where they
are available FS and then not available FD repeatedly, what
will be the outcome of Build Tool and the top-level goals?” To
understand this change over time we model the progression of
the tool development given the variability of Eclipse Expertise

3Dependums have been removed from the model to save space.
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Fig. 4: iStar model of GrowingLeaf example with selected analysis labels.

with AR1. We assigned initial values to leaf-level intentions
and dynamics to intermediate nodes, for example applying
(FD, MP(FS)) to Build Ul with GMF. The resulting path
showed a progression of satisfying Build Tool but was not able
to satisfy all goals. This simulation showed us that establishing
expertise in the project is required for it’s success, and our
initial understanding using current approaches was incorrect.

We are considering sharing our code/tool and wanted to
know “What might happen if we don’t share the tool until
after Complete PhD is satisfied?” This question is asking for
a possible path given intermediate constraints (AR2). We add
the constraint Complete PhD < Share Tool. In the resulting
path, both Have Leaf Community and Have Lasting Impact do
not have the value FS. Also, in paths where the Collaborator’s
intention Use Eclipse was FD, the Collaborator’s root-level
goals were denied. Thus, not sharing the tool until Complete
PhD is satisfied is not favourable.

We also looked at the question, “In the long-term (iden-
tified as when Complete PhD becomes FS), we want Leaf’s
Effectiveness, Usability, and Maintainability to be at least PS.
What are possible solutions that will lead to these goals?”
Given intermediate and final constraints, we first used AR2
to generate an initial path, and then used AR3 to generate
additional unique paths. Seeing multiple paths showed that
the order of completing some intentions did not matter, for
example the satisfaction order of Have SD Models and Have

Hybrid Models is irrelevant. Whereas, the order for completing
other intentions mattered, specifically Share Tool should hap-
pen after Have Min Feature Set. As a result of this analysis we
added further constraints to the model, in order to predict a
PS outcome for Effectiveness and Usability in the long-term.
Asking these and other questions and considering the anal-
ysis results helped us debug the model and understand it. We
found errors in the links and dynamics we initially assigned.
More importantly, doing time-based modeling clarified the
potential dependencies between Lead Dev and Collaborator.

Summary. We built this model to understand trade-offs in
selecting development technologies, over our goals to have a
functional, effective, useable, and maintainable tool. Standard
analysis led us to the wrong decision because we assumed
that the availability of Eclipse expertise is static. Our anal-
ysis allowed us to validate our decision to choose scenario
(b): web-based technologies for development. The ability to
generate multiple paths allowed us to determine which tasks
must be completed in a prescribed order and which were
independent. Overall, these strategies were effective in helping
us understand possible evolutions of our project.

B. Scalability

We show the scalability of our approach by analyzing the
run-times for each strategy on the examples discussed in this
paper and on randomly generated examples. All scalability



tests were completed on a 3.2 GHz Intel Core i5 processor with
8 GB 1600 MHz DDR3 of memory running OSX 10.11.5.

Our first scalability experiment explored the question: “How
does the length of the generated path affect the computation
time in AR1 and AR2?” We explored this question with the
Waste Management example (WME) consisting of 21 Intentions
and 18 Links, and the GrowingLeaf example (Tool) consisting
of 74 intentions and 100 links. Each test was run ten times.
Fig. 5a shows the mean run-times (in milliseconds) with
min/max bars for WME and Tool for paths consisting of 5,
10, 25, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800,
900, and 1000 states. The maximum times for WME and Tool
were 68 and 226 ms, respectively, and the shape of the graph
illustrates that the run-time of ARI appears to be growing
polynomially with the length of the generated path.

Fig. 5b shows the mean run-times (in seconds) with
min/max bars that strategy AR2 took for WME and Tool for
the same set of path lengths. The maximum times for WME and
Tool were 13.52 and 91.89 sec which is significantly longer
than ARI1. This may be a concern for larger models, with
over 800 steps, because a run-time longer than one minute
may cause the server call to timeout and the modeler to get
frustrated. Further experiments with industrial models would
help us understand and mitigate these limitations.

Given the lengthy run-times for AR2 in the first experiment,
our second experiment considered the question: “How does the
number of intentions in a model affect the computation time
in AR2?” To evaluate variations in the number of intentions,
we created a set of models by linking all intentions in a tree
structure and varying the number of intentions in the models
as follows: 25, 51, 75, 101, 125, 151, 175, and 201. For each
model, we assigned a dynamic function type (see Sect. IV-B)
to portions of the model intentions. For each model, we
calculated the mean run-time (in seconds) with min/max bars
for generating paths of length 5, 10, 25, 50, 75, 100, 150, and
200. Fig. 5c presents the results of this experiment. Some of
the experiments initially failed due to run-time stack-overflow
errors, requiring us to increase the default stack size. Fig. 5c
shows that model size does impact the run-time of our analysis
and appears to have a greater effect than the size of the path.
These experiments show that AR2 (and CSP as the underlying
solver) are expected to be scalable to realistic goal models. We
have not attempted to optimize our CSP encoding to improve
the run-time, but believe optimizations exist.

Since AR3 generates a path based on previous paths, our
final experiment asked: “How does the number of previous
paths used affect the computation time in AR3?” It is not
meaningful to evaluate the scalability based on the models
generated for random dynamic functions. Instead, we again
used the WME and Tool examples to calculate the average
run-times to generate additional paths. In the experiment, we
used path lengths of 15 and 30 states for each example, and
generated three new paths given the previous paths. Fig. 5d
shows the mean results of the AR3 experiment which was
repeated five times for each new generated path. The maximum
times for WME and Tool were 34 and 139 milliseconds,

respectively, but these times were for a single previous path
(where there was the most variability). The data suggests that
additional previous paths reduce the run-time of AR3, making
it more scalable than AR2. We believe this is due to the
additional constraints reducing the CSP search space (and thus
its run-time).

Summary. To summarize, we conducted scalability experi-
ments for our three strategies. For AR2, we used both case
studies and generated models. From these results, we conclude
that our strategies are scalable enough to be applied to the
analysis of realistic goal models.

C. Threats to Validity

Construct Validity. We operationalized intentions’ changing
evaluations with our dynamic functions (see Sect. III-B), but
did not establish that this was the best representation. We have
explored instantiating each goal to create a model of objects,
as in [14], but we believe that this approach is too complex for
early RE. If modelers wish to explore specific instantiations
of a goal, they can add them to the model as though they are
an evolution of the model (see Sect. III-C).

Theoretical Reliability. We recognize that ‘research bias’
may be an issue in our effectiveness evaluation in Sect. V-A,
because as researchers we were studying ourselves and we are
biased towards the success of our technique. To mitigate this
and ensure the accuracy of our models, we elicited feedback
from other researchers and discussed the model in a workshop
with our research group. We also tested our approach with goal
models shared by other researchers in the domains of network
maintenance, software supply chains, and sustainability. We
observed that we can add dynamics to previously created
models, but not all goal models contain dynamics.

Internal Validity. Given the research bias discussed, there is
a risk that the GrowingLeaf model may not be representative
of other iStar goal models. Effectiveness (see Sect. V-A) is
also threatened since we presented only one fully-worked out
example in the paper. However, the example presented is quite
large and we have continued to evaluate other large examples.
Given that our scalability tests (see Sect. V-B) used randomly
generated models, there may have been errors in the model or
in the analysis. We mitigated this by manually reviewing the
results for some of the generated models.

External Validity. Several other iStar experts tried out our
tool and analysis at various stages of the project, with very
encouraging results. However, stakeholders and non-expert
modelers might not have the skills to build models with
dynamics or understand how to configure our analysis. We will
mitigate this threat in the future by evaluating our approach
with an external case study. We also hope to evaluate what
additional training is required to use our approach effectively.

VI. RELATED WORK
In this section, we compare our approach with related work.

Changing Goals. [15] discusses how goals change in their
achievement over time for the purpose of developing heuristics
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to improve goal identification. Using KAOS, [16] considered
goals that are real-time properties of a system and developed
a formal approach to construct software specifications from
these goals. They defined the goals in temporal logic and
connected timed event-based models [17] with state-based for-
malisms. [18] looked at conditional non-monotonic temporal
beliefs and goals. They represented and reasoned with them
using an ASP solver and an LTL reasoner. In our work, we
look at the evolution of goals rather than looking at concrete
timing requirements, or concrete events within the model.

Simulation of Agents. Agent-based approaches, such as [19],
discuss the simulation and operationalization of agents’ goals
and multi-agent systems. In our work, we are considering sce-
narios about top-level goals and actor intentionality, rather than
the tasks completed by collections of agents. [20], [21] focused
on connecting time dependent goals within a decomposition
(denoted by precondition links), allowing for the coordination
and achievement of agents’ plans. [22] combined iStar with
ConGolog to create a utility based temporal ordering for agents
to execute tasks in order to simulate goal alternatives. Instead,
we use relative or ordered dependency constraints specified by
the modeler.

Requirements Evolution. [23] also looked at developing
requirements for evolution, but with the goal of developing

assets for reuse between systems by modeling variation points.
[24] considered the evolution of goals with the goal of
redesigning legacy systems. Instead, we analyze evolution of
stand-alone systems prior to them being built.

Goals outside early RE. Goals as dynamic entities have
been used outside the requirements phase for runtime analysis
and monitoring [25]-[27], self-adaptive systems [28]-[30],
and context-aware systems [31]. [32] distinguished between
design-time goal models and run-time goal models. Our mod-
els remain design-time entities throughout our analysis. [25]
converted goal models into components that monitor states in
the system through runtime monitoring. [28] added adaptive
goals to goal models. These approaches do not monitor
how the requirements in the model change, but rather check
properties of the system as it runs.

Analysis Techniques and Encoding. While [7] argues that ex-
ploratory tools capture imprecise and incomplete information
and latter-stage models are better fit for automated analysis,
we believe that automated analysis does yield benefits in
the early-phase requirements, even with incomplete informa-
tion. Different techniques for automated-forward analysis of
qualitative evaluations exist [8], [33]. These techniques were
designed with distinct purposes and differ in their resolution
of soft-goal labels, [33] selects the minimum label while [8]



does an averaging of the labels. We have implemented both
resolution techniques in our tool for both forward analysis
and backwards analysis. Others have developed and used
complementary approaches for forward analysis [2], [4], [8]
and backwards analysis [4], [9]. Our analysis techniques can
in principle be adapted for quantitative analysis (as in [3]-[5])
or hybrid analysis (as in [8]).

We were not the first to use CSP for analyzing goal
models. [34] used CSP (and JaCoP [35]) to solve quantitative
constraints in GRL. We used this work to guide our implemen-
tation and extended it by enabling analysis over qualitative
values. Our earlier work [11] used SAT to encode the goal
models (similar to [36] and [9]) but we found the proposition-
based encoding of evaluation labels compromised our analysis.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we argued that goal modeling for early-phase
RE can be improved by explicitly modeling and analyzing
intention evaluations over time. We enabled stakeholders to an-
swer questions with model dynamics over time. We presented
strategies for simulating goal model dynamics and showed
that our tool GrowingLeaf allowed effective and scalable
application of these strategies to analyze realistic goal models.

In future work, we will evaluate the effectiveness of our
approach with an external industrial case study. This paper
dealt with only “relative” times and can be extended by adding
“wall clock time” to our analysis. With access to large real-
world models, we can also further test the feasibility of our
approach and find optimizations for the AR2 CSP encoding.
We also plan to formally specify our extension to iStar and
consider other qualitative evaluation approaches [4]. Finally,
our analysis and tooling can be combined with other methods
such as the delphi method and creativity techniques [37] to
further improve stakeholders’ decision making processes.
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