
Adding Temporal Intention Dynamics
to Goal Modeling: A Position Paper

Alicia M. Grubb
Department of Computer Science

University of Toronto, Toronto, Canada
amgrubb@cs.toronto.edu

Abstract—Goal models for early phase requirements enable
modelers to elicit stakeholders’ intentions, analyze dependencies
and select preferred alternatives. Standard analysis techniques
provide options for analysis of static goal models but do not
consider the dynamic environment that the model represents and
do not evaluate the intentions over time. In this position paper, we
illustrate that goal model analysis for early phase requirements
can be improved by explicitly considering the intention dynamics
of a potential system across multiple time scales.

I. INTRODUCTION

Early-phase requirements engineering focuses on under-
standing the environment in which a software system exists.
Goal modeling addresses the needs of stakeholders and end-
users by illustrating potential scenarios, and testing phenom-
ena. Given lower-level phenomena (which we will refer to
as intentions), goal modeling is able to predict how high-
level goals will be impacted by different evaluations of the
intentions. Several notations have been developed for modeling
goals [1] [2] [3] [4] [5]. In choosing between alternative sce-
narios, prior work in design-time goal modeling assumes that
intention evaluations do not change once assigned, and there-
fore the analysis is static and unable to answer questions about
what happens on different time scales and which alternative is
better at a specific point in time. The goal of our project is to
understand the impacts of dynamically changing intentions on
decision making. Specifically, we enrich goal models with the
capability of expressing intentions with dynamically changing
evaluations and temporally delayed dependency relationships.
Our work focuses on extending existing i* analysis techniques
(such as forward analysis [6]) to predict how these changes
will affect the satisfaction of high-level goals across multiple
time scales. In this paper, we illustrate, by way of example, the
need for analysis across multiple time scales, our framework
for describing dynamic goal models, and our extension to
standard goal modeling techniques.

The remainder of this paper is organized into sections.
Section II introduces the motivating example and relevant
background. Section III discusses how we introduce dynamic
behaviour into i*. Section IV discusses our framework for
facilitating the analysis. Section V connects our approach to
related work. Finally, we conclude in Section VI.

Fig. 1. Assess loan application sub-model with forward analysis performed,
based on the label assignments of leaf-level intentions (in bold).

II. BACKGROUND: FORWARD ANALYSIS & EARLY
REQUIREMENTS

We introduce relevant background with an example.
Consider a bank looking to enter the loan market (this
example was inspired by Asnar et al. [7]1). The bank wants
to develop a system to accept, assess, and approve loan
applications. One key decision in this process is whether to
assess the applications in-house or outsource the assessments
to a credit agency. Figure 1 shows the partial i* goal model [1]
of this decision, consisting of intentions: goals, tasks, and
softgoals; and connections between the intentions: means-
ends, decomposition, and contribution links (see Legend for
representations of intentions and connections). The root goal
Assess Application is OR-decomposed (represented by
Means-Ends links) into the goals Assessed In-house and
Assess by Credit Bureau. Assess by Credit Bureau is
then AND-decomposed (represented by Decomposition
links) into the Receive Assessments goal and
the Receive Quality Assessments softgoal.
Assessed In-house is AND-decomposed into

1We ignore the cost of each option for simplicity.



the Produce Quality Assessments softgoal and
Determine Assessments task, which is further AND-
decomposed into the Build Assessment System

task. Finally, Understand Monetary Conditions and
Audit Assessments Procedures are connected by
contribution links (affecting the satisfaction or fulfillment of
a softgoal) to Produce Quality Assessments. Makes/Helps
contribution links pass the evaluation label from the link
source to the link target2.

Given our i* model, we can evaluate the tradeoffs within
Assess Application’s alternatives using current goal
modeling techniques, specifically, forward analysis [6].
Forward analysis allows modelers to assign satisfaction
evaluations to the leaf-level nodes (intentions) in a goal
model and have child evaluation labels propagate up
to give values to their parent node, eventually giving
values to root nodes (goals). For example (as shown
in Figure 1), if Understand Monetary Conditions,
Audit Assessments Procedures, and
Build Assessment System are assigned the value
Fully Satisfied (or 3), and Receive Assessments and
Receive Quality Assessments are assigned Fully Denied
(or 7), then parents Produce Quality Assessment and
Determine Assessments receives the value 3, and
Assess by Credit Bureau receives the value 7. Next,
Assessed In-house receives the value 3 from its children.
Finally, Assess Application receives the value 3. By
following this propagation, the modeler can determine that
the bank can satisfy its Assess Application goal by
assessing the applications in-house.

Suppose instead that the modelers as-
signed 3 to Receive Assessments and
Receive Quality Assessments; and assigned 7
to Build Assessment System. Applying forward
analysis to propagate these leaf-level values results
in Assess Application obtaining the 3 label, only
this time the satisfaction label propagates from the
Assess by Credit Bureau node. From these initial values,
the bank should choose to use the credit bureau for their
assessments. By trying different scenarios, the modelers can
understand the impacts of each tradeoff.

III. DYNAMICALLY CHANGING INTENTIONS:
SIMULATION & ANALYSIS

Standard goal modeling assumes that once an evaluation
label of an intention is assigned by the modeler, it remains
constant; goal modeling only discusses static models. Once a
decision between the alternatives is made, it is also assumed
to be static. Returning to our example, the bank is likely
to determine the satisfaction of leaf-level goals based on the
current situation of the bank. However, using only information
about the current situation may lead to suboptimal decisions.
The above analysis indicated that if the bank has an assessment

2Although not shown in this example, contribution links pass negative (or
opposite) evaluation labels through Breaks/Hurts.

TABLE I
DEFINITIONS OF DYNAMIC FUNCTIONS TYPES FOR INTENTIONS

Name Definition

Stocastic (RND) changes in satisfaction level are non-
deterministic or random

Set-Stay-Set Positive
(SSS+)

stochastically changing until a static-state of
3 is reached

Set-Stay-Set Negative
(SSS−)

stochastically changing until a static-state of
7 is reached

Monotonic Positive
(M+)

its value will be “more true” or trend toward
3 as time progresses

Monotonic Negative
(M−)

its value will be “less true” or trend toward
7 as time progresses

User Defined its value is a stepwise function defined by
the modeler

system built (Build Assessment System labeled 3), then it
should assess the applications in-house; otherwise, the bank
should use the Credit Bureau to assess the applications.
However, this may seem counterproductive in early-phase
requirements, since it is unlikely that a bank, looking to enter
the loan market, has a pre-existing assessment system but
it might be willing to build one. Given it is apparent that
Build Assessment System and other intentions in the model
change over time, at what point should the banks decision
also change. We look at the dynamics of intentions, goals,
and connections both at single points in time and across time
periods.

A. Inputs

We first consider the changes involved in modeling inten-
tions as dynamic entities, whose satisfaction level changes
over time. Returning to the decision of how to assess
loan applications (Figure 1), we define several possible
types of dynamic functions that can be applied to inten-
tions in Table I and illustrate the expression of these func-
tions in Figure 2. The Set-Stay-Set Positive (SSS+) func-
tion describes intentions that will become 3, and once
they are achieved, they stay achieved. The achievement of
SSS+ intentions can mark the end of a process, such as
Build Assessment System or Receive Assessments. By
making Receive Assessments SSS+, we are denoting that
once an agreement is reached with the credit bureau, the credit
bureau will continue to provide assessments. In Figure 2,
Receive Assessments becomes 3 at t1 and remains 3
throughout the simulation. Build Assessment System is also
modeled as SSS+ because once the system is built, it will
always remain built. The Monotonic Positive (M+) function
is similar to SSS+: once the intention reaches the 3 state,
it will stay achieved. M+ differs from SSS+ in that prior
to this achievement, the SSS+’s evaluation is stochastic,
whereas the M+ intention will never decrease in satisfaction.
Audit Assessments Procedures is understood to be M+

because the procedures can be partially implemented and
improved over time. In Figure 2, the monotonic progression of
Audit Assessments Procedures occurs between t3 and t5.



When intentions are known to be dynamic but their particular
dynamic behaviour is unknown, we model these intentions
as Stocastic (RND). Understand Monetary Conditions and
Receive Quality Assessments can change their values at
any time, and are therefore initially modeled as RND. Al-
though we have not illustrated every dynamic function type in
the loan example, there are other alternatives (also denoted
in Table I). Set-Stay-Set Negative (SSS−) and Monotonic
Negative (M−) are the complementary functions to SSS+

and M+: they progress toward and result in the final state
of 7 instead of 3. Finally, we introduce the User Defined
function allowing modelers to define and create their own
stepwise functions, thus enabling greater flexibility in dynamic
functions.

We allow modelers to constrain the order in which
intentions can become satisfied. Constraints can involve
known relationships between elements, such as “one hap-
pens before another” or “one changes faster than an-
other”. For example, in Figure 2, we added the con-
straint that Receive Assessment must be satisfied be-
fore Receive Quality Assessment, which is encoded as
Receive Assessment >= Receive Quality Assessment.

Notice that the intention values, in Figure 2, change between
7 and 3 at various times (t0 . . .t11). We rely on the
modeler to declare timing points of interest. For example,
t2 is a notable time point because it is the first time that
Assess Application is assigned a value of 3. These time
points mark the boundaries of epochs to reason over and
enable us to answer questions such as: “what is happening
now?”, “what will happen soon?”, and “what will happen in
the distant future?”.

Next, we extend the standard i* notation to enable propa-
gation delays across links and introduce an augmented label.
When the satisfaction label of a child node changes, there may
be a delay in this change propagating to the parent node (indi-
cated by a “*” on the label). For example, a Makes* contribu-
tion link uses the same propagation rules as its Makes counter-
part but with the added possibility of a delay. Referring to Fig-
ure 1, if Understand Monetary Conditions had a Makes*
relationship with Produce Quality Assessments instead of
Makes, then when the Understand Monetary Conditions

value changes, the value of Produce Quality Assessments

would not necessarily change immediately. In Figure 2,
this delay in propagation is shown in the value of
Produce Quality Assessments between t3-t5 and t8-
t9. Similarly, Build Assessment System is connected with
Determine Assessments by a Decomposition* link in-
stead of Decomposition. The propagation of the changes in
Build Assessment System at t3 and t7 are delayed in
Determine Assessments.

B. Analysis

Given our i* model extended with dynamic intentions and
relationships described above, we can temporally extend i*
analysis over both points and functions. In this section we
only discuss forward analysis, which reasons about goals given

short-term long-term

Inputs (Intentions) t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Receive 
Assessments

Receive Quality 
Assessments

Build Assessment 
System

Audit Assessments 
Procedures

Understand Monetary 
Conditions

Intermediate Nodes t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Determine 
Assessments

Produce Quality 
Assessments

Assessed by Credit 
Bureau

Assess In-house

Output (Goals) t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Assess Application

Constraints: Receive Assessment >= Receive Quality Assessment

Fig. 2. A diagram of the dynamically changing intentions in Figure 1, where
the three values are 3 (top), Unknown (middle), and 7 (bottom). The values
are propagated (using forward analysis) from the given Inputs (Intentions)
through Intermediate Nodes to the Outputs (Goals). The two columns of solid
‘dots’ represent simulation at two points in time (where only a single point
value is known). The solid lines for Inputs (Intentions) represent the dynamic
functions given by the modeler. The solid lines for the Intermediate Nodes
and Output (Goals) represent the functions computed by our propagation
algorithm. The model constrains are listed at the bottom.

intentions as inputs, but the same extension can be applied
to backward analysis [8], which uses goals to reason about
intentions. We show results of both simulation and analysis
for our loan example diagrammatically in Figure 2. The top
five items are the leaf-level intentions (or inputs) which are
propagated to the root-goal (or output). The low, middle, and
high signals give the values 7, Unknown, and 3, respectively.

We can simulate goal model satisfaction by vary-
ing leaf-level intentions and propagating their values
to goals. For example, we illustrate two points of



simulation with the vertical dots in Figure 2. When
Receive Quality Assessments reaches 3 (the left col-
umn of dots), the simulator propagates the 3 value up to
AssessedbyCreditBureau taking into account the Decom-
position relationship with Receive Assessments. Similarly,
a second point of simulation (right column of dots) shows how
simulation handles the propagation delay from the Decom-
position* relationship between Build Assessment System

and Determine Assessments (described above). By sim-
ulating these points, we can establish that both the
Assess Application’s Means-Ends links are valid options
(i.e., leading to the 3 evaluation for Assess Application).
Through simulation, we can re-evaluate and propagate the
values in the model, across many points in time or whenever
there is a change in the satisfaction level of any intention in
the model. While simulation is useful for visualizing possible
scenarios, it is limited in its predictive power, i.e., being able
to understand trends in the model.

We can analyze goal model satisfaction by using the
dynamic functions of the intentions (described above)
and extend forward analysis to compute the dynamic
functions of the root-level goals. For example, if we
again consider Build Assessment System (a SSS+

function) and propagate this with the delay described
above we can compute that Determine Assessments

is a SSS+ function as well with the constraint that
Build Assessment System >= Determine Assessments.
We can envision manipulating the complete function for each
intention (shown as a signal in Figure 2) to compute the
complete function for each of the Intermediate Nodes and
the Output (Goals) function.

C. Output & Interpretation

To interpret the results of our analysis, we focus on un-
derstanding two distinct epochs (short-term and long-term);
the exact number and duration of epochs are user-defined.
Returning to the example, we define short-term as “until
t2” and long-term as “after t6” (as shown in Figure 2).
Building on the concept of epochs, we allow the mod-
eler to assign different dynamic functions, based on stake-
holder evidence, for each distinct epoch. In the short-term,
Build Assessment System remains 7 because the bank has
not yet invested in building the assessment system. Since the
system will eventually be built, Build Assessment System

is modeled as SSS+ in the long-term. The bank may hire
expert workers or reallocate existing employees to satisfy
Understand Monetary Conditions but in the short-term,
the bank will not be able to make Assessed In-house 3
until the bank can satisfy Determine Assessments (which
is decomposed into Build Assessment System).

In the short-term, the bank may be able to hire a credit bu-
reau making Receive Assessments 3. Instead of modeling
Receive Quality Assessments as RND, we could model
this intention as M+ in the short-term because the bank will
closely monitor and give feedback to the new partnership.
Receive Quality Assessments also has a constraint that

Extended i* Model!
• i* model!
• intention dynamics!
• relationship dynamics!
• timing constraints

Simulation Breakpoints

Model Valid?

Model Simulation!
• extended forward /

backward analysis 
over points !

• break point analysis

Static Analysis!
• extended forward / 

backwards analysis 
over functions

Timing Visualization!
• short-term path!
• long-term path

Inputs OutputsAnalysis

Static analysis output:!
-computation of functions!
of goals!
-computation of functions of intentions!!
-filling in the i* model by getting the 
functions computed.!!
-backward satisfiability!
x st and y lt how do you sat it.!!
-combination of analysis over different 
time frames!!
-Model Valid

Function Computation!
• goals!
• intentions

Fig. 3. System Framework

it will not become 3 until Receive Assessments is 3. In
the long-term, Receive Quality Assessment remains RND.
It may become Unknown or 7 if the integrity and quality
of the credit bureau declines resulting from changing market
conditions. If the bank had made its decision based solely on
the short-term analysis, this decision may result in inaccurate
assessments in the long-term.

Again these results are dependent on which dynamic func-
tion the modeler chooses for each intention. If the bank
believed that Build Assessment System could be approx-
imated to a M+ function then it would eventually be 3,
but if instead it was modeled as a RND variable, then the
results would not be predictable and other scenarios should
be considered. In the short-term, creating software to assess
applications in-house may be more risky resulting in the
external credit agency (which has a greater long-term risk)
being chosen. This example allowed us to show that short-
term and long-term outcomes differ and both are relevant to
the decision making process.

IV. FRAMEWORK OVERVIEW

In order to facilitate the analysis demonstrated in Section III,
we designed a framework and present high-level components
in Figure 3. Below, we describe the requisite components
of the current framework. Work is ongoing to improve and
complete these components.

A. Inputs

We require the modeler to make the dynamic behaviour
of goals in the system explicit. Our analysis takes i* models
(including initial satisfaction levels), such as the one we
described in the previous sections. In addition to the standard
i* model, modelers have the option of specifying a dynamic
function type (defined in Table I) for each intention as well as
relationship dynamics and timing constraints. To facilitate user
interactions with our simulator, we created a simple constraint
language to articulate points of interest (or breakpoints) within
a trace. A breakpoint can be specified as when an intention
reaches a declared satisfaction level, or after a discrete number
of simulation steps.

B. Analysis

In our Model Simulation, we simulate the satisfaction of
dynamic intentions with and without delayed relationships



for a given goal model over a series of time steps. Our
simulation uses polling to check for changes in the model
and uses extended forward analysis over points at each step
to update the model. The Model Simulation outputs the
Timing Visualization as both a text file (shown in Fig-
ure 4) and a signal diagram (presented in Figure 2) for a
given single short-term and long-term path. The simulation
output (see Figure 4) prints the information presented in the
i* input file (the intentions, goals, and their respective types
and initial values). Each line of the simulation presents the
intentions/goals vertically and the current satisfaction level
horizontally (represented by the numbers 0 (7), 1 (Partially
Denied), 2 (Unknown), 3 (Partially Satisfied) and 4 (3)). The
simulation stops and prints whenever a constraint or breakpoint
is triggered. Finally, the simulation ends with short-term and
long-term recommendations for any tradeoffs in the model.

The Static Analysis module consists of extensions to
standard i* analysis techniques across functions: forward anal-
ysis as described above, and backward analysis. We will de-
velop constraints for the permutations of the dynamic function
types and temporal relationships discussed above, to allow for
the propagation of functions. We will connect our analysis
with an SMT solver [9] to compute the resulting functions
for a given model. If all the constraints can be satisfied, our
Static Analysis will output the Function Computation

for the goals (in forward analysis) and the intentions (in
backward analysis), otherwise it will indicate that the model
is over-constrained.

C. Status

At this time, we have built an initial Model Simulation.
We have completed the extended forward analysis over points
and have incorporated some of the breakpoint analysis. We
have not implemented extended backward analysis over points.
Our simulator is solely text based at this time. We hope
to implement a graphical interface soon. Our next step is
to implement the Static Analysis initially for extended
forward analysis over functions with the goal of determining
the root-goal functions if the model is valid.

V. RELATED WORK

We are not the first to investigate the temporal nature of
goals. Regev and Wegmann [10] discuss how goals change
in their achievement over time and classify goals into types
(i.e., achievement goals, maintenance goals, softgoals, beliefs,
and constraints) for the purpose of developing heuristics to
improve goal identification. Achievement goals map to our
SSS+ dynamic function and constraints map to SSS−. Other
goal types could be represented as RND or User Defined.

In addition to Regev and Wegmann’s goal types, Asnar et
al. [7] proposed a framework for understanding and mitigating
the risks of events that affect goal satisfaction when selecting
between alternative designs (within the Tropos framework).
Using KAOS, Letier et al. [11] considered goals that are real-
time timing properties of a system and developed a formal
approach to construct software specifications from these goals.

Printing'IStar'Model:'Loan'Example'6'Assess'Application'Sub6model
Intentions:
ID Name Type Value
0 Assess'Application OI 2
1 Assessed'In6house AI 0
2 Assessed'by'Credit'Bureau AI 2
3 Receive'Assessments MP 2
4 Receive'Quality'Assessments MP 2
5 Determine'AssessmentsNT 0
6 Build'Assessment'System MP 0
7 Produce'Quality'Assessments MP 2
8 Understand'Monetary'Conditions MP 2
9 Audit'Assessments'Procedures MP 0
Intention'Links:
Name Type Source Target
6 OR Assessed'In6house Assess'Application
6 OR Assessed'by'Credit'Bureau Assess'Application
6 AND Receive'Assessments Assessed'by'Credit'Bureau
6 AND Receive'Quality'Assessments Assessed'by'Credit'Bureau
6 AND Determine'AssessmentsAssessed'In6house
6 AND Build'Assessment'System Determine'Assessments
6 AND Produce'Quality'Assessments Assessed'In6house
6 MAKE Understand'Monetary'Conditions Produce'Quality'Assessments
6 HELP Audit'Assessments'Procedures Produce'Quality'Assessments

Would'you'like'to'(a)'interrupt'after'every'Epoch,'(b)'set'a'breakpoint,'
(w)'watch'a'variable,'(v)'change'a'value,'(f)'run'the'full'simulation?
Performing'analysis'now:

ID 0 1 2 3 4 5 6 7 8 9
TypeOI AI AI MP MP NT MP MP MP MP
'0 2 0 2 2 2 0 0 2 2 0
'1 2 1 2 3 2 1 1 1 2 1
'2 3 1 3 3 3 1 1 2 3 1
'3 3 2 3 3 3 2 2 3 3 2
'4 3 2 3 4 3 2 2 4 4 2
'5 4 2 4 4 4 2 2 4 4 2

Assess'by'Credit'Bureau'Satisfied.
Assess'Application'Satisfied.'(Short6term)

TypeOI AI AI MP R NT MP MP MP MP
6'simulation'lines'removed'for'simplicity'6'

17 3 3 3 3 2 4 4 3 3 3
18 3 3 3 4 3 4 4 3 3 3
19 3 3 1 4 1 4 4 3 3 3
20 4 4 1 4 1 4 4 4 4 4

Assess'by'Credit'Bureau'Satisfied.
Assess'Application'Satisfied.'(Long6term)

53 4 4 4 4 4 4 4 4 4 4
Finished'analysis'now.'Assess'Application'Satisfied.
Short6term'result'recommendation:'Assessed'by'Credit'Bureau.
Long6term'result'recommendation:'Assessed'In6house.

Fig. 4. Sample output of the simulator showing the evaluation of the intentions
and goals at various time points.

They defined the goals in temporal logic and connected timed
event-based models [12] with state-based formalisms. In our
work, we look at the evolution of goals in the model rather than
looking at concrete timing requirements, or concrete events
within the model. The propagation delays in our system are
not explicit measurable time delays; they are left unspecified
to allow for uncertainty in the model. We use a simple
constraint language rather than temporal logic to reduce the
complexity of our static analysis and simulation. Cheong
and Winikoff [13] focused on connecting time dependent
goals within a decomposition (denoted by precondition links),
allowing for the coordination and achievement of agents’
plans. Gans et al. [14] add temporal ordering to i* models
inorder to simulate goal alternatives. We use relative or ordered
dependancy constraints specified by the modeler, which is
similar to Cheong and Winikoff.

Goals as dynamic entities have been used outside the re-
quirements phase for runtime analysis [15] [16], self-adaptive
systems [17], and context-aware systems [18]. Dalpiaz et al.
distinguished between design-time goal models and runtime
goal models [19]. Throughout our simulation and analysis,



our models remain design-time goal models at the class level.
Robinson et al. [15] convert goal models into components
that monitor states in the system through runtime monitoring.
Baresi et al. [17] add adaptive goals to goal models in
monitoring the system at runtime. These do not monitor how
the requirements in the model change, but rather monitor
properties of the system.

In terms of how propagation impacts goals, we have dis-
cussed using forward analysis (a bottom-up approach) with
qualitative evaluation. Others have developed and used com-
plementary approaches [2] [4] [20]. Our analysis techniques
could be adapted for quantitative analysis (as in [3] [4] [5])
or hybrid analysis (as in [20]). We have yet to investigate
applying our technique to backward analysis (a top-down
approach) [4] [8], but see this as useful and complementary
to forward analysis.

VI. CONCLUSIONS & FUTURE WORK

In this position paper, we introduced dynamic intentions
for goal models as well as dynamic function types with the
goal of modeling alternatives on multiple time scales. We
believe that goal model analysis for early phase requirements
can be improved by explicitly considering these dynamics.
We presented a framework for doing both static analysis and
simulation of dynamic intentions and explored the technique
through an example of a bank entering the loan market decid-
ing whether to assess loan applications in-house or outsource
the assessments to a credit agency.

In future work, we will complete our simulator for analysis
across points and implement the Static Analysis com-
ponent. Once we have validated our methodology on the
qualitative analysis of i*, we will then investigate how it can be
incorporated into quantitative and hybrid analysis techniques
presented in other goal modeling languages.

VII. ACKNOWLEDGEMENTS

We would like to thank the Software Engineering Modeling
Group at the University of Toronto as well as Marsha Chechik
and Fabiano Dalpiaz for their contributions to this work.

REFERENCES

[1] E. Yu, “Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering,” in Proc. of RE’97, 1997, pp. 226–235.

[2] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Kluwer Academic Publishers,
Norwell, MA, 2000.

[3] D. Amyot, “Introduction to the User Requirements Notation: Learning
by Example,” Comput. Netw., vol. 42, no. 3, pp. 285–301, Jun. 2003.

[4] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented Require-
ments Analysis and Reasoning in the Tropos Methodology,” Eng. Appl.
Artif. Intell., vol. 18, no. 2, pp. 159–171, 2005.

[5] A. van Lamsweerde, Requirements Engineering - From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[6] J. Horkoff and E. Yu, “Interactive Goal Model Analysis For Early
Requirements Engineering,” Requir. Eng., pp. 1–33, August 2014.

[7] Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven Risk Assessment
in Requirements Engineering,” Requir. Eng., vol. 16, no. 2, pp. 101–116,
2011.

[8] J. Horkoff and E. Yu, “Finding Solutions in Goal Models: An Interactive
Backward Reasoning Approach,” in Proc. of RE’10, 2010, pp. 59–75.

[9] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proc.
of TACAS’08, LNCS, 2008, pp. 337–340.

[10] G. Regev and A. Wegmann, “Where Do Goals Come From: The
Underlying Principles of Goal-Oriented Requirements Engineering,” in
Proc. of RE’05, 2005, pp. 353–362.

[11] E. Letier and A. van Lamsweerde, “Deriving Operational Software
Specifications from System Goals,” in Proc. of FSE’02, 2002, pp. 119–
128.

[12] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Fluent Temporal Logic
for Discrete-time Event-based Models,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 5, pp. 70–79, 2005.

[13] C. Cheong and M. Winikoff, “Hermes: A Methodology for Goal
Oriented Agent Interactions,” in Proc. of AAMAS ’05, 2005, pp. 1121–
1122.

[14] G. Gans, M. Jarke, G. Lakemeyer, and D. Schmitz, “Deliberation
in a Modeling and Simulation Environment for Inter-Organizational
Networks,” in Proc. of CAiSE’03, 2003, pp. 242–257.

[15] N. Robinson, “A Requirements Monitoring Framework for Enterprise
Systems,” Requir. Eng., vol. 11, no. 1, pp. 17–41, 2005.

[16] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier,
“Requirements Reflection: Requirements As Runtime Entities,” in Proc.
of ICSE’10, 2010, pp. 199–202.

[17] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for Requirements-
Driven Adaptation,” in Proc. of RE’10, 2010, pp. 125–134.

[18] M. Vrbaski, G. Mussbacher, D. Petriu, and D. Amyot, “Goal Models
As Run-time Entities in Context-aware Systems,” in Proc. of MRT’12,
2012, pp. 3–8.

[19] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos, “Runtime goal
models: Keynote,” in Proc. of RCIS’13, 2013, pp. 1–11.

[20] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating Goal Models Within the Goal-Oriented Requirement
Language,” Int. J. of Intell. Syst., vol. 25, no. 8, pp. 841–877, 2010.


