
On the Perceived Interdependence and Information Sharing
Inhibitions of Enterprise Software Engineers

Alicia M. Grubb
Department of Computer Science

University of Toronto
Toronto, ON, Canada

amgrubb@cs.toronto.edu

Andrew Begel
Microsoft Research

Redmond, WA, USA
andrew.begel@microsoft.com

ABSTRACT
Software teams often have trouble coordinating shared work
due to poor communication practices. We surveyed software
engineers (N=989) at Microsoft to investigate three rarely ex-
plored aspects of coordination: (1) how an engineer’s percep-
tion of dependence is predicted by his organizational char-
acteristics, (2) how this perception differs when the depen-
dence varies by the kinds of shared work artifacts, and (3)
how the work group range affects the likelihood that an engi-
neer will share information about work artifacts with another.
Our results indicate that engineers tailor their communica-
tions about shared work for each group of intended recipients.
This suggests that many existing coordination tools that rely
on automatic mining and visualization of engineering activi-
ties have prevented senders from controlling the distribution
of information about their work, and may have overestimated
the receivers’ abilities to comprehend it.

Author Keywords
Coordination; Enterprise software development; Awareness;
Communication

ACM Classification Keywords
K.4.3 Organizational Impacts: Computer-supported coopera-
tive work

General Terms
Human Factors

INTRODUCTION
Large-scale software engineering requires coordination be-
tween engineers who build and ship a software product. Ef-
fective coordination relies on communication between indi-
viduals who are dependent on the status and content of the
shared work artifacts (e.g., source code, bugs, tests, documen-
tation, and project schedules). Prior research has shown that
necessary communication is inhibited by physical, technical,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

cognitive, social, and organizational factors, which leads to
coordination breakdowns that can threaten the viability of a
project [14, 18, 34].

Quantifying the mismatch between actual communication
and suggested communication (by relating people to their
shared work [12]) can help indicate possible coordination
problems (e.g., build failures [35]) which may be fixed by in-
creased (or decreased) communication [17, 26, 28, 41, 49].
If employed successfully, better communication strategies
should improve team performance [1].

We tried to employ this extensive body of research to make
sense of observations of inter-team coordination in large-
scale software development at Microsoft, and noticed three
gaps. First, studies suggest that if engineers communicated
properly with one another along dependency lines, it would
avoid problems [12, 35]. But, we find that this picture to be
too simplistic; not all engineers are the same. The activities
associated with some job functions involve many more de-
pendencies than others. Likewise, an engineer’s departmental
affiliation and tenure in the company influences the number
and depth of dependencies [9, 25]. Differences in dependen-
cies may have significant effects on associated coordination
and communication needs.

Second, software modularity at all levels (e.g., methods,
classes, libraries, components, applications, etc.) isolates
teams of engineers from one another [19], and creates an
asymmetry in many engineers’ perceptions of their dependen-
cies. To an engineer using a software library, it is obvious
that he depends on the library’s team. However, the library
team may be completely unaware of his existence unless he
chooses to contact them. One will not (and cannot) commu-
nicate with a dependent that one does not perceive to exist.

Third, social biases and organizational culture can interfere
with an engineer’s willingness to share information about his
work with outsiders, even direct dependents. The amount of
information an engineer is willing to share is inversely related
to his work group range to the other person. People on the
same team trust one another much more, and consequently
share much more information, than people who work in dif-
ferent corporate departments. Ingroup bias and confidential-
ity requirements may be the source of these inhibitions. A
belief that outsiders would not even be able to comprehend
your information (i.e. the illusion of transparency) may also
play a role.

In our study, we investigated three research questions:

RQ1: Does an engineer’s organizational characteristics
(measured by job function (developer, tester, project man-
ager (PM)), management role (manager or individual con-
tributor (IC)), department, years of experience in the soft-
ware industry, and years of experience in the company)
predict whether an engineer perceives that he depends on or
is dependent upon shared artifacts from engineers on other
teams?

RQ2: How does an engineer’s perception of his depen-
dencies differ with the kinds of shared artifacts, and how
much?

RQ3: How does work group range (measured on a scale
from no one, to my team, and to the entire company) affect
the likelihood that an engineer will share information about
work artifacts with another? Does this likelihood vary by
artifact type?

We surveyed software engineers (N=989) at Microsoft, a
large U.S.-based software company, on their perceptions of
interdependence and communication between engineers. Our
findings on interdependence mainly agree with previous re-
search at Microsoft [7, 36], but reveal several significant dif-
ferences. As we thought, our data indicates that engineers’
perception of their dependencies varies significantly by their
organizational characteristics and the direction of the depen-
dency. In addition, among many work artifact types, we see
significant signs of an asymmetry in dependency perception.

We found that the most widely shared work artifacts are spec-
ifications and release schedules. Among developers, code
changes (checkins) are surprisingly the most narrowly shared
work artifacts. Our analysis revealed that with every type of
work artifact we asked about, engineers who perceive that
they depend on others are both permitted, and willing, to
share information more widely than those who do not. We
expected to find the reverse—if you reported that others de-
pend on you, you would be more likely to share—but did
not. Finally, irrespective of dependencies, developers and re-
quirements and project engineers felt more comfortable shar-
ing information than they were permitted, but testers felt less
comfortable.

Our findings and analyses suggest engineers customize the
information they share according to the organizational char-
acteristics and work group range of their chosen recipients. In
the Implications section, we explore how the automation in-
herent to many existing coordination support tools may in fact
thwart this customization ability, and places undue burden on
receivers to comprehend the import of a generic, untargeted
message. Many of these tools do not allow senders to control
the recipients of their messages at all, which further inhibits
communication. We believe that a new generation of com-
munication and coordination support tools operating with a
mixed-initiative approach to message customization and re-
cipient targeting could enable senders to increase their infor-
mation sharing with a comfortable sense of control.

RELATED WORK
There is inherent risk in depending on others to develop soft-
ware; they may not deliver on their promises. Managing the
risk and ensuring a successful outcome, then, requires dis-
covering, maintaining awareness of, and communicating ef-
fectively with one’s dependencies.

Dependence Discovery
Since Conway, we have known that software teams organize
the architecture of their software similarly to their own orga-
nization [13]. Thus, software analysis methods are often used
to derive technical dependency networks and relate them to
their authors [16]. However, more complete socio-technical
dependency network discovery derives additionally from an
understanding of software process, organizational culture,
and workflow [11]. Here, empirical methods that mine soft-
ware repositories are used to uncover how team members co-
ordinate their work around various kinds of work artifacts,
such as bugs [12], checkins [38], and emails [4].

While the dependence network shows where communication
should occur, it does not show where it does occur. Cataldo
quantified this difference using a measure called socio-
technical congruence [12], and along with others, showed that
the magnitude of the congruence difference correlates with
coordination problems and project failures [11, 35, 51].

The existence of a so-called socio-technical congruence gap
illustrates that many engineers have difficulty identifying
(and communicating with) their dependencies. Our work
seeks to discover how organizational factors can help predict
whether engineers perceive that they have dependencies on
one another.

Dependence Awareness
Engineers gain awareness of their dependencies’s actions
during daily activities. At a high level, daily work varies
by job function, management role, departmental affiliation,
and tenure within the company. Developers communicate
with colleagues and dependents about software code qual-
ity through code reviews [43], about software code changes
through push-based notification mechanisms [32, 22], and
learn about code ownership and responsibility through the ex-
ploration of revision control systems and bug databases [6,
23]. Testers wait for project managers (PMs) to send them
specifications for their features before they can write testing
plans [5, 36]. Then, they must wait for developers to finish
writing the code and notify them before they can run their
tests and report bugs. PMs depend on one another to coor-
dinate work between dependent teams by maintaining aware-
ness of the status, scheduling, and any changes to work arti-
facts on which their own team depends. They conduct regu-
lar meetings with other PMs and developers to prioritize bugs
and to coordinate component completion schedules [2].

Despite much communication, engineers’ awareness of their
dependencies remains incomplete. For example, both devel-
opers and PMs may stay unaware of testers’ work until the
tester finds and reports a bug. Testers reporting bugs in a build
may have difficulty discovering which developers among a

large set should be made aware of a problem, and resort to
inefficient email broadcasts to notify them [3]. Requirements
gathering activities challenge many PMs, due to the difficul-
ties in discovering and communicating with all relevant stake-
holders [37] and the dynamic and unpredictable dependencies
between projects with changing requirements [15]. Creat-
ing and enforcing strict APIs between component modules
hinders developers from observing and communicating about
shared work that spans the boundary [19]. If developers are
not contacted by users of the modules they own, they may
lack awareness of the existence or needs of their dependent
developers.

Zooming in, some software team practices such as daily
standup meetings (common in Agile software methods), can
improve awareness of imminent dependencies (e.g. when one
engineer is blocking another from getting work done). Coor-
dination tools, such as configuration management systems,
dependency and conflict awareness visualizations, and col-
laborative IDEs, support communication, work artifact man-
agement, and task management [46]. Recommender systems
can help engineers discover others who are working on sim-
ilar projects to them, so that they might discover and stay
aware of one another’s progress [40, 53]. These tools are
often intended for individual developers, leaving other job
functions, management levels, and experience levels under-
studied and under-supported.

Our study identifies how engineers with various organiza-
tional characteristics perceive their dependencies on work ar-
tifacts beyond software code and APIs. The prevalent asym-
metry of this dependence, along with an engineer’s organi-
zational characteristics, affects his visibility into and under-
standing of those dependencies [44, 42]. Our survey uncov-
ers these work artifact dependence asymmetries and explores
how these might affect the perception of dependence.

Communication Inhibitions
Even when engineers are aware of their dependents, they may
not wish to share information about their work with them. In-
hibitors to communication include geographic separation [30,
31, 39], information overload [32], low social capital [33] and
lack of trust [5, 10, 31, 52], organizational separation [13, 19],
and personality [48]. Communication difficulties in software
teams resemble those in many other kinds of product develop-
ment organizations [9], therefore advice on improving coor-
dination through increased cross-functional communication
may be applicable to software organizations as well [1, 21].

Prior work rarely discusses communication inhibitors in en-
terprise software development. The perceived confidentiality
of one’s work artifacts will inhibit the distribution of informa-
tion about the artifact to recipients. The specific sensitivity
of the work artifact will inversely affect the acceptable com-
munication range, i.e. a more sensitive work artifact will be
shared with fewer people than a less sensitive or public one.
A prevalent desire for a team to speak with one voice and
control its message to outsiders may inhibit sharing informa-
tion that is unfinished, or not yet approved by management.
Likewise, individual team members may not feel empowered

to speak on behalf of the team, preferring that an official
team liaison mediate communication with outsiders [36]. As
teams isolate themselves from others, they may easily demon-
strate social biases where they mistrust others — something
which is equally likely in open source software teams [47]
— or perceive that their dependents do not know enough to
understand the information that they requested. Our survey
uncovers the diversity and range of these enterprise-oriented
communication-inhibiting factors on engineers with varying
organizational characteristics.

RESEARCH CONTEXT
At Microsoft, engineers fall mainly into one of three job func-
tions: developer, tester, and project manager (PM) [36]. De-
velopers are responsible for writing the software code and
fixing bugs. Testers create test harnesses, write and execute
blackbox and end-to-end scenario-based test suites, and re-
port bugs. PMs elicit requirements from customers to create
high-level design specifications and coordinate work between
the developers, testers, and PMs of other teams according to
the product’s release schedule.

The smallest workgroup at Microsoft is the feature crew, in
which a developer, a tester, and a PM create, develop, and
maintain a feature in the product. Feature crews may be or-
ganized hierarchically or grouped according to the coupling
of their features, but ultimately report to a team consisting of
development, test, and PM leads and managers. The entire
set of teams, along with general managers, architects, and li-
aisons to sales and marketing form a product group, ranging
in size from 100 to 5,000 people. Product groups are then
organized into departments, each of which housing a suite of
products.

Engineers at Microsoft coordinate their work with one an-
other using a variety of communication methods, including
face-to-face and computer-mediated team meetings, emails,
instant messages, phone calls, and via entries in work item
(bug) databases [7].

METHODOLOGY
Our research was conducted using a web-based survey over
a period of 8 days in the summer of 2010. An invitation
was emailed to 3,000 software engineers (with at least one
year of tenure at Microsoft), randomly selected from a much
larger population of around 28,000 engineering employees
from around the world. Responses were anonymous, but re-
spondents could identify themselves (separate from their sur-
vey submissions) to enter a raffle for a prize of US$250. The
survey contained 40 questions, though in this paper, we only
analyze questions relating to interdependence and informa-
tion sharing.1

In preparing the survey, we prototyped our questions through
a series of pilot surveys and followup interviews (in which
we discussed the wording of the questions). We adapted lists
of work artifacts from the previous work at Microsoft [7].
All questions with lists allowed the respondents to select
1We encourage other researchers to replicate our study. Please con-
tact us for a copy of the questionnaire.

Table 1. Response Rate and Sample Distribution by Job Function2

Total PMs Devs Testers Other
Total Sampled 3000 1000 1000 1000 0
Responses 989 247 327 376 39
Response Rate 33% 24.7% 32.7% 37.6% –
Percent of Sample – 25% 33% 38% 4%

“Other,” and include a qualitative response. We analyzed
these “Other” responses for completeness, but they were not
frequently used by the respondents.

Demographics
The survey began with a set of demographic questions to de-
termine the respondent’s organizational characteristics. Re-
spondents were asked to indicate their job function (PM, De-
veloper, Tester, Other), their management role (Individual
Contributor (IC), Lead, Manager, Other), department within
the company, the number of years of professional software
engineering experience they had, and the number of years
they had worked at Microsoft.

We received 1052 responses, of which 63 were invalid (empty
or duplicate). This resulted in 989 valid responses, for an
overall response rate of 33% (see Table for response rates by
job function). Overall, respondents reported that they worked
at Microsoft for an average of 6.01 years (SD = 4.3), and as
professionals in the software industry for 10.03 years (SD =
6.59). Although both means are positively skewed, the in-
dividuals in our sample report a fair amount of experience,
and have spent several years working in the software industry
before joining Microsoft. Years of experience at Microsoft
is strongly correlated with years experience in the software
industry (r = 0.52, p < 0.001). For the remainder of our
analysis, we will only use years of experience at Microsoft.

PMs were the most experienced, followed by developers and
then testers, both at Microsoft and as software engineers.
From our sample of 989 participants, 774 respondents re-
ported working as individual contributors, 158 were either
leads or managers, 39 reported working as both an individ-
ual contributor and a lead/manager, and 18 reported working
in another role (e.g. architect or executive). Managers have
four years, on average, more experience at Microsoft than in-
dividual contributors, but a similar number of years as soft-
ware engineers. The distribution of respondents’ departments
within our sample is consistent with the distribution of soft-
ware engineers across the organization.

Statistical Methodology
Throughout the Results section, we examine various relation-
ships within the dataset. The dataset is quite large and the ma-
jority of the variables are ordered or dichotomous variables.
We used t tests to evaluate whether two sub-populations of
our sample had significantly different means, and whether the
slope of our regression lines differed significantly from zero.

2Other responses were excluded from analysis when split across job
function.

We used ANOVA (Analysis of Variance) to test for signifi-
cantly different means in more than two subgroups. We min-
imally used CHI-Square (χ2) because its sensitivity is prob-
lematic with large samples. Throughout the analysis, we used
three forms of regression: linear regression for continuous de-
pendent variables, binary logistic regression for dichotomous
dependent variables, and ordered logistic regression for cate-
gorical dependent variables.

Terminology
We introduce two terms: iDepend – the respondent per-
ceives that he depends on work done by others outside his
team, and oDepend – the respondent perceives that individu-
als from outside his team depend on him for his work. We
also list the 20 work artifact types for which at least one
engineer in Microsoft reported a dependency: API Defini-
tions, Binaries, Bug Fixes, Bug Reports, Build Information,
Checkin Messages and Source Code Diffs, Source Code,
Delivered features, Documentation, Schedules (Feature, Re-
lease, and Product/Shipping), Specifications (Design, Devel-
opment, Implementation, Product, Test, and Other), Team-
specific Engineering Standards, Team Meeting Notes, Tests,
Test Results, Work Items, Work Item Priorities, and Work
Status.

In our understanding, the concepts of work artifact and infor-
mation about a work artifact are indistinguishable. When an
engineer sends a message to another, sometimes it is a simple
artifact (e.g. source code in a repository, binaries in a build,
specifications on a web site), and sometimes it is a deliberate
act of communication (e.g. an email sharing status meeting
notes, an IM checking up on a task request). But, it is often
both at the same time. For example, writing a checkin mes-
sage might be considered sharing information about code, but
the source code diff contained in the checkin is code. The re-
duction of a buggy program to a simple test case to include in
a bug report is simultaneously an act of communication and
an artifact. Bug reports contain structured fields describing
the problem, while unstructured fields record acts of commu-
nication between the engineers who worked on it. Thus, in
this paper, we use the terms sharing artifacts and sharing in-
formation about artifacts interchangeably.

We operationalize the notion that individuals share their work
information (the status and content of the shared work arti-
facts) to specific audiences within Microsoft. We measure
sharing through a set of proxies corresponding to various
work information types (including artifacts and status) using a
scale called work group range. This scale ranges from (0) no
one, (1) their feature crew, (2) their team, (3) their dependents
and those that depend on them, (4) their whole product team,
(5) their department, or (6) the entire company. We combine
these proxies to create a sharing metric instrument to under-
stand with what work groups engineers share confidential and
non-confidential information. We also use the same sharing
metric to evaluate the difference between the information that
engineers are permitted to share vs. what they report feeling
comfortable sharing.

Table 2. Logistical Regression Analysis of Perception of Inter-team De-
pendencies

(Q1) I depend on the work of people outside my team.
iDepend Coeff OddRatio Std Coeff z P > |z|

Developer -1.09 0.34 0.60 -3.83 0.000
Tester -1.30 0.27 0.53 -4.70 0.000

Manager 0.45 1.57 1.20 1.73 0.083
Years-Exp. 0.08 1.08 1.40 3.09 0.002
Intercept 1.88 6.52 0.000

Number of Observations=899 Log likelihood=-420.1809
Null Model Log likelihood=-456.0344

(Q2) People outside my team depend on work that I personally do.
oDepend Coeff OddRatio Std Coeff z P > |z|

Developer -1.01 0.37 0.62 -3.52 0.000
Tester -1.32 0.27 0.53 -4.75 0.000

Manager 0.49 1.64 1.22 1.85 0.064
Years-Exp. 0.08 1.09 1.40 3.07 0.002
Intercept 1.87 6.47 0.000

Number of Observations=899 Log likelihood=-415.4851
Null Model Log likelihood=-448.9960

RESULTS

Interdependence
We asked respondents about their perception of interdepen-
dence with two Yes/No questions: (Q1) “I personally de-
pend on the work of people outside my team.” (Q2) “Peo-
ple outside my team depend on the work that I personally
do.” 78.8% of respondents said they were dependent on oth-
ers outside their team, and 79.7% said that others depended
on their work. Only 67.4% of respondents said yes to both
questions (bi-directional dependencies). Q1 and Q2 are mod-
erately correlated (r(911) = 0.37, p < 0.0001).

We were interested in learning whether our respondents’ or-
ganizational characteristics could predict whether they per-
ceived having a dependency. The null hypothesis is that the
likelihood of having inter-team dependencies does not vary
by organizational characteristics. We explored this relation-
ship using logistic regression. Q1 and Q2 were coded as di-
chotomous dependent variables. Any respondent who indi-
cated that the question was not applicable (“N/A”) was coded
as blank.

The organizational characteristics likely to correlate with per-
ceived interdependence are job function (PMs, Developers,
Testers, Other),3 management role (Yes (Lead or Manager)
or No (IC)), department, and years of experience (minimum
1 year). We removed department from the analysis because
there was no significant variation.

In Table 2, we report significant variables and their signifi-
cance levels for the regressions of Q1 and Q2. The log odds
of years of experience and job function were significant in
both models; this allows us to reject our null hypothesis.
PMs have a significantly higher likelihood than Developers
(χ2(1) = 14.69, p = 0.0001) and Testers (χ2(1) = 22.08,
p < 0.0001) of reporting that they are dependent on engineers
outside their team. Perceiving an external dependence also

3PM was selected as the omitted category. Other was removed due
to extremely low sample size.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

iDep oDep iDep

Work Status Release
Schedule

0% 20% 40% 60% 80%

iDep

oDep

iDep

oDep

iDep

oDep

iDep

oDep

iDep

oDep

iDep

oDep

iDep

oDep

iDep

oDep

W
o

rk
St

at
u

s
Te

st
s

Sp
ec

R
el

e
as

e
Sc

h
ed

u
le

C
o

d
e

B
u

g
R

ep
o

rt
s

B
u

g
Fi

xe
s

A
P

I
D

ef
in

it
io

n

PMs Developers Testers

Figure 1. Artifact dependency as a percentage of respondents with de-
pendencies divided by job function.5

varied by years of experience (χ2(1) = 9.53, p = 0.002);
greater years of experience increase a respondent’s likelihood
of depending on others. PMs have a significantly higher like-
lihood than Developers (χ2(1) = 12.41, p = 0.0004) and
Testers (χ2(1) = 22.53, p < 0.0001) of perceiving that
others depend on their work. Engineers with more experi-
ence have an increased likelihood as well (χ2(1) = 9.44,
p = 0.002). We did not find any significant interaction effect
between years of experience and job function.

Shared Work Artifacts
Next, we investigated how an engineer’s perception of his ex-
ternal dependences on different types of shared work artifacts
varied by his organizational characteristics. We asked respon-
dents (Q3) “Which kind(s) of work artifacts from engineers
outside your team do you depend on?” and (Q4) “For which
5Some work artifact types listed in the question (selected by very
few respondents) were omitted to make the plot easier to read.

kind(s) of work artifacts do engineers outside your team de-
pend on you?” Respondents could choose any number of
artifacts from a list we supplied (see Terminology section),
and/or choose to write in their own artifact type. Our null hy-
pothesis is that the distribution of perception of dependence
between different shared work artifact types does not vary by
a respondent’s organizational characteristics.

We first explored which shared work artifacts were reported
as the most common dependencies. For each work artifact
type, we calculated the percentage of respondents who re-
ported being dependent upon an engineer outside their team,
and the percentage of those who reported that an engineer out-
side their team was dependent on them. Respondents reported
that they depended most on others for release schedules and
specifications, while others were most dependent on them for
specifications and source code.

Figure 1 shows these shared work artifacts split by job func-
tion. Each row consists of two sets of three bars representing
the percentage of the respondents who report being depen-
dent on that artifact (iDepend) and the percentage of respon-
dents who report that others depend on them for the artifact
(oDepend). Each of the three bars represents the results for
respondents with one of the job functions. When divided by
job function, we observe striking variations in most of the de-
pendencies. These variations are significant, and enable us to
reject our null hypothesis.

In this figure, one can additionally see distinct asymmetries
in the direction of each work artifact type’s dependencies.
53.85% of PMs report that they depend on other engineer’s
work status, but only 17.41% report that others depend on
their work status. These differences are larger for developers
(iDepend: 25.38%, oDepend: 5.81%) and testers (iDepend:
26.06%, oDepend: 7.98%). For almost every work artifact
type and job function, oDepend is less than iDepend. The ex-
ceptions for developers are bug fixes, and code, which makes
sense, since writing code and fixing bugs are their main job
tasks. Testers report that more people are dependent on them
for bug reports and tests, matching their job tasks.

Information Sharing
In this section, we look at the factors that influence how
widely engineers share information about their work artifacts.
In an enterprise work environment, there are rules about shar-
ing information with other teams. Some features are consid-
ered sensitive (i.e. secret), and should not be talked about
with people who are not privy to the secret. Most features are
non-sensitive, which Microsoft often advertises to the public
long before a product ships.

We asked respondents four questions that covered whether
they were permitted to share and comfortable with sharing
information about sensitive and non-sensitive work artifacts.
One instance of the question read, “What are the work groups
to which you are allowed to share each of the following work
artifacts that are related to this sensitive feature?”6 Three

6Italics were in the original question.

Table 3. Mean & Standard Deviation of the work group range (0-6)
to which engineers were allowed to share and comfortable with shar-
ing information about sensitive and non-sensitive features. Higher val-
ues indicate wider sharing. Each of the 8 sections reports the statis-
tics for a different subsample. The four questions are labeled (Q5) AS:
allowed-sensitive, (Q6) CS: comfortable-sensitive, (Q7) AN: allowed-
non-sensitive, and (Q8) CN: comfortable-non-sensitive.

Mean Std. Dev. Mean Std. Dev.
Entire Sample iDepend = Yes
(Q5) AS 3.017 1.279 (Q5) AS 3.091 1.264
(Q6) CS 3.089 1.283 (Q6) CS 3.155 1.252
(Q7) AN 3.865 1.442 (Q7) AN 3.942 1.404
(Q8) CN 3.850 1.472 (Q8) CN 3.924 1.431
PMs iDepend = No
(Q5) AS 3.098 1.337 (Q5) AS 2.767 1.310
(Q6) CS 3.190 1.308 (Q6) CS 2.893 1.396
(Q7) AN 3.969 1.401 (Q7) AN 3.653 1.543
(Q8) CN 3.947 1.453 (Q8) CN 3.642 1.583
Developers oDepend = Yes
(Q5) AS 3.088 1.315 (Q5) AS 3.059 1.289
(Q6) CS 3.278 1.325 (Q6) CS 3.150 1.272
(Q7) AN 4.054 1.414 (Q7) AN 3.935 1.424
(Q8) CN 4.059 1.406 (Q8) CN 3.914 1.459
Testers oDepend = No
(Q5) AS 2.916 1.202 (Q5) AS 2.894 1.233
(Q6) CS 2.877 1.202 (Q6) CS 2.916 1.322
(Q7) AN 3.645 1.459 (Q7) AN 3.669 1.473
(Q8) CN 3.613 1.509 (Q8) CN 3.670 1.487

variants substituted comfortable with for allowed to and non-
sensitive for sensitive. We label these (Q5) allowed-sensitive
(AS), (Q6) comfortable-sensitive (CS), (Q7) allowed-non-
sensitive (AN), and (Q8) comfortable-non-sensitive (CN).
Each of the representative work artifacts were rated by re-
spondents on our work group range scale and combined into
a single sharing metric value for each of the four questions
(see Terminology section). We accommodated missing data
in the sharing metric to ensure that missing responses would
not positively skew our results. The resulting distributions
approximate to being continuous and normal.

The mean and standard deviations of the sharing metric
and subpopulations are reported in the 8 sections of Table
3. Notice that respondents indicated that they were allowed
(t(750) = 17.94, p < 0.0001) and comfortable (t(739) =
16.73, p < 0.0001) sharing non-sensitive features much more
widely than sensitive ones. Additionally, there was a signifi-
cant effect for perceiving that one had external dependents in
all cases (AS: t(802) = 2.87, p < 0.01, CS: t(770) = 2.25,
p < 0.05, AN: t(765) = 2.23, p < 0.05, CN: t(769) = 2.14,
p < 0.05). Those who say they depend on the work of
people outside their team (iDepend) share to a wider audi-
ence than those who say they do not have outside depen-
dents. However, when the respondent perceives that oth-
ers depend on his work, there is a significant effect only in
the comfort-sensitive and allowed-non-sensitive cases (CS:
t(770) = 2.01, p < 0.05, AN: t(765) = 2.02, p < 0.05).
Overall, respondents who perceive that others depend on their
work (oDepend) share more widely than those who do not.

Splitting the data by job function shows that PMs and devel-
opers reported being allowed to share work artifacts with a
wider audience than testers. There was a significant effect

Table 4. Artifacts (and their means) that are shared the most widely and
most narrowly by role. Increased values indicate wider sharing.

Most Widely Shared Most Narrowly Shared
PM Release Schedule 4.26 Source Code 2.77

Specifications 4.24 Checkin Msg. 2.81
Feature Schedule 4.18 Test Suites 2.95

Dev Release Schedule 4.24 Meeting Notes 2.71
Specifications 4.24 Test Suites 2.98
Binaries 4.18 Source Code 3.00

Test Release Schedule 3.79 Meeting Notes 2.53
Bugs Fixes 3.77 Source Code 2.69
Bug Reports 3.69 Checkin Msg. 2.71

for job function in all but the allowed-sensitive case: (CS:
F (2, 790) = 8.07, p = 0.000, AN: F (2, 785) = 6.65,
p = 0.002, CN: F (2, 788) = 7.43, p = 0.001).

To further understand the relationship between organizational
characteristics, the perception of interdependence, and our
sharing metric, we performed linear regressions for each of
the four questions (AS, CS, AN, and CN). AS is not sig-
nificant. In both the CS and AN models, there is a statis-
tically significant difference between PMs and testers, and
between developers and testers. In the CN model, there is
a statistically significant difference between developers and
testers. For the CS, AN, and CN models, a management
role and years of experience are also statistically significant,
albeit with smaller standardized effect sizes than job func-
tion. Years of experience has the largest standardized effect
size. The descriptive statistics indicate that comfort levels
contribute to the significant effect between PMs and testers,
and between developers and testers. Thus, developers and
PMs are more comfortable sharing both sensitive and non-
sensitive artifacts than they are permitted. Testers, however,
are allowed to share more widely than they feel comfortable
with. There may be an interaction effect between job function
and the perception of interdependence that requires further
data to validate.

Next, we analyzed which artifacts were shared to the widest
and most narrow work group range. The results are shown in
Table 4. Respondents of any job role were willing to share
release schedules with the widest range of recipients. PMs
shared code and checkin information with the most narrow
audience. Developers shared team meeting notes and test
suites with the most narrow audience, and testers minimally
shared team meeting notes and code.

After asking about these hypothetical information sharing sit-
uations in our survey, we asked, using Yes/No questions,
whether respondents had ever not been allowed to or felt
uncomfortable sharing information about a sensitive or non-
sensitive feature in response to an explicit information re-
quest. If they had, we asked them to explain why. 33.2% of
respondents report having been asked for work-related infor-
mation that they were not allowed to share. Fewer (25.1%)
reported being asked for information that they did not feel
comfortable sharing. We triangulated their answers by an-
alyzing the long-form “why” follow-up question. Using an
iterative card-sorting technique, we categorized the respon-
dents’ reasons into 5 groups: (A) the sensitivity of the re-

quest (e.g. confidentiality, legal issues, preventing leaks to the
press), (B) uncertainty as to whether the information should
be shared (e.g. response should come from management),
(C) the information was too preliminary (e.g. draft or incom-
plete work), (D) mistrust of the requestor (e.g. request is too
vague, requestor has no “business need,” requestor may have
“malicious intent.”), and (E) would not understand (i.e. the
requestor lacks the background or technical expertise/depth
to understand the information).

DISCUSSION
The results and analysis of the survey support several con-
clusions. First, answering RQ1, PMs are more likely than
developers or testers to perceive that they have dependency
relationships with outside teams. This is an expected result,
given that PMs function as project engineers and are respon-
sible for coordinating their team’s work with others. Sec-
ond, engineers with more work experience are more likely
to perceive that they have dependency relationships with out-
side teams. This is consistent with an earlier finding [36] that
junior engineers are insulated from outside teams by a team
lead who handles much of the inter-team communication. We
did not find significant correlations of dependence perception
with a management role or departmental affiliation.

The third result, answering RQ2, showed that overall, engi-
neers of all job functions report that they depend the most on
specifications and release schedules. This result initially sur-
prised us, but when the dependencies were split by job func-
tion, more familiar rankings appear for developers — they
feel most dependent on code and API definitions. The split
does not change the ranking for testers and PMs. This makes
sense for PMs, who coordinate work between teams, how-
ever for testers, it confused us. After we interviewed a few
testers, however, we found that they must wait for specifi-
cations from PMs before they can begin designing their test
suites, and are extremely sensitive to the release schedule be-
cause much of their work cannot proceed until the developers
have finished programming new features. Indeed, the fourth
most dependent work artifact for testers is source code. Con-
tinuing with the opposite dependence direction, engineers of
all job functions feel that others depend on them mostly for
specifications and code. When broken down by job function,
PMs provide specifications and schedules, developers provide
code and bug fixes, and testers provide tests and specifica-
tions. This result also agrees with the literature.

We noticed that some of the dependency numbers were quite
low. For example, only 6.42% of developers report that others
depend on them for tests. Since at Microsoft, testers write the
integration and acceptance tests, while developers write unit
tests, this indicates that either very few developers perceive
that anyone depends on them to write unit tests, or that very
few engineers depend on the results. A followup interview
revealed that developers are expected to be responsible for
their own unit tests, and rarely expect others to read, write or
run them.

Another set of low numbers for developers was for bug re-
ports. Only 20.18% say they depend on others’ bug reports,

and only 12.54% say that others depend on theirs. Since de-
velopers are the only engineers knowledgeable enough to file
bugs against the source code, this may indicate they do not
find bug reports to be useful for telling one another about
buggy code. Developers told us in followup interviews that
when they may suspect a bug in another team’s code, they
feel that they are likely missing something important. It is
better to leave “buggy” code alone, than risk causing a new
problem by changing it. They would also rather visit another
developer in person to tell them about a bug than file a bug
report.

Our last results answer RQ3, and focus on the willingness
to share information about shared work artifacts with a va-
riety of audiences. When the feature to be shared was sen-
sitive (for which respondents were told that they should be
concerned about confidentiality), engineers mainly refrained
from sharing information further than their immediate depen-
dencies. When the feature was not sensitive, they could share
with their entire product team.

A surprising result is that engineers who perceive that they
depend on others feel comfortable sharing information about
work artifacts with a larger range of recipients than those
who say they do not depend on anyone. Might this suggest
that engineers at this company are altruistic? Perhaps they
share with others to set an example for, and thus encourage,
the people they depend on to share more information. We
expected the inverse, that engineers would only share more
widely when they knew that people on other teams were de-
pending on them for information. This will require further
exploration at Microsoft (and at other companies) to under-
stand the engineers’ sharing motivations.

Considering job function, we found that developers and PMs
are more comfortable sharing information about their work
artifacts than they are permitted to by their organization.
Testers, however, reported the opposite; they are permitted
to share with a wider audience than with whom they feel
comfortable. Two possible explanations came to mind. (1) If
testers are reporting news of problems with the product, shar-
ing that news widely might harm its reputation. (2) Testers
may lack enough confidence in their own abilities and activ-
ities to reveal their ideas about work artifacts, and fear they
might receive a poor response from their more accomplished
and experienced PM and developer co-workers. Followup in-
terviews revealed that testers’ lack of confidence was the most
likely explanation.

Finally, more engineers than we expected reported being ap-
prehensive or not allowed to share information when asked.
One-third of all respondents reported they were not permit-
ted to share information after being explicitly asked, and one
quarter felt uncomfortable doing so. Our long answer fol-
lowup question indicated that confidentiality, uncertainty in
one’s authority, and unfinished information were the primary
reasons to avoid sharing work artifacts with outsiders. Par-
ticular product features may be embargoed to small teams
during early phases of development. This helps to prevent
early designs from being revealed and possibly misconstrued
as final product guidance by others at the company, or by out-

siders. In addition, we had anticipated that social biases like
ingroup bias and the illusion of transparency might affect how
much sharing with which an individual would be comfort-
able, and we saw that in this question’s other two categories
of responses as well.

Implications
We hypothesize that engineers are tailoring their informa-
tion sharing behavior to the organizational characteristics and
work group range of the possible recipients of their commu-
nication. We ask the question, then, is this behavioral media-
tion deliberate, and how does it change in response to evolv-
ing organizational contexts? Studies of product innovation
have found correlations of product success to increased cross-
functional communication and violation of established barri-
ers to communication because they allowed team members to
combine their perspectives in a highly interactive and itera-
tive way [21]. Researchers have hoped that communication
behaviors could be shaped with appropriate communication
practices and new tools. Prior work in communication tools
aimed at software engineers incentivizes changes in com-
munication behavior through tool use. For instance, Palan-
tir [45], FastDash [8], and Syde [29] promote early, source
code change conflict resolution communication by notifying
engineers when they are working on the same file. Com-
mon repository-based notification systems attempt to keep
engineers up-to-date on other engineers’ changes through fre-
quent emails, IMs or even new Web 2.0 technologies. Passive
notification systems, such as Codebook [6] or GitHub [24],
record repository changes in a persistent context-dependent
newsfeed that may be accessed by interested engineers at
their leisure.

When these tools are viewed from an enterprise perspective,
we notice that their displays commonly require the recipi-
ents of information to make sense of automatically mined in-
formation presented in a form familiar to participants in the
project, but often unknown, overwhelming, and/or irrelevant
to outsiders. In addition, all of these systems presuppose that
any and all engineers with an interest in the information will
already have appropriate security credentials to see it. Tools
such as TagSEA [50] and James [27] integrate tagging and
microblogging into the IDE, enabling developers to broad-
cast their information to all, but do not give the sender control
over who receives his message. Our study’s results indicate
that awareness tools should enable engineers to customize the
message about their work to be more salient to those whom
they choose to send it. Enabling the sender to tailor his mes-
sage to be more salient for a particular audience, however,
requires that the sender do more work than current practice
typically presumes.

While engineers already use non-automated information shar-
ing tools such as email and IMs, a semi-automated approach
could help in a number of ways. To help engineers iden-
tify potential interested recipients, a system could use Socio-
Technical Congruence [12] to discover probable, and poten-
tially unknown, external dependents and enable the engineer
to investigate their organizational characteristics, including
whether they have access to the original software repository

in which the artifact originated. To help engineers craft an
appropriate message, a system might indicate which recipi-
ents are most strongly tied to the sender. These recipients
would be permitted to receive more detailed information on
the rationale behind a change, or a frank assessment of a
project’s likelihood for shipping on time (which our probe
surveys show would be closely guarded secrets). The system
could group recipients by various organizational characteris-
tics, since they often share particular information needs. For
example, when a developer informs engineers of his check-
ins, other developers will read the source code diffs to review
the effects on the code, but testers may simply care how much
closer this checkin brings the project to the time where they
may begin black box testing the software component. In ad-
dition, since some interested recipients have more seniority,
more power, or tighter deadlines than the others, a tool that
visually represented dependents’ relative organizational char-
acteristics could also help the engineer to craft an appropriate
message to each.

Threats to Validity
Construct Validity: The dependency relationships reported by
the respondents are the respondents’ perceptions of their de-
pendencies, not their actual dependencies. Dependency rela-
tionships were not verified, as respondents were not asked to
identify them. Respondents selected work artifact types from
a list (with an “Other” option) generated through past stud-
ies at Microsoft and verified through preliminary surveys and
interviews. We operationalized engineers’ sharing through
measuring the sharing metric on the work group range scale.
We believe this is the best approximation, thus far, of this
concept, and encourage other researchers verify its validity.

Internal Validity: Our results about organizational character-
istics may be confounded with demographic factors that we
did not collect (e.g. age, gender, native language, or country
of origin). Years of experience and the ratio of interdependent
work involved per job role may be confounded, thus we re-
quired participants to have at least one year of employment.
Survey participation was voluntary and anonymous, though
some may have answered solely for the US$250 draw. No in-
vited participant shared a common manager with the research
team. We believe that participants answered sensibly to the
intermittent long answer questions in the survey. All ques-
tions were optional, allowing respondents to complete only
part of the questionnaire. Although the number of respon-
dents answering each long answer question did drop slightly
towards the end of survey, those who completed the survey
appear to have given their answers some thought. Thus, we
believe respondents either answered truthfully, or did not an-
swer at all. We triangulated our results by correlating the re-
sults of oDepend with a rephrased version of oDepend at the
end of the survey.

External Validity: This study is based on a single large US-
based software company, so the results may not a priori gen-
eralize to other large software companies. However, studies
of other large enterprise software companies [52, 20] show
that they share a similar work environment, and would likely

have similar results to ours. Microsoft’s communication cul-
ture maintains a significant reliance on email, even as it en-
ables contextualized communication within software reposi-
tories (e.g. source code and bugs [6]) and begins to experi-
ment with Web 2.0 communication technologies. Since Mi-
crosoft is an enterprise-level, profit-oriented organization, ob-
servations and analyses of open-source community informa-
tion sharing and altruism may have limited explanatory power
here.

FUTURE WORK AND CONCLUSIONS
In this paper, we reported on a survey we conducted to un-
derstand three gaps in inter-team coordination. First, we
learned that an engineer’s job function and years of experi-
ence are significant determinants of his perception of depen-
dency. Second, we found that these dependencies differed
significantly by work artifact, and were always asymmetric.
Third, we found that organizational rules, along with the type
and sensitivity of particular shared work artifacts mediate the
work group range to whom an engineer is willing to commu-
nicate. We also discovered a surprising result that begs fur-
ther study. Engineers at this company appear to be altrustic
because they report that they share more widely when they
depend on information from others. Why? As Grudin asked
about calendars [25], what are the social factors that incen-
tivize or inhibit engineers at this enterprise company from
sharing information with colleagues?

The results have important implications for tool designers,
guiding them to explore ways in which information sharing
tools can enable engineers to share their work artifacts au-
tomatically, yet be able to select the intended recipients and
make the message salient for each. We hope that as new tools
are introduced with increased understanding of the effects of
organizational characteristics, dependency perception, and at-
titudes around information sharing, they can help make inter-
team coordination function better.

ACKNOWLEDGEMENTS
We thank the HIP team at Microsoft Research, Steve Easter-
brook, and our anonymous reviewers for the contributions to
our study. We thank our study participants for their time.

REFERENCES
1. Ancona, D. G., and Caldwell, D. F. Bridging the boundary: External

activity and performance in organizational teams. Administrative
Science Quarterly 37, 4 (1992), pp. 634–665.

2. Anvik, J., and Murphy, G. C. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. IEEE TSEM 20, 3
(2011).

3. Aranda, J., and Venolia, G. The secret life of bugs: Going past the
errors and omissions in software repositories. Proc. ICSE ’09, 298–308.

4. Bacchelli, A., Lanza, M., and Robbes, R. Linking e-mails and source
code artifacts. Proc. ICSE ’10, 375.

5. Begel, A. Effecting change: coordination in large-scale software
development. Proc. CHASE ’08, 17–20.

6. Begel, A., Khoo, Y. P., and Zimmerman, T. Codebook: Discovering and
Exploiting Relationships in Software Repositories. Proc. ICSE ’10.

7. Begel, A., Nagappan, N., Poile, C., and Layman, L. Coordination in
large-scale software teams. Proc. CHASE ’09, 1–7.

8. Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G. Fastdash:
a visual dashboard for fostering awareness in software teams. Proc.
CHI ’07, 1313–1322.

9. Brown, S. L., and Eisenhardt, K. M. Product development: Past
research, present findings, and future directions. The Academy of
Management Review 20, 2 (1995), pp. 343–378.

10. Casey, V. Developing trust in virtual software development teams. J.
Theor. Appl. Electron. Commer. Res. 5 (August 2010), 41–58.

11. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. Software
Dependencies, Work Dependencies, and Their Impact on Failures.
IEEE TSE 35, 6 (2009).

12. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M.
Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools. Proc. CSCW ’06,
353–362.

13. Conway, M. E. How Do Committees Invent? Datamation 14, 4 (1968),
28–31.

14. Curtis, B., Krasner, H., and Iscoe, N. A Field Study of the Software
Design Process for Large Systems. Comm. ACM 31, 11 (1988),
1268–1287.

15. Damian, D., Kwan, I., and Marczak, S. Collaborative Software
Engieneering. Computer Science Editorial Series. Springer-Verlag,
May 2010, ch. Requirements-Driven Collaboration: Leveraging the
Invisible Relationships between Requirements and People.

16. de Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F. Supporting
collaborative software development through the visualization of
socio-technical dependencies. Proc. GROUP ’07, 147–156.

17. de Souza, C. R., and Redmiles, D. F. The Awareness Network, To
Whom Should I Display My Actions? And, Whose Actions Should I
Monitor? IEEE TSE 37 (2011), 325–340.

18. de Souza, C. R. B., and Redmiles, D. An Empirical Study of Software
Developers’ Management of Dependencies and Changes. Proc. ICSE
’08.

19. de Souza, C. R. B., Redmiles, D., Cheng, L.-T., Millen, D., and
Patterson, J. How a good software practice thwarts collaboration: the
multiple roles of apis in software development. Proc. FSE ’04,
221–230.

20. DiMicco, J., Millen, D. R., Geyer, W., Dugan, C., Brownholtz, B., and
Muller, M. Motivations for social networking at work. Proc. CSCW
’08, 711.

21. Dougherty, D. Interpretive barriers to successful product innovation in
large firms. Organization Science 3, 2 (1992), 179–202.

22. Fritz, T. Determining Relevancy: How Software Developers Determine
Relevant Information in Feeds. Proc. CHI ’11.

23. Fritz, T., and Murphy, G. C. Using information fragments to answer the
questions developers ask. Proc. ICSE ’10, 175–184.

24. Github, I. Github social coding, 2011. Available at:
http://www.github.com.

25. Grudin, J. Groupware and social dynamics: eight challenges for
developers. Comm. ACM 37 (January 1994), 92–105.

26. Gutwin, C., Greenberg, S., and Roseman, M. Workspace awareness in
real-time distributed groupware: Framework, widgets, and evaluation.
Proc. HCI on People and Computers XI ’96, 281–298.

27. Guzzi, A., Pinzger, M., and van Deursen, A. Combining
micro-blogging and ide interactions to support developers in their
quests. ICSM, Early Research Achievements Track (2010), 1–5.

28. Halverson, C. A., Ellis, J. B., Danis, C., and Kellogg, W. A. Designing
task visualizations to support the coordination of work in software
development. Proc. CSCW ’06, 39–48.

29. Hattori, L., and Lanza, M. Syde : A Tool for Collaborative Software
Development. Proc. ICSE ’08, 235–238.

30. Herbsleb, J. D., and Grinter, R. E. Splitting the Organization and
Integrating the Code: Conway’s Law Revisited. Proc. ICSE ’99, 85–95.

31. Hinds, P., and McGrath, C. Structures that work: social structure, work
structure and coordination ease in geographically distributed teams.
Proc. CSCW ’06, 343–352.

32. Holmes, R., and Walker, R. J. Customized awareness: recommending
relevant external change events. Proc. ICSE ’10, 465–474.

33. Jiang, H., and Carroll, J. M. Social capital, social network and identity
bonds: a reconceptualization. Proc. C&T ’09, 51–60.

34. Kraut, R. E., and Streeter, L. A. Coordination in Software
Development. Comm. ACM 38, 3 (1995), 69–81.

35. Kwan, I., Schroter, A., and Damian, D. Does socio-technical
congruence have an effect on software build success? a study of
coordination in a software project. IEEE TSE 37 (May 2011), 307–324.

36. LaToza, T. D., Venolia, G., and DeLine, R. Maintaining mental models:
a study of developer work habits. Proc. ICSE ’06, 492–501.

37. Lim, S., Quercia, D., and Finkelstein, A. StakeNet: using social
networks to analyse the stakeholders of large-scale software projects.
Proc. ICSE ’10, 295–304.

38. Maalej, W., and Happel, H.-J. From work to word: How do software
developers describe their work? Proc. MSR ’09, 121–130.

39. Mockus, A., Fielding, R. T., and Herbsleb, J. D. Two case studies of
open source software development: Apache and mozilla. ACM TOSEM
11, 3 (2002), 309–346.

40. Mockus, A., and Herbsleb, J. D. Expertise browser: a quantitative
approach to identifying expertise. Proc. ICSE ’02, 503–512.

41. Omoronyia, I., Ferguson, J., Roper, M., and Wood, M. Using developer
activity data to enhance awareness during collaborative software
development. Journal of CSCW 18 (2009), 509–558.

42. Poile, C. Asymmetric dependence and its effect on helping behaviour in
work groups. PhD thesis, University of Waterloo, 2010.

43. Rigby, P. C., and Storey, M.-A. Understanding broadcast based peer
review on open source software projects. Proc. ICSE ’11, 541–550.

44. Safayeni, F., Duimering, P. R., Zheng, K., Derbentseva, N., Poile, C.,
and Ran, B. Requirements engineering in new product development.
Comm. ACM 51 (March 2008), 77–82.

45. Sarma, A., Noroozi, Z., and van der Hoek, A. Palantı́r: raising
awareness among configuration management workspaces. Proc. ICSE
’03, 444–454.

46. Sarma, A., Redmiles, D., and van der Hoek, A. Categorizing the
spectrum of coordination technology. IEEE Computer 43 (2010),
61–67.

47. Sinha, V. S., Mani, S., and Sinha, S. Entering the circle of trust:
developer initiation as committers in open-source projects. Proc. MSR
’11, 133–142.

48. Sodan, A. C. How much do technical scientists really cooperate? ACM
SIGCAS 36, 2 (June 2006).

49. Teasley, S. D., Covi, L. A., Krishnan, M. S., and Olson, J. S. Rapid
Software Development through Team Collocation. IEEE TSE 28, 7
(2002), 671–683.

50. Treude, C., and Storey, M.-A. How Tagging Helps Bridge the Gap
Between Social and Technical Aspects in Software Development. Proc.
ICSE ’09.

51. Wolf, T., Schroter, A., Damian, D., and Nguyen, T. Predicting build
failures using social network analysis on developer communication.
Proc. ICSE ’09, 1–11.

52. Wu, A., DiMicco, J. M., and Millen, D. R. Detecting professional
versus personal closeness using an enterprise social network site. Proc.
CHI ’10.

53. Xiang, P. F., Ying, A. T. T., Cheng, P., Dang, Y. B., Ehrlich, K.,
Helander, M. E., Matchen, P. M., Empere, A., Tarr, P. L., Williams, C.,
and Yang, S. X. Ensemble: a recommendation tool for promoting
communication in software teams. Proc. RSSE ’08, 2:1–2:1.

	Introduction
	Related Work
	Dependence Discovery
	Dependence Awareness
	Communication Inhibitions

	Research Context
	Methodology
	Demographics
	Statistical Methodology
	Terminology

	Results
	Interdependence
	Shared Work Artifacts
	Information Sharing

	Discussion
	Implications
	Threats to Validity

	Future Work and Conclusions
	Acknowledgements
	REFERENCES

