1. Dynkin systems **Definition 1** A **Dynkin system** on a set Ω is a subset \mathcal{D} of the power set $\mathcal{P}(\Omega)$, with the following properties: (i) $$\Omega \in \mathcal{D}$$ (ii) $$A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{D}$$ (iii) $$A_n \in \mathcal{D}, A_n \subseteq A_{n+1}, n \ge 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{D}$$ **Definition 2** A σ -algebra on a set Ω is a subset \mathcal{F} of the power set $\mathcal{P}(\Omega)$ with the following properties: $$(i) \qquad \Omega \in \mathcal{F}$$ $$(ii) A \in \mathcal{F} \Rightarrow A^c \stackrel{\triangle}{=} \Omega \setminus A \in \mathcal{F}$$ (iii) $$A_n \in \mathcal{F}, n \ge 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$$ EXERCISE 1. Let \mathcal{F} be a σ -algebra on Ω . Show that $\emptyset \in \mathcal{F}$, that if $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$ and also $A \cap B \in \mathcal{F}$. Recall that $B \setminus A = B \cap A^c$ and conclude that \mathcal{F} is also a Dynkin system on Ω . EXERCISE 2. Let $(\mathcal{D}_i)_{i\in I}$ be an arbitrary family of Dynkin systems on Ω , with $I \neq \emptyset$. Show that $\mathcal{D} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{D}_i$ is also a Dynkin system on Ω . EXERCISE 3. Let $(\mathcal{F}_i)_{i\in I}$ be an arbitrary family of σ -algebras on Ω , with $I \neq \emptyset$. Show that $\mathcal{F} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{F}_i$ is also a σ -algebra on Ω . EXERCISE 4. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define: $$D(\mathcal{A}) \stackrel{\triangle}{=} \{ \mathcal{D} \text{ Dynkin system on } \Omega : \mathcal{A} \subseteq \mathcal{D} \}$$ Show that $\mathcal{P}(\Omega)$ is a Dynkin system on Ω , and that $D(\mathcal{A})$ is not empty. Define: $$\mathcal{D}(\mathcal{A}) \stackrel{\triangle}{=} \bigcap_{\mathcal{D} \in D(\mathcal{A})} \mathcal{D}$$ Show that $\mathcal{D}(\mathcal{A})$ is a Dynkin system on Ω such that $\mathcal{A} \subseteq \mathcal{D}(\mathcal{A})$, and that it is the smallest Dynkin system on Ω with such property, (i.e. if \mathcal{D} is a Dynkin system on Ω with $\mathcal{A} \subseteq \mathcal{D}$, then $\mathcal{D}(\mathcal{A}) \subseteq \mathcal{D}$). **Definition 3** Let $A \subseteq \mathcal{P}(\Omega)$. We call **Dynkin system generated** by A, the Dynkin system on Ω , denoted $\mathcal{D}(A)$, equal to the intersection of all Dynkin systems on Ω , which contain A. EXERCISE 5. Do exactly as before, but replacing Dynkin systems by σ -algebras. **Definition 4** Let $A \subseteq \mathcal{P}(\Omega)$. We call σ -algebra generated by A, the σ -algebra on Ω , denoted $\sigma(A)$, equal to the intersection of all σ -algebras on Ω , which contain A. **Definition 5** A subset A of the power set $P(\Omega)$ is called a π -system on Ω , if and only if it is closed under finite intersection, i.e. if it has the property: $$A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$$ EXERCISE 6. Let \mathcal{A} be a π -system on Ω . For all $A \in \mathcal{D}(\mathcal{A})$, we define: $$\Gamma(A) \stackrel{\triangle}{=} \{ B \in \mathcal{D}(A) : A \cap B \in \mathcal{D}(A) \}$$ - 1. If $A \in \mathcal{A}$, show that $\mathcal{A} \subseteq \Gamma(A)$ - 2. Show that for all $A \in \mathcal{D}(A)$, $\Gamma(A)$ is a Dynkin system on Ω . - 3. Show that if $A \in \mathcal{A}$, then $\mathcal{D}(\mathcal{A}) \subseteq \Gamma(A)$. - 4. Show that if $B \in \mathcal{D}(A)$, then $A \subseteq \Gamma(B)$. - 5. Show that for all $B \in \mathcal{D}(A)$, $\mathcal{D}(A) \subseteq \Gamma(B)$. - 6. Conclude that $\mathcal{D}(\mathcal{A})$ is also a π -system on Ω . EXERCISE 7. Let \mathcal{D} be a Dynkin system on Ω which is also a π -system. 1. Show that if $A, B \in \mathcal{D}$ then $A \cup B \in \mathcal{D}$. - 2. Let $A_n \in \mathcal{D}, n \geq 1$. Consider $B_n \stackrel{\triangle}{=} \bigcup_{i=1}^n A_i$. Show that $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$. - 3. Show that \mathcal{D} is a σ -algebra on Ω . EXERCISE 8. Let \mathcal{A} be a π -system on Ω . Explain why $\mathcal{D}(\mathcal{A})$ is a σ -algebra on Ω , and $\sigma(\mathcal{A})$ is a Dynkin system on Ω . Conclude that $\mathcal{D}(\mathcal{A}) = \sigma(\mathcal{A})$. Prove the theorem: Theorem 1 (Dynkin system) Let C be a collection of subsets of Ω which is closed under pairwise intersection. If D is a Dynkin system containing C then D also contains the σ -algebra $\sigma(C)$ generated by C.