1. Dynkin systems

Definition 1 A **Dynkin system** on a set Ω is a subset \mathcal{D} of the power set $\mathcal{P}(\Omega)$, with the following properties:

(i)
$$\Omega \in \mathcal{D}$$

(ii)
$$A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{D}$$

(iii)
$$A_n \in \mathcal{D}, A_n \subseteq A_{n+1}, n \ge 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{D}$$

Definition 2 A σ -algebra on a set Ω is a subset \mathcal{F} of the power set $\mathcal{P}(\Omega)$ with the following properties:

$$(i) \qquad \Omega \in \mathcal{F}$$

$$(ii) A \in \mathcal{F} \Rightarrow A^c \stackrel{\triangle}{=} \Omega \setminus A \in \mathcal{F}$$

(iii)
$$A_n \in \mathcal{F}, n \ge 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$$

EXERCISE 1. Let \mathcal{F} be a σ -algebra on Ω . Show that $\emptyset \in \mathcal{F}$, that if $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$ and also $A \cap B \in \mathcal{F}$. Recall that $B \setminus A = B \cap A^c$ and conclude that \mathcal{F} is also a Dynkin system on Ω .

EXERCISE 2. Let $(\mathcal{D}_i)_{i\in I}$ be an arbitrary family of Dynkin systems on Ω , with $I \neq \emptyset$. Show that $\mathcal{D} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{D}_i$ is also a Dynkin system on Ω .

EXERCISE 3. Let $(\mathcal{F}_i)_{i\in I}$ be an arbitrary family of σ -algebras on Ω , with $I \neq \emptyset$. Show that $\mathcal{F} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{F}_i$ is also a σ -algebra on Ω .

EXERCISE 4. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define:

$$D(\mathcal{A}) \stackrel{\triangle}{=} \{ \mathcal{D} \text{ Dynkin system on } \Omega : \mathcal{A} \subseteq \mathcal{D} \}$$

Show that $\mathcal{P}(\Omega)$ is a Dynkin system on Ω , and that $D(\mathcal{A})$ is not empty. Define:

$$\mathcal{D}(\mathcal{A}) \stackrel{\triangle}{=} \bigcap_{\mathcal{D} \in D(\mathcal{A})} \mathcal{D}$$

Show that $\mathcal{D}(\mathcal{A})$ is a Dynkin system on Ω such that $\mathcal{A} \subseteq \mathcal{D}(\mathcal{A})$, and that it is the smallest Dynkin system on Ω with such property, (i.e. if \mathcal{D} is a Dynkin system on Ω with $\mathcal{A} \subseteq \mathcal{D}$, then $\mathcal{D}(\mathcal{A}) \subseteq \mathcal{D}$).

Definition 3 Let $A \subseteq \mathcal{P}(\Omega)$. We call **Dynkin system generated** by A, the Dynkin system on Ω , denoted $\mathcal{D}(A)$, equal to the intersection of all Dynkin systems on Ω , which contain A.

EXERCISE 5. Do exactly as before, but replacing Dynkin systems by σ -algebras.

Definition 4 Let $A \subseteq \mathcal{P}(\Omega)$. We call σ -algebra generated by A, the σ -algebra on Ω , denoted $\sigma(A)$, equal to the intersection of all σ -algebras on Ω , which contain A.

Definition 5 A subset A of the power set $P(\Omega)$ is called a π -system on Ω , if and only if it is closed under finite intersection, i.e. if it has the property:

$$A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$$

EXERCISE 6. Let \mathcal{A} be a π -system on Ω . For all $A \in \mathcal{D}(\mathcal{A})$, we define:

$$\Gamma(A) \stackrel{\triangle}{=} \{ B \in \mathcal{D}(A) : A \cap B \in \mathcal{D}(A) \}$$

- 1. If $A \in \mathcal{A}$, show that $\mathcal{A} \subseteq \Gamma(A)$
- 2. Show that for all $A \in \mathcal{D}(A)$, $\Gamma(A)$ is a Dynkin system on Ω .
- 3. Show that if $A \in \mathcal{A}$, then $\mathcal{D}(\mathcal{A}) \subseteq \Gamma(A)$.
- 4. Show that if $B \in \mathcal{D}(A)$, then $A \subseteq \Gamma(B)$.
- 5. Show that for all $B \in \mathcal{D}(A)$, $\mathcal{D}(A) \subseteq \Gamma(B)$.
- 6. Conclude that $\mathcal{D}(\mathcal{A})$ is also a π -system on Ω .

EXERCISE 7. Let \mathcal{D} be a Dynkin system on Ω which is also a π -system.

1. Show that if $A, B \in \mathcal{D}$ then $A \cup B \in \mathcal{D}$.

- 2. Let $A_n \in \mathcal{D}, n \geq 1$. Consider $B_n \stackrel{\triangle}{=} \bigcup_{i=1}^n A_i$. Show that $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$.
- 3. Show that \mathcal{D} is a σ -algebra on Ω .

EXERCISE 8. Let \mathcal{A} be a π -system on Ω . Explain why $\mathcal{D}(\mathcal{A})$ is a σ -algebra on Ω , and $\sigma(\mathcal{A})$ is a Dynkin system on Ω . Conclude that $\mathcal{D}(\mathcal{A}) = \sigma(\mathcal{A})$. Prove the theorem:

Theorem 1 (Dynkin system) Let C be a collection of subsets of Ω which is closed under pairwise intersection. If D is a Dynkin system containing C then D also contains the σ -algebra $\sigma(C)$ generated by C.