
  

  

Abstract—In this paper, we present a new incremental face 
recognition (IFR) system based on new adaptive learning 
algorithms and networks.  We introduce new adaptive linear 
discriminant analysis (LDA) algorithm and related network for 
optimal facial feature extraction and use them to construct a 
new IFR system. Convergence proof of all algorithms is given 
using an appropriate cost function and discussing about its 
initial conditions. Application of the new IFR on feature 
extraction from facial image sequences is given in two steps: i) 
image preprocessing, which include normalization, histogram 
equalization, mean centering and background omission, ii) 
adaptive LDA feature estimation. In preprocessing stage, all 
input images are cropped and prepared for next step. Outputs 
of preprocessing stage are used as a sequence of inputs for IFR 
system. The proposed system was tested on YALE face 
database. Experimental results on this database demonstrated 
the effectiveness of the proposed system for adaptive estimation 
of feature space for online face recognition. 
 

I. INTRODUCTION 
hoosing an appropriate set of features is critical when 
designing pattern classification systems under the 
framework of supervised learning. Ideally, it is 

desirable to use only features having high separability power 
while ignoring the rest. There has been an increased interest 
on deploying feature selection in applications such as face 
and gesture recognition [1]. Most effort in the literature has 
been focused mainly on developing feature extraction 
methods [2-5]. Feature extraction for face representation is 
one of the central issues in face recognition (FR) systems. 
FR is a high dimensional pattern recognition problem. Even 
low resolution images generate huge dimensional feature 
space. Among various solutions to the problem [6], the most 
successful seems to be those appearance-based approaches, 
which generally operate directly on images or appearances 
of face objects and process the image as a two-dimensional 
pattern. The main trend in feature extraction has been 
representing the data in a lower dimensional space computed 
through a linear or non-linear transformation satisfying 
certain properties. Statistical techniques have been widely 
used for face recognition and in facial analysis to extract the 
abstract features of the face patterns. Principal component 
analysis (PCA) [2] and linear discriminant analysis (LDA) 
[3] are two main techniques used for dimensionality 
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reduction and feature extraction in the appearance-based 
approaches. 

Typical implementation of these two techniques assumes 
that a complete dataset of training samples is given in 
advance, and learning is carried out in one batch. However, 
when we conduct PCA/LDA learning over datasets in real-
world applications, we often confront difficult situations 
where a complete set of training samples is not given in 
advance. Even if a large amount of face images are available 
when constructing a FR system, all the variations that will 
happen in the future can not be considered in advance. Thus 
high recognition performance in practical situations can 
hardly be expected with only a static data set. A solution to 
this problem is to make face recognition systems learn 
continuously to adapt to incoming training samples.  This 
can be done by embedding an adaptive learning ability into a 
face recognition system. For this purpose, different adaptive 
versions of PCA and LDA have been introduced by 
researchers and some of them are used to construct adaptive 
FR systems [7-10]. 

In this paper, we introduce a new adaptive learning 
algorithm for estimation of LDA feature during incremental 
training process. Convergence proof of the proposed 
algorithm is given by introducing an appropriate cost 
function and discussing about its properties and initial 
conditions. Based on the proposed learning algorithms, we 
present the related neural networks and construct our new 
incremental face recognition (IFR) system. Proposed 
networks and IFR system use a sequence of data for training 
stage. Therefore the need to keep a large amount of sample 
data for training phase is reduced. Memory size and 
complexity reduction provided by the new adaptive feature 
extraction networks make them appropriate for different real 
time pattern recognition applications. Simulation results 
approved ability of the proposed IFR system for effective 
face classification during online training process.  

Organization of the paper is as follows: In the next 
section, we present our new adaptive algorithms for 
dimension reduction and feature extraction; furthermore, we 
prove convergence of the proposed algorithms by 
introducing the related cost function. In section III, we 
implement networks based on the introduced learning 
algorithms and then in section IV, we present our IFR 
system by cascading the 21−Σ network and adaptive PCA 
(APCA) network. Section V, is devoted to simulations and 
experimental results. Finally, concluding remarks are given 
in section VI. 
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II. NEW ADAPTIVE  LEARNING  ALGORITHM 
 

A. Linear Discriminant Analysis 

Let }{ N21 x,...,x,x , nℜ∈x  be N  samples belonged to L  
classes },...,,{ 21 Lωωω . Consider m andΣ denote the mean 
vector and covariance matrix of samples, respectively. LDA 
algorithm searches the directions for maximum 
discrimination of classes in addition to dimensionality 
reduction. To achieve this goal, within-class matrix is 
defined. A within-class scatter matrix is the scatter of the 
samples around their respective class means im  and     
denoted by wΣ . The mixture scatter matrix is the covariance 
of all samples regardless of class assignments, and 
represented byΣ . In LDA, the optimum linear transform is 
composed of )( np ≤ eigenvectors of ΣΣ 1−

w  corresponding 
to its p largest eigenvalues [11]. The computation of the 

eigenvector matrix LDAΦ of ΣΣ 1−
w  is equivalent to the 

solution of the generalized eigenvalue 
problem ΛΦΣΣΦ LDAwLDA = , where Λ  is the generalized 
eigenvalue matrix. Under assumption of positive definite 
matrix wΣ , if we consider: LDAw ΦΣΨ 21= , there exists a 

symmetric 21−
wΣ such that the problem can be reduced to 

following symmetric eigenvalue problem [11]: 
 

ΨΛΨΣΣΣ =−− 2121
ww  (1) 

 

B. New 21−Σ Algorithm 
 

Consider cost function )(WJ  with parameter W  

, ℜ→ℜ ×nnJ :  as follows: 
 

)(
3

)()(
3

WΣWW tracetraceJ −=  (2) 

 

Where W  is a positive definite, symmetric nn ×  matrix, 
Σ is the covariance matrix associated to incoming random 
vectors (it is assumed that sample vectors have zero mean 
vector) and trace(.) function computes sum of diagonal 
elements of its input matrix.  The cost function )(WJ  is a 
continuous function with respect to W . The first derivative 
of (2) is computed as follows [12]: 
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Where I is identity matrix. If W  is selected such 
that ΣWWΣ = , equating (3) to zero will result 
in 21−= ΣW . Therefore, 21−Σ is a critical point (matrix) of 
(2). The Hessian matrix of equation (2) with respect to W  is 
computed as follows [12]: 
 

WΣΣWIΣWΣWIW ⊗+⊗+⊗+⊗= )(2)(2))((JH  (4) 
 

Where ⊗ in (4) is denoted the kronecker product of two 
matrix. Substituting 21−= ΣW  in (4) will result a positive 
definite matrix (summation of some positive definite matrix 
is again a positive definite matrix and kronecker product of 
two positive definite matrix is positive definite, therefore (5) 
is a positive definite matrix).  
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Where H denotes the Hessian matrix. The above analysis 
implies that if W  is a symmetric matrix 
satisfying ΣWWΣ = , the cost function )(WJ  will have a 
minimum that occurs at 21−= ΣW  [12]. Using the gradient 
descent optimization method [13, 14] we obtained the 
following adaptive equation for the computation of 21−Σ :  
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where 1+kW  is the estimation of 21−Σ in k+1-th iteration, 

kη  is the step size where satisfies Ljung assumptions [15] 

and 1+kx  is the input vector at iteration k+1. The only 
constraint on (6) is its initial conditions, that is 0W  must be 
a symmetric and positive definite matrix 
satisfying

00 ΣWΣW = . It is quite easy to prove that 
if 00 ΣWΣW = , then we will obtain: 
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Therefore (6) is simplified to three more efficient forms as 
follows: 
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Equations (8-10) have less computational cost with 
respect to (6). Obviously, the expected values of kW  as 

∞→k  in (6) and (8-10) are equal to 21−Σ , provided that 
00 ΣWΣW = .  

 

C. Incremental Estimation of the Covariance Matrix 
Let W  be a symmetric positive definite matrix. Consider 

the cost function ℜ→ℜ ×nnJ :  defined as follows: 
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Considering 0)( =xE , the first derivative of the (11) with 
respect to W  is computed as follows [12]: 

 

ΣWWW −=∂∂ )())((JE  (12
) 

 

The only critical point (matrix) of the cost function (zeros 
of (12)) is equal to the covariance matrix. The Hessian 
matrix of the cost function in (11) with respect to W  is a 
positive definite matrix computed as follows [12]: 
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Therefore, ΣW =  is a minimum point (matrix) for the 
cost function defined in (11). Using gradient descent 
optimization theory, the following adaptive equation is used 
to estimate covariance matrix: 
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Where kΣ  is the estimation of covariance matrix at k-th 

iteration, kγ is learning rate and 1+kx  is the random input 
vector at iteration k+1. 
Sanger [16] introduced the following algorithm for adaptive 
computation of eigenvectors: 
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where kkk xTy =  and kT  is a np×  matrix that converges 
to a matrix T whose rows are the first p  eigenvectors of 
Σ . [.]LT  sets all entries of its matrix argument which are 

above the diagonal to zero and kγ is learning rate where 
meets Ljung assumptions [15]. 

The following equation is used for adaptive estimation of 
the mean vector [17-19]: 
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Where km  is the estimation of the mean vector at k-th 

iteration, 1+kx  is the random input vector at iteration k+1 
and kη  denotes the learning rate. 
 

D. New Incremental LDA Algorithm 
As discussed in the previous section, the LDA features 

are significant eigenvectors of ΣΣ 1
w
− . For adaptive 

computation of them, we combine two adaptive algorithms 
discussed in the previous sub-sections in cascade and show 
that this architecture asymptotically computes LDA features. 
Let i

km denote the estimated mean vector of class 

),...,2,1( Lii =  at k-th iteration and )( kxω  denote the class 

of kx . The training sequence }{ ky  for 21−Σ  algorithm is 

defined by )( k

kkk
xmxy ω−= . With the arrival of every 

training sample kx , i
km is updated according to its class 

using (16). It is easy to show that the correlation of the 
sequence }{ ky  is the within-class scatter matrix wΣ . 
Therefore, we have the following equation: 
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Suppose that the sequence }{ kz  is defined by, 

kkk mxz −= . Where km is the estimated mixture mean 

value in k-th iteration. We train the 21−Σ algorithm by the 
sequence }{ ky  and use kW  in (8-10) to create the new 
sequence }{ ku  as follows, kkk zWu = . The sequence 

}{ ku  is used to train the algorithm (15). As mentioned 
before, the matrix T  in the algorithm (15) will converges to 
the eigenvectors of the covariance matrix of its input, 
ordered by decreasing eigenvalues. Hence, is (15) is trained 
using the sequence }{ ku , the matrix T  will converge to the 

eigenvectors of  )( t
kkE uu  . It is quite easy to show:  
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Our aim is to estimate the eigenvectors of ΣΣ 1
w
− . Suppose 

Φ  and Λ  denote the eigenvector and eigenvalue matrices 
correspond to ΣΣ 1

w
− . Following equations are held [11]: 

 

ΦΛΣΦΣ =−1
w , ΨΛΨΣΣΣ =−− 2121
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where ΦΣΨ 21
w= . From (19), it is concluded that the 

eigenvector matrix of 2121 −−
ww ΣΣΣ is equal to Ψ . In the 

other words, if (15) is trained using the sequence }{ ku , 

according to (18, 19), the matrix tT  in the (15) converges to 
Ψ  and the following equation is held: 
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Where ΦΣΨ 21
w= . Therefore, if (8-10) are trained using 

the sequence }{ ky  and (15) is trained using the sequence 
}{ ku , by multiplying the outputs of the equations (8-10) 

and (15) as ∞→k , we will have: 
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Where Φ  is a matrix whose columns are eigenvectors of 
ΣΣ 1

w
− . 

 

III. NETWORK IMPLEMENTATION 

Consider a single layer network with the training input 

vector kx  and output vector ko , and let kkk xWo = , 
where kW  is a weight matrix updated by the sequential 
update rule presented in (8) ( we can construct the related 
networks for equations (9) and (10) in a same way). Let 

j
kx denote the j-th component of kx , ),( jikW  denote the 

ij-th element of kW , i
ko denote i-th component of ko  and 

i
kW  correspond to i-th row of kW , respectively.  We use 

adaptive learning algorithm described in (8), in order to train 
the weight matrix. With arrival of each training Gaussian 
sample, the weight matrix is updated in order to take into 
consideration the effect of the new training Gaussian data. 
The weight matrix update can be written as follow: 
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The element update equation for the weight matrix can be 
written as: 
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where ijδ  is the Kronecker’s delta function (when i=j then 

ijδ =1,  otherwise 0=ijδ ).  
Figure 1 shows a network implementation for updating 

),( jikW  (i,j=1,2,…,n) according to (22) and (23). In Figure 

1, o is a n×1 vector denoted output, i
kW  is i-th row of the 

estimated kW  matrix in k-th iteration, 1−z  denotes one unit 

delay and j
kx denote the j-th component of kx  . Network 

implementation of equations (9) and (10) are same as (8). 
For construction LDA network, we cascade two independent 
networks related to algorithms (8) ((9) or (10)) and (15). The 
first network is for the computation of the 21−Σ and the 
second network is based on the Sanger’s algorithm [16]. 
Figure 2 shows block diagram of cascade architecture. It is 
clear that, multiplication of weight matrix in the second 
layer of LDA network (Figure 2, ΦΣ 21

w ) and weight 

matrix of 21−Σ network ( 21−Σ ) will converges to Φ , 
whose columns  represent the LDA features. 
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Fig.  1  Network implementation of 21−Σ learning algorithm according to  
(8). 
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Fig.  2  Network implementation for LDA feature estimation 

 

IV. INCREMENTAL FACE RECOGNITION SYSTEM 
In this section, we introduce a new IFR system constructed 

based on the proposed neural networks. To prepare the face 
images, we reduced the background information and 
cropped all face images into size of 40×40. In addition, all 
face images, histogram equalized, normalized and mean 
centered (equation (16) can be used for adaptive 
computation of mean image). Then using an APCA 
algorithm we reduced dimensionality of all face images to 
60. Equation (14) can be used for adaptive estimation of 
covariance matrix, and then by projection of input images on 
the eigenvectors of covariance matrix, it is possible to 
reduce the image dimensionality. Preprocessing and 
dimension reduction are necessary before applying the face 
images into the proposed IFR system. Figure 3 shows the 
proposed IFR system constructed based on the introduced 
neural network. Every face images (converted to a 60 ×1 



  

vector) enters the  21−Σ network (Figure 1) and output of 
21−Σ network goes through an APCA network (Figure 2). 

Finally, output of 21−Σ network and APCA network are 
multiplied to make the LDA projection matrix. By 
projecting every input face image into this matrix, we can 
find LDA significant features and represent the image in a 
lower dimensional LDA feature space in addition to receive 
the high separability among different face images. It is 
important that inputs of this system are preprocessed 
(histogram equalized, mean centered), dimension reduced 
face vectors.  

 
 

 
Fig.  3 Block diagram of proposed IFR system. 
 

V. SIMULATION RESULTS 
We applied the proposed new IFR system on YALE face 

dataset for online face classification. Preprocessing that 
includes: background omission, histogram equalization, 
normalization and mean centering is done on all input faces. 
All input images vectorized and their size is reduced to 60×1 
using APCA algorithm. In experiment described in this 
section, we considered input images as a sequence of 
random data and simultaneously trained the proposed IFR 
system.  

 

 
 
Fig. 4  Sample images from 5 subjects in different posses and illuminations 

 
YALE database contains grayscale images of 15 subjects 

in GIF format. In this experiment, we chose 5 individual 
subjects and considered 64 images per each subject (total 
320 images) containing different illumination and different 
poses. Figure 4 shows some of selected subjects in different 
position and illumination. We trained the proposed IFR 

system using these images as a stream. In this experiment, 
we considered 5 subjects; therefore there exist 4 LDA 
features. Using the introduced IFR system, we estimated the 
three significant LDA features and by projection of face 
images onto them, we reduced the data dimension into three. 
Figure 5 shows convergence of three estimated LDA 
features used for dimension reduction during the training 
process. In figure 5 we computed the normalized error 
between estimated LDA feature and real LDA feature 
(computed using scatter matrices) in each iterations. It is 
clear from figure 5, as the number of training images 
increases, LDA features converges to their real values. At 
the end of experiment we get the normalized errors equal to 
0.121, 0.232 and 0.305 for the first, second and third LDA 
significant features. Figure 6 shows distribution of face 
images in the estimated three dimensional feature space 
during the training phase. Face images related to each 
subject verified by a different color and symbol. The top left 
figure shows distribution of face images after 80 iteration on 
the estimated LDA feature space and other three figures 
demonstrated the distribution of subject images in feature 
space after 120, 220 and 320 iteration, respectively. it is 
clear from figure 6 that face  images at first iterations are not 
clearly separable but gradually by adaptive training of IFR 
system, each subjects separate from others and at the end of 
process (after 320 iteration) all of the  subjects are linearly 
separable (although overlapping) in three dimensional 
estimated feature space. 
 

 
Fig. 5 Convergence of three significant LDA features, estimated using proposed 
IFR system. 
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VI. CONCLUDING REMARKS 
In this paper, a new IFR system based on adaptive LDA is 
introduced. The new IFR system was considered as a 
combination of a new adaptive 21−Σ network in cascade 



  

with APCA network. Convergence proof of the new 
adaptive learning algorithms and networks is given by 
introducing an appropriate cost function and discussing 
about its initial conditions. Simulation results on YALE face 
dataset demonstrated the ability of the proposed algorithm 
and network for adaptive optimal feature extraction. The 
new adaptive method can be used in many fields of online 
machine learning and pattern recognition applications such 
as face and gesture recognition and mobile robotics. 
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Fig. 6. Distribution of face images in the estimated three 
dimensional feature space, after 50, 120, 220 and 320. 
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