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Abstract—The subspace constrained mean shift (SCMS) algo-
rithm is an iterative method for finding an underlying manifold
associated with an intrinsically low dimensional data set embed-
ded in a high dimensional space. We investigate the application
of the SCMS algorithm to the problem of noisy source vector
quantization where the clean source needs to be estimated from
its noisy observation before quantizing with an optimal vector
quantizer. We demonstrate that an SCMS-based preprocessing
step can be effective for sources that have intrinsically low
dimensionality in situations where clean source samples are
unavailable and the system design relies only on noisy source
samples for training.

Index Terms—Noisy sources, vector quantization, subspace
constrained mean shift algorithm, principal curves and surfaces.

I. INTRODUCTION

Vector quantization is an important building block used in
lossy data compression. A vector quantizer encodes (maps)
vectors from a multidimensional input space into a finite subset
of the space, called the codebook. The design of quantizers
has been extensively studied. A classical result shows that an
optimal quantizer of a given codebook size has to satisfy the
Lloyd-Max conditions [1], [2]. This gives rise to the Lloyd-
Max algorithm, an iterative method for scalar quantizer design
that alternates between optimizing the the codebook and the
partition induced by the codebook. The generalized version
of the Lloyd-Max algorithm, known as the LBG algorithm, is
used to design (locally) optimal vector quantizers [3] [4]. The
classical problem of optimal vector quantization assumes that
the source is available noise free to the quantizer. However,
in some situations the source output may be corrupted by
noise due to, e.g., measurement errors [5]. In this case, only
a noisy version of the source is available for the quantization,
and the quantizer’s goal is then to minimize the expected
distortion between the clean (unobserved) source and the
output of the quantizer. Some practical examples where this
model may apply are pilot’s speech in the presence of aircraft
noise, digital signal processing at transmitter or receiver that
introduce quantization and round-off errors, satellite images
affected by measurement error, or speech signal for a mobile
phone in a noisy environment.

The theory of noisy source coding was first investigated
by Dobrushin and Tsybakov [6] who analyzed the optimal
rate-distortion performance. The structure of the optimal noisy
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source quantizer under the mean square distortion was studied
by Fine [7], Sakrison [8], and Wolf and Ziv [9]. It has
been shown that for the mean square distortion an optimal
noisy source quantization system can be decomposed into
an optimum estimator followed by an optimum source coder
operating on the estimator output [9]. Some properties of
an optimum noisy source quantizer, and its relations with
the optimal estimator for the general problem, are derived
by Ayanoglu [10]. By appropriately modifying the given
distortion measure, Ephraim and Gray [11] showed the noisy
source quantization problem becomes a standard quantization
problem for the noisy source using the modified distortion
measure. The problem of empirical vector quantizer design
for noisy sources has been investigated by Linder, Lugosi,
and Zeger [12].

The classical results imply that in order to minimize the
mean square distortion with respect to the clean data, one
needs to quantize the conditional expectation of the clean
data given the noisy data. Thus, we need to find a good
approximation, in the minimum mean square error (MMSE)
sense, of the clean data from the observed noisy data. In
practical situations where the statistics of the data and noise
are unknown, the clean data can be estimated by applying
nonparametric techniques, such as kernel regression [13],
based on training data. However, in practice training data from
the clean source may not be available and the designer of the
quantizer only has access to the noisy observations.

In this paper, we consider sources that, with high probabil-
ity, take values in a lower dimensional manifold. In addition,
we assume that the noisy source quantizer is to be designed
on the basis of noisy observations only. To obtain an estimate
of the clean data in this situation, we use a non-parametric,
iterative method, recently introduced by Ozertem and Erdog-
mos [14] for estimating principal curves and surfaces, called
the subspace constrained mean shift (SCMS) algorithm.

Section II gives a brief review of the noisy source vector
quantization problem. In Section III, we review the SCMS
algorithm and state a convergence result. Section IV is devoted
to simulation results which demonstrate the effectiveness of
the SCMS approach to noisy source quantization for some
special source distributions.

II. NOISY SOURCE VECTOR QUANTIZATION

A fixed rate N -point vector quantizer Q : Rk → C is a
mapping from the k-dimensional Euclidean space Rk into a



finite set C ⊂ Rk of cardinality N , called the codebook [15].
The elements of C are called the codevectors. The performance
of a fixed rate quantizer in approximating the input vector is
measured using a nonnegative function d : Rk ×Rk → [0,∞)
called the distortion measure. For a k-dimensional random
vector X the overall distortion D of a quantizer Q is the
expected value of the reconstruction error D = Ed(X, Q(X)).
The most common and tractable distortion measure is the mean
square error (MSE) distortion, i.e., D = E∥X − Q(X)∥2.
Let X and Y be k-dimensional random vectors with X
representing the clean source and Y the noisy version of
X. The problem of noisy source vector quantization is to
approximate the clean data X with the lowest distortion based
on quantizing its noisy version Y at a given fixed rate.
Formally, our encoder is a member of the set of all N -level
quantizers QN on Rk. Assuming that E∥X∥2 is finite, the
noisy source quantization problem is to find Q∗ ∈ QN with
minimum distortion

E∥X−Q∗(Y)∥2 = min
Q∈QN

E∥X−Q(Y)∥2. (1)

It has been shown that the structure of an optimal N -level
quantizer Q∗ can be obtained via a useful decomposition [8]
[9]. The following summarizes these results.

Proposition 1 ( [8], [9]). Let m(y) = E[X|Y = y]. Then
an optimal quantizer Q∗ is given by Q∗(y) = Q̂(m(y)),
where Q̂ ∈ QN is an MSE optimum N -level quantizer for
m(Y), i.e., Q̂ = argminQ∈QN E∥m(Y) − Q(m(Y))∥2.
Furthermore, minQ∈QN

E∥X−Q(Y)∥2 = E∥X−m(Y)∥2+
minQ∈QN

E∥m(Y)−Q(m(Y))∥2.

Thus, in order to minimize the distortion, one needs to find
a good approximation of the clean data X based on the
observed noisy data Y. In practical situations where the
statistics of the data and noise are unknown, the clean data
can be estimated using nonparametric techniques, such as
kernel regression, based on training data. If a set of training
data {xi,yi}i=1...,n is available in advance, the conditional
expectation m(y) = E[X|Y = y] of X given Y can be
estimated using the kernel regression method as

m̂(y) =

∑n
i=1 xiKh(y − yi)∑n
i=1 Kh(y − yi)

, (2)

where Kh : Rk → [0,∞) is an integrable kernel function
with bandwidth h. In this paper we assume that the designer
of the quantizer only has access to the noisy observations and
training data from the clean source are not available.

III. SUBSPACE CONSTRAINED MEAN SHIFT (SCMS)
ALGORITHM

Principal curves and surfaces are the nonlinear general-
izations of principal components. Assuming that a high di-
mensional observed data set is located on a low dimensional
manifold, principal curves and surfaces have been proposed to
estimate the structure of that low dimensional manifold [16]
[17] [18]. An interesting recent definition of a d-dimensional
principal surface in RD (d < D) is given by Ozertem and
Erogmus [14]. According to this definition, a given point

is in a d-dimensional principal manifold associated with a
probability distribution having a probability density function
(pdf) if and only if the gradient of the pdf is orthogonal to at
least D−d eigenvectors of the Hessian of the pdf at that point,
and the eigenvalues corresponding to these D − d orthogonal
eigenvectors are negative. It was shown in [14] that points in
a d-dimensional principal manifold are local maxima of the
pdf in a local orthogonal D − d-dimensional subspace.

An iterative algorithm, called the SCMS algorithm, was
proposed to find points that satisfy this definition. The SCMS
algorithm can be considered as a generalization of the mean
shift (MS) algorithm [19] [20] [21] to estimate higher order
principal curves and surfaces (d ≥ 1). The MS algorithm is a
non-parametric, iterative technique for locating modes of a pdf
obtained via a kernel density estimate (see, e.g., [22]) from a
given data set. The collection of these modes can be viewed as
a zero-dimensional principal manifold. The MS algorithm is
initialized to one of the observed data points, then it iteratively
relocates this point to a weighted average of the neighboring
data points to find stationary points of the estimated pdf [21].

Similar to the MS algorithm, the SCMS algorithm starts
from a data set sampled from the probability distribution. The
algorithm first forms a kernel density estimate f̂ based on
the data, then in each iteration it evaluates the MS vector for
every data point. Then each MS vector is projected to the local
subspace spanned by the D−d eigenvectors corresponding to
the D−d largest eigenvalues of the estimated local covariance
matrix at that point. The estimated local covariance matrix at
x is defined by [14]

Σ̂−1(x) = −H(x)f̂(x)−1 + g(x)g(x)tf̂(x)−2,

where f̂(x) is the pdf estimate at x, and H(x) and g(x) are
the Hessian and gradient of the pdf estimate at x, respectively.
When the underlying pdf is multivariate Gaussian, the authors
in [14] showed that projection of the MS vector to the D− d
largest eigenvectors of the local covariance matrix leads to the
principal components.

We will slightly modify this projection step and instead we
project the MS vector to the D−d eigenvectors corresponding
to the D−d smallest eigenvalues of the Hessian matrix of the
estimated pdf. This change is motivated by the observation
that a point x is located on a d-dimensional ridge of the
pdf if the gradient of the pdf is orthogonal to the D − d
smallest eigenvectors of the Hessian matrix of the pdf at
x and the corresponding eigenvalues are negative [23]. The
projection and MS steps are iterated until the norm of the
difference between two consecutive projections becomes less
than a predefined threshold.

The following result shows that this is a valid stopping
criterion for the algorithm (such a result is missing in [14]).
The proof of the theorem is omitted due to space constraints.

Theorem 1. Let {yj}j=1,2,... be the sequence generated
by the SCMS algorithm. Assume that the kernel K used
for the kernel density estimate has a differentiable, convex,
and monotonically decreasing profile k : [0,∞) → [0,∞)
(K(x) ∝ k(∥x∥2) ). Let {f̂h,k(x)} denote the estimated pdf
at point x with profile k and bandwidth h. Then the sequence



{f̂h,k(yj)}j=1,2,... is monotonically increasing and convergent
and limj→∞ ∥yj+1 − yj∥ = 0.

In the next section we will apply the SCMS algorithm as
an estimate for the conditional expectation of the clean data
given the noisy data. A heuristic explanation as to why this
should work is as follows: If the clean source has a distribution
that is supported on a lower-dimensional (smooth) manifold
and the noisy source is obtained by adding independent noise
having low variance, one expects that samples from the noisy
source will be concentrated around the manifold. The estimate
of the clean source sample based on a noisy observation is then
obtained by running the SCMS algorithm, initialized at the
noisy observation, until convergence. The output, which will
lie on or very near to the manifold, will serve as the estimate of
the clean source sample. Note that the SCMS algorithm only
uses the noisy data and has no need for observations from the
clean source, as opposed to the (theoretically optimal) estimate
obtained from the kernel regression method (2).

IV. SIMULATION RESULTS

Since very little is known theoretically about the perfor-
mance of the SCMS algorithm, we will use numerical exam-
ples to assess how well the SCMS algorithm approximates the
clean data for the purposes of quantization. We compare the
performance of the obtained system with that of a system using
the kernel regression method trained on a data set consisting
of pairs of clean and noisy data samples. In particular, in two
different scenarios we compare the mean square distortion that
results from quantizing the output of the SCMS algorithm
with the near-optimal distortion resulting from quantizing
the estimated clean data using the kernel regression method.
We note that the kernel regression method is asymptotically
optimal in the limit of large training set sizes.
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Fig. 1: Quantization of a noisy line. The blue points represent the
output of the SCMS algorithm applied to the points from the noisy
line and the red points are the codewords generated by the LBG
vector quantization algorithm.

A. Quantization of a noisy line

We examine the performance of the SCMS algorithm as a
preprocessing step for noisy vector quantization on a straight
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Fig. 2: Quantization of a noisy circle. The blue points represent the
output of the SCMS algorithm applied to the points from the noisy
circle and the red points are the codewords generated by the LBG
vector quantization algorithm.

line in R2. In the design stage, we uniformly select 500
samples from the straight line of length 4 and perturb them by
additive, independent zero-mean bivariate Gaussian noise with
per component variance 0.4. These points are fed the SCMS
algorithm and the resulting 500 output points are then used
as a training set to design a vector quantizer using the LBG
algorithm. For testing, we select another 500 samples from the
straight line, perturb them by noise, the noisy data is fed to the
SCMS algorithm, and the output of the algorithm is quantized
using the designed vector quantizer. We vary the number of
codewords and run the simulations for quantizers of codebook
size 1, 2, 4, 8, 16, and 32. Fig. 1 shows the output points of
the SCMS algorithm and the computed codewords for each
choice of the codebook size. The blue points in Fig. 1 represent
the output points of the SCMS algorithm and the red points
represent the codewords computed by the LBG algorithm.

To compare the performance of the SCMS approach with
the theoretical optimum, we generate 500 pairs of clean and
noisy data point to train a kernel regression function in order
to estimate the conditional expectation of the clean data given
the noisy version. Another 500 noisy data points are then
generated and fed to the kernel regression method and the
output is used to train a vector quantizer with the LBG
method. In the testing phase, another 500 noisy data points
are generated, fed to the kernel regression estimator, and the
output is quantized using the vector quantizer obtained in the
training phase. Table I compares the mean square distortions
resulting from the quantization of the estimated clean data
using the kernel regression method and the output of the
SCMS algorithm, respectively, as a function of the number of
the codevectors (ranging from 2 to 128). Although the SCMS
algorithm does not have access to the clean data, the simulation
results indicate that the resulting mean square distortion is
close to that achieved by the near-optimal scheme where the
clean data estimates are obtained using the kernel regression
method.



TABLE I: Quantization of a noisy line. The mean square distortion resulting from quantization of the output of the SCMS algorithm and
the (near) optimal mean square distortion for different number of codebook sizes ranging from 2 to 128 for the noisy line.

Number of the codevectors 2 4 8 16 32 64 128
Optimal distortion 1 0.4986 0.2507 0.1287 0.0639 0.0330 0.0172 0.0081
SCMS algorithm 0.5001 0.2683 0.1477 0.0731 0.0415 0.0271 0.0135

TABLE II: Quantization of a noisy circle. The mean square distortion resulting from quantization of the output of the SCMS algorithm
and the (near) optimal mean square distortion for different number of codebook sizes ranging from 2 to 128 for the noisy circle.

Number of the codevectors 2 4 8 16 32 64 128
Optimal distortion 1 0.7271 0.3858 0.2016 0.1064 0.0595 0.0367 0.0294
SCMS algorithm 0.7274 0.3945 0.2120 0.1220 0.071 0.0498 0.0379

B. Quantization of a noisy circle

The simulation setup is similar to the previous one, but now
we consider the uniform distribution on the unit circle as the
clean source and the additive bivariate zero-mean Gaussian
noise has per sample variance 0.3. For training and testing
two sets of 1024 noisy data points are generated for the SCMS
approach, and 1024 pairs of clean and noisy data points are
generated for the kernel regression approach. Fig. 2 shows the
output of the SCMS algorithm and the computed codewords
for simulations with quantizer codebook sizes 1, 2, 4, 8, 16,
and 32. Table II compares the mean square distortions for
quantization of the SCMS estimates and that of the kernel
regression method, respectively, as the number of the codevec-
tors ranges from 2 to 128. The measurements indicate that the
mean square distortion achieved by quantization of the output
of the SCMS algorithm is close to the near-optimum mean
square distortion obtained by quantization of the estimates
using the kernel regression method.

V. CONCLUSION

The simulation results demonstrate the effectiveness of the
SCMS approach to noisy source quantization for the special
source distributions we have investigated. In general, one
can expect similarly good results if the source distribution is
supported on a lower dimensional manifold that the SCMS
algorithm can effectively reconstruct from noisy data. A the-
oretical analysis and performance guarantees for the SCMS
approach to noisy source quantization are the subject of future
research.
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