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Abstract

The mean shift algorithm is a non-parametric and iterative technique that has been used
for finding modes of an estimated probability density function. It has been successfully
employed in many applications in specific areas of machine vision, pattern recognition,
and image processing. Although the mean shift algorithm has been used in many ap-
plications, a rigorous proof of its convergence is still missing in the literature. In this
paper we address the convergence of the mean shift algorithm in the one-dimensional
space and prove that the sequence generated by the mean shift algorithm is a monotone
and convergent sequence.

Keywords: Mean Shift Algorithm, Mode Estimate Sequence, Monotone Sequence,
Kernel Function, Convex function, Convergence.

1. Introduction

The mean shift algorithm is a simple, non-parametric, iterative method introduced
by Fukunaga and Hostetler [1] for finding modes of an estimated probability density
function (pdf). Modes of an estimated pdf play an important role in many pattern recog-
nition applications such as image segmentation [2], classification[3], feature extraction
[4], and object tracking [5]. The mean shift algorithm was generalized by Cheng [6]
and became popular in the machine vision community when its potential uses for fea-
ture space analysis were studied [7]. In recent years, the mean shift algorithm has
been successfully used in many applications ranging from image segmentation [8] to
object tracking [9][10], edge detection [11][12], information fusion [13], and vector
quantization [14].

The mean shift algorithm shifts each data point to the weighted average of the data
set and tries to find stationary points of an estimated pdf. It starts from one of the data
points and iteratively improves the mode estimate. In contrast to the k-mean clustering
approach, the mean shift algorithm does not require any prior knowledge of the number
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of clusters and there is no assumption of the shape of the clusters. It has been claimed
that the mean shift procedure generates a convergent sequence [7]. But a crucial step in
the proof given in [7] for the convergence of the mode estimate sequence is not correct.
Authors in [7] claimed that the generated sequence is a Cauchy sequence, which is not
true in general. In another work [15], it was shown that the mean shift algorithm is an
expectation maximization (EM) algorithm and hence the generated sequence converges
to the modes of the estimated pdf. However, the EM algorithm may not converge (e.g.,
a counterexample is given in [16]), in which case, the convergence of the mean shift
algorithm does not follow. In another work, Li et al. assumed that the number of the
stationary points of the estimated pdf inside the convex hull of the data set is finite
and using this assumption they proved the convergence of the iterative algorithm[17].
However, the authors in [17] could not justify their assumption and the finiteness of
the stationary points of the estimated pdf with the widely used kernels (e.g. Gaussian
kernel) has not been shown. For the one-dimensional case, Shieh et al. [18] tried to
find sufficient conditions to avoid premature convergence of the sequence, but they did
not show that the sequence converges to a mode of the estimated pdf.

In this paper, we prove the convergence of the mean shift algorithm in the one
dimension with a convex and non-increasing kernel. In contrast to [17] we do not
put any constraint on the number of the stationary points of the estimated pdf. The
organization of the paper is as follows: in the next section we give a brief review of
the mean shift algorithm. The convergence proof for the one-dimensional mean shift
algorithm is given in Section 3. Section 4 is devoted to the simulations to confirm
the theoretical results given in Section 3. Finally, the concluding remarks are given in
Section 5.

2. Mean shift algorithm

Let xi ∈ R, i = 1, . . . , n1 be a sequence of n independent and identically dis-
tributed (iid) random variables. Let K denote a radially symmetric kernel function
defined by K(x) = ck,Dk(x2), where ck,D is a normalization factor and k : [0,∞) →
[0,∞) is the differentiable profile of the kernel. The kernel function K is a non-
negative, real valued and integrable function satisfying

∫
R K(x)dx = 1. The profile of

the kernel is assumed to be a non-negative, non-increasing and piecewise continuous
function that satisfies

∫
R k(x2)dx < ∞. Two widely used profile functions are given

by kE = 1 − x if 0 ≤ x ≤ 1, otherwise kE = 0 and kN (x) = exp(−1/2x). The
estimated pdf using the profile k and the bandwidth h is given by [20]

f̂h,k(x) =
ck,D
nh

n∑
i=1

k
(
(
x− xi

h
)2
)
. (1)

1Since the main contribution of this paper is showing the convergence of the mean shift algorithm in
the one-dimensional case, we assumed that the data points are sampled uniformly from an unknown one-
dimensional pdf.
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Taking the derivative of (1) and equating it to zero reveals that if x∗ is a mode of the
estimated pdf, then it satisfies the following equality

x∗ =

∑n
i=1 xig

(
(x

∗−xi

h )2
)∑n

i=1 g
(
(x

∗−xi

h )2
) , (2)

where g(x) = −k′(x). Hence, the modes of the estimated pdf are fixed points of (2).
The mean shift at point x is defined by

mh,g(x) =

∑n
i=1 xig

(
(x−xi

h )2
)∑n

i=1 g
(
(x−xi

h )2
) − x, (3)

where the scalar mh,g(x) is called mean shift scalar [7]. The mean shift algorithm
generates the mode estimate sequence {yj}j=1,2,... in order to estimate x∗ in (2), where
x∗ is a mode of the estimated pdf. The mean shift algorithm starts from one of the data
points (y1 is initialized to one of the data points) and iteratively update this point to
find modes of the estimated pdf. The mode estimate in (j + 1)th iteration is updated
by yj+1 = yj +mh,g(yj), where mh,g(yj) is computed using (3). The mode update in
(j + 1)th iteration can be simplified to

yj+1 = yj +mh,g(yj)

= yj +

∑n
i=1 xig

(
(
yj−xi

h )2
)∑n

i=1 g
(
(
yj−xi

h )2
) − yj

=

∑n
i=1 xig((

yi−xi

h )2)∑n
i=1 g((

yi−xi

h )2)
. (4)

The estimated mode update is iterated until the Euclidean distance between two con-
secutive mode estimates becomes less than some predefined epsilon.
The mean shift algorithm is an instance of the gradient ascent algorithm with an adap-
tive step size [21], and in each iteration it tries to improve the previous estimation. The
algorithm is applied to all data points, and it is expected to converge to the stationary
points of the estimated pdf. Finally, the stationary points are pruned by retaining only
the local maxima of the estimated pdf [7]. It can be shown that the Euclidean distance
between two consecutive mode estimates converges to zero as the number of iteration
goes to infinity, i.e., limj→∞(yj+1−yj)

2 = 0 [7][17]. However, this property does not
imply the convergence of the mode estimate sequence {yj}, and the convergence of the
sequence needs to be proved separately. In the next section we prove the convergence
of the mode estimate sequence {yj} in the one-dimensional case.

3. Convergence of the mean shift algorithm in one dimension

We prove the following theorem

Theorem 1. Let X = {x1, x2, . . . , xn} denote the input data. Let f̂h,k(x) denote the
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estimated pdf using a kernel K with a convex, differentiable, and strictly decreasing
profile k and the bandwidth h. Suppose that g(x) = −k′(x) is a strictly decreas-
ing function, then the mode estimate sequence generated by the mean shift algorithm
converges.

Proof. Since the mode estimate sequence is bounded, it suffices to show that it is a
monotone sequence. We prove if for all xi ∈ X , f̂

′

h,k(xi) ̸= 0 and f̂
′

h,k(x) is a
continuous function, then there exits N such that for all j > N , the mode estimate
sequence {yj} will be a monotone sequence. If for some xi ∈ X , f̂

′

h,k(xi) = 0,
then either the mode estimate sequence converges to those xi’s or there exists a large
enough N such that for all j > N the mode estimate sequence {yj} will be a monotone
sequence. The following inequality was proved in [7]

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck
nh2

∥yj+1 − yj∥2
n∑

i=1

g
(
∥yj − xi

h
∥2
)
,

where g(x) = −k′(x) and ck is the normalization factor. Let M(j) = min{g(∥yj−xi

h ∥2), i =
1, . . . , n}. We have M(j) ≥ g( d

2

h2 ), where d denotes the supremum of the pairwise
distances between elements of X , i.e., d = sup{|xi − xj |, i, j = 1, . . . , n, i ̸= j}. Let
φ = g( d

2

h2 ). Hence, the above inequality can be simplified as follows

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck
nh2

(yj+1 − yj)
2

n∑
i=1

g
(
(
yj − xi

h
)2
)

≥ ck
nh2

(yj+1 − yj)
2nM(j)

≥ ck
h2

(yj+1 − yj)
2φ.

Therefore, we have(
f̂h,k(yj+1)− f̂h,k(yj)

) h2

φck
≥ (yj+1 − yj)

2 ≥ 0.

Since f̂h,k(yj+1) is a convergent sequence [7], the limit of the left side of the above
inequality as j → ∞ is zero. Therefore, the following limit relation holds

lim
j→∞

|yj+1 − yj | = 0. (5)

The following equality also was proved in [7]

lim
j→∞

f̂
′

h,k(yj) = 0. (6)

Now we consider the case that f̂
′

h,k(xi) ̸= 0,∀xi ∈ X . For all xi ∈ X , f̂
′

h,k(xi) ̸= 0,
as a result of which there exists ϵi > 0 such that f̂

′

K(x) is nonzero in the closed interval
centered at xi with radius ϵi, denoted by I[xi, ϵi], i = 1, . . . , n. Let ϵ = min{ϵi, i =
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1, . . . , n}. Since f̂
′

h,k(x) is continuous, it achieves its minimum over the compact set∪n
i=1 I[xi, ϵ], so let c = minx∈

∪n
i=1 I[xi,ϵ] f̂

′

h,k(x). By assumption, it is clear that
c > 0. From (5) the sequence {|yj+1 − yj |}j=1,2,... converges to zero. Therefore, for
every ϵ/2 > 0, there exists a constant N1(ϵ/2) > 0 such that for all j greater than
N1(ϵ/2), the difference between two consecutive mode estimates becomes less than
ϵ/2, i.e., |yj+1 − yj | < ϵ/2,∀j > N1(ϵ/2)

2. Furthermore, there exists N2 such that
for all j greater than N2 the estimated derivative function along the mode estimates
becomes less than c, i.e., f̂

′

h,k(yj) < c,∀j > N2. Let N = max{N1(ϵ/2), N2}. Then,
we have

∀j > N : yj ̸∈
n∪

i=1

I[xi, ϵ], yj − ϵ/2 < yj+1 < yj + ϵ/2. (7)

Let j > N and, without loss of generality, assume yj+1 ≥ yj . We show that yj+2 ≥
yj+1, and hence for j > N the mode estimate sequence will be a non-decreasing
sequence. We define sets D1, D2, and D3 as follows

D1 = {xi : yj > xi}, D2 = {xi : yj+1 > xi > yj}, D3 = {xi : xi > yj+1}.

Since g is a strictly decreasing function, then the following inequality holds∑
xi∈D3

(xi − yj+1)g
(
|xi − yj |2

)
≤

∑
xi∈D3

(xi − yj+1)g
(
|xi − yj+1|2

)
. (8)

Using (4), we obtain∑
xi∈D3

(xi − yj+1)g
(
|xi − yj |2

)
=

∑
xi∈D1∪D2

(yj+1 − xi)g
(
|xi − yj |2

)
. (9)

Replacing the left side of (8) with the right side of (9), we get∑
xi∈D1∪D2

(yj+1 − xi)g
(
|xi − yj |2

)
≤

∑
xi∈D3

(xi − yj+1)g
(
|xi − yj+1|2

)
. (10)

Adding
∑

xi∈D1∪D2
(xi − yj+1)g(|xi − yj+1|2) to both sides of equation (10), gives∑

xi∈D1∪D2

(yj+1 − xi)g(|xi − yj |2) +
∑

xi∈D1∪D2

(xi − yj+1)g(|xi − yj+1|2) (11)

≤
∑

xi∈D3

(xi − yj+1)g(|xi − yj+1|2) +
∑

x∈D1∪D2

(xi − yj+1)g(|xi − yj+1|2).

2The upper bound N1(ϵ/2) for |yj+1 − yj | comes from the the convergence of the sequence {|yj+1 −
yj |}j=1,2,... to zero. By definition, if a sequence {aj}j=1,2,... converges to zero, then for every ϵ > 0
there exist a constant N(ϵ) such that |aj | < ϵ for all j > N(ϵ).
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From the properties given in (5) and (6), we observe that D2 is an empty set. Therefore,
the left side of the above inequality can be simplified to∑

xi∈D1∪D2

(yj+1 − xi)g(|xi − yj |2) +
∑

xi∈D1∪D2

(xi − yj+1)(|xi − yj+1|2)

=
∑

xi∈D1

(yj+1 − xi)
(
g(|xi − yj |2)− g(|xi − yj+1|2)

)
≥ 0.

Hence, the right side of (11) is nonnegative and we have

0 ≤
∑

xi∈D3∪D2∪D1

(xi − yj+1)g(|xi − yj+1|2).

This is equivalent to yj+2 ≥ yj+1. Therefore, for all j > N if yj+1 ≥ yj , then
yj+2 > yj+1. By induction for all j > N the sequence {yj} will be monotonically
increasing and hence convergent.
For the case that yj+1 ≤ yj , we define sets D1, D2, and D3 as follows

D1 = {xi|xi < yj+1}, D2 = {xi|yj+1 < xi < yj}, D3 = {xi|xi > yj}.

Then similar to the previous case, it is straightforward to show that yj+2 ≤ yj+1.
Therefore, the mode estimate sequence {yj} for all j > N becomes a monotonically
decreasing and convergent sequence.

It remains to prove the monotonicity of the mode estimate sequence for the case
that for some xi ∈ X , f̂

′

h,k(xi) = 0. Let f̂
′

h,k(x
∗
i ) = 0 for some x∗

i ∈ X . If there
exists N , such that for all j > N , there is not any x∗

i between yj and yj+1, then the
previous results can be applied to show that the mode estimate sequence is a monotone
sequence. Otherwise, we assume that such N does not exist. We need the following
lemma

Lemma 1. Consider a fixed point iteration defined by yj+1 = m(yj), where m is
a differentiable function. Let x∗ denote a solution of the fixed point problem, i.e.,
x∗ = m(x∗) and let ej denote the distance between the fixed point x∗ and yj , i.e.,
ej = |x∗ − yj |, respectively. Then there exists δ such that ej+1 = ej |m

′
(δ)| and

yj < δ < x∗ if yj < x∗ and x∗ < δ < yj if x∗ < yj .

Proof. Using the mean value theorem, there exists δ such that yj < δ < x∗ (without
loss of generality assume yj < x∗) and m(x∗)−m(yj) = (x∗ − yj)m

′(δ). Then, we
have

ej+1 = |x∗ − yj+1| = |m(x∗)−m(yj)|
= |(x∗ − yj)m

′(δ)|
= |(x∗ − yj)||m′(δ)|
= ej |m′(δ)|.
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That shows ej+1 = ej |m′(δ)|. �

Using lemma 1, there are three possibilities for m′(x∗) that we check separately:

1. If |m′(x∗)| < 1, then there exists an interval I = [x∗ − ϵ, x∗ + ϵ] such that
for all x ∈ I , |m′(x)| < 1. Hence, if the sequence {yj} falls in I , then it
converges to x∗ using lemma (1)(since ej becomes a decreasing sequence and
finally converges to zero). If the sequence {yj} never falls in this interval, then
there exists N large enough such that for all j > N , x∗ is not between yj and
yj+1, which contradicts the assumption we have made about non-existence of
such N .

2. If |m′(x∗)| > 1, then there is a closed interval I = [x∗ − ϵ, x∗ + ϵ] such that
for all x ∈ I , we have |m′(x)| > 1. For some j, let the sequence yj fall in
I . Otherwise, we can find large enough N such that for all j > N there is no
x∗
i between yj and yj+1, which contradicts our assumption for non-existence of

such N . We choose j large enough such that |yj+1 − yj | < ϵ/2. There are four
possibilities as follows

(a) x∗ − ϵ ≤ yj < x∗ − ϵ
2 ,

(b) x∗ − ϵ
2 ≤ yj < x∗,

(c) x∗ ≤ yj < x∗ + ϵ
2 ,

(d) x∗ + ϵ
2 ≤ yj < x∗ + ϵ.

Let x∗ − ϵ ≤ yj < x∗ − ϵ
2 . It is clear that in this case ek+1 > ek, since for

all x ∈ I , m′(x) > 1. It means that the Euclidean distance between yj+1 and
x∗ is greater than the Euclidean distance between yj and x∗ (yj+1 is also on the
left side of the x∗ because it is assumed that |yj+1 − yj | < ϵ/2). Therefore, in
this case the sequence yj can never fall in the interval I ′ = [x∗ − ϵ

2 , x
∗ + ϵ

2 ].
Hence, for all j > N , there is no x∗

i between yj and yj+1, which contradicts our
assumption about the non-existence of such N .(Case 4 can be treated exactly in
a same).

Let x∗ − ϵ
2 ≤ yj < x∗. Also for all x ∈ I , m′(x) > 1. It is obvious that the

Euclidean distance between yj+1 and x∗ is greater than the Euclidean distance
between yj and x∗ (yj+1 can be in the left or right side of the x∗). In this case,
after some finite iterations (Let us say M iterations), the cases 1 or 4 will happen
and then it can be concluded for all j > N + M , the sequence yj ̸∈ I ′ =

[x∗ − ϵ
2 , x

∗ + ϵ
2 ], which contradicts our assumption about non-existence of such

N . The third case can be treated similar to the second case.

3. If |m′(x∗)| = 1, then there are three possibilities as follows:

(a) ∃I around x∗ such that ∀x ∈ I , m′(x) > 1. This case was discussed
before.
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(b) ∃I around x∗ such that ∀x ∈ I , m′(x) < 1. This case was discussed
before.

(c) ∃I around x∗ such that ∀x ∈ I and x < x∗, m′(x) < 1. Also, ∀x ∈ I

and x > x∗, m′(x) > 1. In this case, the mode estimate sequence either
converges to x∗ or there is a closed interval I ′ around x∗ such that yj never
falls in that interval. Convergence of the later case is guaranteed according
to the above discussion.

This completes the convergence proof of the sequence in the one dimension.
�

Remarks

(a) The authors in [7] proved that if a kernel K has a convex, differentiable, and
monotonically decreasing profile k, then the estimated pdf using the kernel K
and the bandwidth h along the mean shift sequence is monotonically increasing
and convergent. In other words, they proved the monotonicity and convergence of
{f̂h,K(yj)}j=1,2,..., that {yj}j=1,2,... is the sequence generated by the mean shift
algorithm. It is obvious that the convergence of {f̂h,K(yj)} does not imply the
convergence of the mode estimate sequence {yj}. The authors assumed that the
sequence {yj} generated by the mean shift sequence is a Cauchy sequence, which
is not true in general. Hence the proof given in [7] for the convergence of the mean
shift sequence is not correct [19].

(b) The authors in [17] assumed that the number of the modes of an estimated pdf
is finite and, based on this assumption, they showed that the mean shift sequence
{yj} converges, but they could not justify their assumption. Showing the finiteness
of the number of the modes of an estimated pdf is still an open problem and there
is not any useful condition to guarantee the finiteness of the number of stationary
points of an estimated pdf.

(c) Carreira-Perpiñán showed that the mean shift algorithm with the Gaussian kernel
is an EM algorithm [15] and therefore the generated sequence {yj} converges to
the modes of the estimated pdf. A counterexample for the convergence of the
EM algorithm is given in [16], which shows in general the EM algorithm may not
converge.

(d) So far, only the convergence of f̂h,K(yj) is proved in the literature. Theorem 1 pro-
vides sufficient conditions to guarantee convergence of the mean shift sequence in
a one-dimensional space. It assures that under certain conditions the mode estimate
sequence generated by the mean shift algorithm is a monotone and convergent se-
quence in the one-dimensional space. The convergence of the mean shift sequence
for higher dimensions (when dimensionality of input data is greater than one) has
not yet been proved.
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4. Simulation Results

We carried out a series of simulations to demonstrate the results of Theorem 1.
We assumed that the input data are generated by one of two normal distributions with
the mean values +3 and -3 and a variance of 1, i.e., x ∼ N (3, 1) or x ∼ N (−3, 1).
The total number of the observed data is 1000, such that 500 samples are generated
by the first normal distribution and the rest of the samples are generated by the second
normal distribution. For the mean shift algorithm we used the Gaussian kernel that
satisfies conditions given in Theorem 1. The bandwidth h is fixed to 1, and we stop the
mean shift iterations if the distance between two consecutive mode estimates becomes
less that 0.0005. Figure 1 shows the convergence of the mean shift algorithm for ten
different initializations. In each case, the mean shift algorithm generates a monotone
sequence converging to one of the two available modes. For example, in the top left
of Figure 1, the mean shift algorithm starts from the point 6.045 and iteratively update
the estimated mode. As is expected, the algorithm generates a decreasing sequence
that converges to 3. In the top right of Figure 1, the mean shift algorithm initializes to
−6.575 and it generates an increasing sequence that converges to −3. The rest of the
graphes in Figure 1 demonstrate the convergence of the mean shift algorithm to either
-3 or 3. In each case, based on the initial value, the algorithm generates an increasing or
decreasing sequence in order to estimate a mode of the pdf. Table 1 shows the values of
the mode estimate sequence as a function of the number of the iterations. The starting
points are 6.045, −6.575, 0.905, −0.575, 4.457, −4.759, 0.588, −0.602, 5.076, and
−5.160. It can be observed from Table 1 that as the number of iterations increase, the
mode estimate sequence converges to either −3 or 3. We will get similar results when a
pdf estimate has multiple modes (more than two modes) and the mean shift algorithm
generates a monotone sequence that converges to a mode that is closer to its initial
value.

5. Conclusion

The mean shift algorithm is a simple non-parametric iterative technique for find-
ing modes of an estimated pdf. Although the mean shift algorithm has been used in
many pattern recognition and machine vision applications, its convergence has not yet
been proved. In this paper we proved the convergence of the mean shift algorithm in
the one-dimensional space. Specifically, we proved that if the kernel K has a con-
vex, differentiable, and strictly decreasing profile k, then the mode estimate sequence
{yj}j=1,2,... generated by the mean shift algorithm in the one-dimensional space is a
monotone and bounded sequence and therefore the sequence converges. The conver-
gence of the mean shift algorithm in ndimensional (n > 1) space is the subject of
future studies.
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Figure 1: The mode estimate sequence generated by the mean shift algorithm with different
initial values. The x-axis represnets the number of iterations and y-axis represents the value of
the estimated mode. The bandwidth h is equal to one and the iterations stop when the difference
between two consecutive mode estimates becomes less than 0.0005. In the above simulations,
the mean shift algorithm was initialized to the following values (from top to bottom, and from left
to right): 6.045, −6.575, 0.905, −0.575, 4.457, −4.759, 0.588, −0.602, 5.076, and −5.160.
It can be observed from the simulations that based on the initial value, the mean shift algorithm
generates a convergent monotone sequence.
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Table 1: The mode estimate sequence generated by the mean shift algorithm when it starts from
ten different points. The bandwidth h is fixed to 1, and the number of iterations goes from 1
to 81. The algorithm stops when the difference between consecutive mode estimates becomes
negligible.

Number of iteration 1 5 10 20 40 80 81
Estimated mode 6.045 3.540 3.356 3.260 3.201 3.091 3.091
Estimated mode -6.575 -3.572 -3.304 -3.175 -3.098 -3.047 -3.047
Estimated mode 0.905 2.456 2.680 2.806 2.887 2.940 2.941
Estimated mode -0.575 -2.250 -2.512 -2.652 -2.738 -2.795 -2.797
Estimated mode 4.457 3.391 3.273 3.202 3.155 3.124 3.123
Estimated mode -4.759 -3.384 -3.234 -3.145 -3.087 -3.048 -3.047
Estimated mode 0.588 2.299 2.589 2.743 2.837 2.900 2.901
Estimated mode -0.602 -2.298 -2.553 -2.688 -2.771 -2.855 -2.856
Estimated mode 5.076 3.400 3.236 3.145 3.088 3.051 3.050
Estimated mode -5.160 -3.477 -3.308 -3.215 -3.157 -3.118 -3.117
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