
 

Abstract--In this paper, new adaptive learning algorithms and correspondent networks are presented in 

order to extract optimal features from a sequence of multidimensional Gaussian data. For this purpose, novel 

adaptive algorithms for the estimation of the square root of the inverse covariance matrix 21�Σ  are 

introduced and applied for Gaussian optimal feature extraction. New adaptive algorithms are drawn by 

optimization of an appropriate cost function that is presented for the first time. Based on the proposed 

adaptive algorithms, related networks are implemented in order to extract optimal features from a sequence 

of multidimensional Gaussian data. Adaptive nature of the new feature extraction methods makes them 

appropriate for on-line pattern recognition applications. Experimental results using multidimensional 

Gaussian data demonstrated the effectiveness of the new adaptive feature extraction methods.  
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I. INTRODUCTION 

Feature extraction is generally considered as a process of mapping the original 

measurements into a more effective feature space which satisfies certain properties. When we 

have two or more classes, feature extraction consists of choosing those features which are 

most effective for preserving class separability in addition to dimension reduction [1]. One of 

the most popular techniques for this purpose is linear discriminant analysis (LDA) algorithm. 

LDA algorithm has been widely used in pattern recognition applications which feature 

extraction is inevitable, such as face and gesture recognition and hyper-spectral image analysis 
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[2]-[4]. Conventional feature extraction algorithms are used only in off-line applications which 

a chunk of data is available in advance. However, the need for dimensionality reduction in the 

real time applications such as on-line classification motivated researchers to introduce 

adaptive feature extraction algorithms. Chaterjee and Roychowdhury [5] presented an adaptive 

algorithm and a self-organized network for feature extraction from Gaussian data .They 

introduced an adaptive method for the computation of the 21�Σ  (which Σ  is the covariance 

matrix of the input sequence) and used it for on-line Gaussian data classification. Authors in 

[5] applied stochastic approximation theory in order to prove the convergence of the given 

adaptive equation and outlined network. The approach presented in [5] uses a fixed or 

decreasing learning rate causing a low convergence rate that is not desirable. Recently, 

Abrishami Moghaddam et al. [6]-[8] proposed three new adaptive methods based on steepest 

descent, conjugate direction and Newton-Raphson optimization techniques to hasten 

convergence of the algorithm given in [5]. However, the authors in [6]-[8] used an implicit 

cost function for obtaining their adaptive algorithms. No convergence analysis was given in 

[6]-[8] and convergence of the proposed algorithms is not assured. None of authors in [5]-[8] 

introduced an appropriate cost function related to the proposed adaptive algorithms. Hence 

there is not a criterion available to evaluate the accuracy of final estimations in [5]-[8]. The 

main benefit of the presenting a cost function for the adaptive algorithms is the opportunity to 

assess accuracy of the estimations resulted by different   initial conditions and learning rates. 

Furthermore, existence of the cost function makes it possible to find optimal learning rates in 

each iteration in order to accelerate the convergence rate.     

In this study, new adaptive algorithms are presented for the computation of the 21�Σ . 

Moreover, we introduce a cost function related to these algorithms and prove their convergence 

by optimizing the correspondent cost function. Existence of the cost function and its 

differentiability facilitate the convergence analysis of the new adaptive algorithms. Single layer 

networks associated to the new proposed adaptive algorithms, called 21�Σ  networks, are 



  
 

implemented. 21�Σ  network is used as the first layer of a two layers network in order to extract 

optimal features from a sequence of Gaussian data. Adaptive nature of the presented two layers 

network, called Gaussian optimal feature extraction network, makes it an appropriate tool for 

on line Gaussian feature extraction.  Optimization of the learning rate using the cost function 

makes it available to derive accelerated 21�Σ algorithms that lead to construct fast optimal 

Gaussian features extraction networks. The effectiveness of these new adaptive algorithms and 

associated networks for extracting optimal features from two-class multidimensional Gaussian 

sequences are shown. 

 The organization of the paper is as follows. The next section describes the fundamentals of 

optimal feature extraction from Gaussian data. Section III, presents the new adaptive learning 

algorithms and discuss their convergence by introducing an appropriate cost function. Section 

IV, describes how to implement networks based on the proposed adaptive algorithms and 

introduces single layer 21�Σ and two layers optimal Gaussian feature extraction networks, 

respectively. Section V is devoted to simulations and experimental results. Finally, concluding 

remarks are given in section VI. Notations used in this paper are fairly standard. Boldface 

symbols are used for vectors (in lower case letters) and matrices (in upper case letters). We 

also have the following notations: 

t)(�  Transpose; 

)(�E  Expectation; 

)(�tr  Trace; 

  �   Determinant; 

2
  �  2L -norm; 

)(�P    Probability of �  

)(xp     Probability density function 

  



  
 

II. OPTIMAL FEATURES FROM GAUSSIAN DATA 

Let },...,,{ 21 L���  denoted L different classes and n��x  be a pattern vector whose 

mixture distribution is given by )(xp . In a sequel, it is assumed that a priori 

probabilities LiP i ,...,1,)( �� , are known. If they are not explicitly known, it is simply 

possible to estimate them from the available training vectors. (i.e. if N  is the total number of 

available training patterns and ),..,1( LiNi �  of them belong to the class i� , then 

NNP ii �)(� ). Assume conditional probability densities Lip i ,...,1, )|( ��x  and a posteriori 

probabilities LiP i ,...,1, )|( �x�   are known. Using the Bayes classification rule, it can be 

stated the pattern vector x  is classified to i�  if and only if 

ijLjPP ji 	�
  and  ,...,1 ),|()|( xx ��        (1) 

In other words, the L a posteriori probability functions mentioned above are sufficient 

statistics and carry all information for classification in the Bayes sense. The Bayes classifier in 

this feature space is a piecewise bisector classifier, which is its simplest form [9]. Gaussian 

distribution in general has a density function in the following form  
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Distance function )(2 xd , is defined by: 

)()()( 12 mxΣmxx ��� �td     (3)                                 

where n��x  is a random vector, Σ  is a nn�  symmetric positive definite covariance matrix 

and m is a 1�n  vector denoted the mean value of the random sequence. Consider the 

following feature for the class Lii ,...,1 , ��  

)( ln)( ln)|( ln)|( ln xxx pPpP iii �
� ���   (4)                                           

Obviously )|( ln ip �x  is the relevant feature for the class i�  (recalling that in feature 

extraction, additive and multiplicative constants do not modify the subspace onto which the 

distributions are mapped and assuming priory probabilities are equal). Supposing unimodal 



  
 

Gaussian distribution, the feature )|( ln ip �x reduces to a quadratic function )(xif , defined 

as: 

Lif ii
t

ii ,...,1      ),()()( 1 ���� � mxΣmxx           (5)                            

where im and iΣ  are the class i� ’s mean value and covariance matrix, respectively. The 

function )(xif , can be expressed in the form of a 2L norm function [1]: 

Lif iii ,...,1 , )()(
221 ��� � mxΣx            (6) 

 From the above discussion, it is concluded the function )(xif  is the sufficient information 

for the classification of Gaussian data with minimum Bayes error. In the other words, 

incoming unknown vector x  will be assigned to the class with the smallest )(xif . For non-

Gaussian data it is possible to convert them to a Gaussian like data by a non-linear transform 

[10]. Generally in on-line applications the values of 21�Σ and im are unknown in advance and 

computed during the process using incoming sequence of data samples. Therefore, adaptive 

estimation of 21�Σ and im is highly necessary to compute )(xif  in on-line Gaussian data 

classification. In the next section, new methods for adaptive computation of 21�Σ are 

presented.  

 

III. ADAPTIVE COMPUTATION OF 21�Σ AND CONVERGENCE PROOF 

Assume a cost function )(WJ , ��� �nnJ  :   is defined as follows 

)]2()[(
3
1)( 21221 �
�� ΣWIWΣW trJ            (7)                    

Where W is a symmetric positive semi-definite nn�  matrix which commutes with 21Σ  

( WΣWΣ 2121 � ). It is apparent )2( 21�
 ΣW  and 221 )( IWΣ � are positive semi definite 

matrices, therefore trace of their product is always non-negative [11]. As a result absolute 

minimum of the cost function (7) is zero. If both sides of WΣWΣ 2121 �  (which equality 



  
 

comes from assumptions) are multiplied by 21Σ from the right hand side, it leads to 

ΣWWΣ � , that shows commutative property between W andΣ . The cost function (7) 

reaches to its minimum point when 21�� ΣW or 212 ��� ΣW , where 212 ��� ΣW is negative 

semi-definite matrix hence is not acceptable (It is assumed W is positive semi-definite 

matrix). Computing the first derivative of the cost function [11] and equating it to zero, shows 

that 21�� ΣW  is the only candidate that minimizes the cost function: 

IΣWWWΣΣW
W
W

�

�
�

� 3) ()( 22J     (8) 

Using the commutative property ΣWWΣ � , equation (8) can be reduced to one the 

following forms 

IΣWWW ���� 2)(J      (9) 

IWWΣWW ����  )(J       (10) 

IΣWWW ���� 2)(J       (11) 

where equating to zero each of equations (9)-(11) will result 21�� ΣW .  Therefore, the cost 

function (7) has only one strict absolute minimum that occurs at 21�Σ . Using the gradient 

descent optimization method [17]-[18], the following adaptive equations for the estimation of 

the 21�Σ  are drawn 

)( 2
1 ΣWIWW kkkk �
�
 �     (12) 

)(1 kkkkk ΣWWIWW �
�
 �     (13) 

)( 2
1 kkkk ΣWIWW �
�
 �     (14) 

 where 1
kW is the estimation of the covariance matrix at 1
k th iteration and k� is the 

learning rate which meets Ljung [12] conditions. If initial matrix 0W  be a symmetric, positive 

semi-definite matrix satisfying 0
2121

0 WΣΣW � , then it is easy to show 1
kW  ( 0�k ) is also a 

symmetric matrix satisfying 1
2121

1 

 � kk WΣΣW  and there is also an upper bound ( 1� ) for 



  
 

k� such that makes 1
kW  positive semi-definite. Therefore during each iteration, 1
kW  always 

remains a symmetric positive semi-definite matrix and finally converges to the minimum of 

the cost function (which is 21�Σ ). In on-line applications covariance matrix is not available 

but it can be estimated by 

)( 1111 k
t
kkkkk ΣxxΣΣ �
� 



 �       (15) 

where kΣ is estimation of the covariance matrix at k -th iteration, 1
kx  and 1
k� are  input 

sample and learning rate  at 1
k - th iteration, respectively.  Thus adaptive algorithms given 

in (12)-(14) may change to the following adaptive forms in the case of on-line applications 

)( 2
1 kkkkk ΣWIWW �
�
 �     (16) 

)(1 kkkkkk WΣWIWW �
�
 �    (17) 

 )( 2
1 kkkkk WΣIWW �
�
 �      (18)                                          

Equations (16)-(18) can be further simplified by substituting kΣ  with t
kk 11 

 xx  as follows 

)( 11
2

1
t
kkkkkk 


 �
� xxWIWW �    (19) 

)( 111 k
t
kkkkkk WxxWIWW 


 �
� �   (20) 

)( 2
111 k

t
kkkkk WxxIWW 


 �
� �    (21) 

Algorithms (16)-(18) use the incoming input vector to update the covariance matrix and then 

use updated covariance matrix but algorithms (19)-(21) use incoming input sample directly. 

The only constraint on (16)-(21) is for initial condition. As mentioned before 0W must be a 

symmetric, positive semi-definite matrix satisfying 0
2121

0 WΣΣW � . To avoid confusion, 

without loss of generality it is assumed that 0W  is equal to identity matrix multiplied by a 

positive constant �  ( IW  0 �� ). In all simulations are done in this paper,  0W  is considered 

equal to identity matrix.  

According to the result reported in [13]-[15], the stochastic gradient algorithm in the form of: 



  
 

 111 ,( 


 �� nnnnn Yf ���� )   (22) 

where f(θ,y)=gradθ F(θ,y) and (Yn)n>0 are independent identically distributed k� -valued 

random variables, converges almost surely towards a solution of the minimization problem: 

minθ E (F (θ,Y)). As indicated in (22), in order to minimize E (F (θ,Y)), the stochastic gradient 

algorithm uses the random variable f(θ,Y) instead of its expectation in the ordinary gradient 

method. The above argument shows that equations (16)-(21) converge surely to the solution 

of the minimization problem )(min WW J , which is 21�Σ .  Existence of the cost function 

makes it possible to evaluate accuracy of the estimations resulted using different initial 

conditions and learning rate. It also gives us a good criterion for termination of iterations 

when an accurate estimation is achieved. Algorithms introduced in [5]-[8] used difference of 

two consecutive estimations as a criterion to stop the iterations. Obviously the difference 

consecutive estimations can not be a reliable measure of accuracy, because there are cases that 

difference of two consecutive estimations is too low but they are far from the exact value.  

Explicit cost function can be used as a criterion to terminate the iterations. By substituting the 

resulted estimations into the cost function their accuracy can be compared. The lowest cost 

function associated with the most accurate estimation (As mentioned before the sequence of 

kW updated using a gradient decent algorithm tends to converge to the absolute minimum of 

the cost function). 

 There are different adaptive estimations of the mean vector. The following equation used in 

[16]: 

)(11 kkkk mxmm �
� 

 �         (23) 

where km is the estimation of the mean vector at k -th iteration and ηk satisfies Ljung 

assumptions [12] for the step size. Alternatively, one may use the following equation: 
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For the experiments reported in this paper, we used (23) in order to estimate the mean value in 

each iteration. 

 

IV. NETWORK IMPLEMENTATION 

In this section, first implementations of single layer 21�Σ networks based on (19)-(21) are 

given. Then, using 21�Σ networks, a two layers network for the optimal feature extraction 

from multidimensional Gaussian data is introduced.  

a. 21�Σ Network 

 Equations (19)-(21) are used to implement associated networks for adaptive estimation of 

21�Σ . Suppose a single layer network with the training input vector )(kx and output vector 

)(ko . Let )()()( kkk xWo � , where )(kW  is a weight matrix updated by the sequential update 

rule presented in (19). Let )(kx j denote the j-th component of )(kx , )(kWij  denote the ij -th 

element of )(kW . )(koi  and )(kiW  represent i-th component of )(ko  and i-th row of )(kW , 

respectively. First of all adaptive learning algorithm described in (19) is used in order to train 

the weight matrix. With arrival of each training Gaussian sample, the weight matrix is 

updated in order to take into consideration the effect of the new training data. The weight 

matrix update according to (19) can be written as follow 
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From (25), the element update equation for the weight matrix is 
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Where ij�  is the Kronecker’s delta function (when i=j then ij� =1,  otherwise 0�ij� ). Similar 

equation can be drawn for the element update of the weight matrix using (20)-(21).  For 

example the weight matrix update according to (20) and (21) can be written as 
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Using the equations (27)-(28), element updates for the weight matrix are as follows 

))()(()( t
jiijij kkkw oo��� ��  , for equation (20)    (29)                                             
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Figure 1 shows a network implementation for updating )(kWij ),...,1,( nji �  using (25) and 

(26). Which o is a 1�n  vector represents output and )(kiW is i -th row of the estimated )(kW  

matrix at k -th iteration.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 21�Σ network based on (19). )](    )([)( 1 kxkxk n��x  and )(kjW are  the input vector and jth row 

of the weight matrix  at iteration k, respectively. Output )(ko j is j th element of vector )(ko defined  by 

)()()( kkk xWo � .  
 



  
 

Figure 2 shows network implementation for the estimation of 21�Σ according to updating 

rules (27), (29). Using the symmetric property of the weight matrix, it can be shown that 

21�Σ network based on updating rules (28), (30) is similar to 21�Σ network drawn using (25), 

(26).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 21�Σ network based on (20). )](    )([)( 1 kxkxk n��x  is the input vector at iteration k. Output 
)(ko j is j th element of vector )(ko defined  by )()()( kkk xWo � . 

 
 
b. Networks for optimal feature extraction from Gaussian data 

Recalling from the section II, when data is unimodal Gaussian, the feature )(xif for class 

i�  is expressed by (6), which is squared norm of )(21
imxΣ �� . Hence, it is necessary to use 

the 21�Σ network described in the previous subsection and combine it with another layer to 

compute the 2L  norm. The proposed new feature extraction network consists of two layers:  

1) the first layer is trained by one of the algorithms given in (19)-(21), and as proved 

previously, it’s weight matrix converges to 21�Σ . ( 21�Σ networks given in figures 1, 2) 



  
 

2) the second layer computes the square of the norm of the first layer's outputs. The weights 

for the second layer are fixed to one.  

Since, in general, the mean value of each class is a priori unknown; algorithm (23) is used in 

order to estimate the mean values of each class in every iteration. The input sequence of the 

first layer for a specific class is defined by 

)()()( kkk iii mxy ��        (31) 

where )(kim  is the mean value of the class i estimated at k -th iteration. Figure 3 shows the 

network implementation for the unimodal Gaussian case. Given an input pattern i��x , the 

feature )(xif  is obtained at the output of the network. 

 

 

 

 

 

 

 

Figure 3.  Two layers network for optimal feature extraction from Gaussian data. The first layer is a 
21�Σ network and the second layer computes square of the norm of the first layer’s output. Output of this 

network is optimal Gaussian feature. 
 
 

 

V. SIMULATION RESULTS 

Networks described in the previous section are used to estimate 21�Σ and to extract optimal 

features from multidimensional Gaussian data for the classification purpose. 

a. Experiments on 21�Σ  networks 

In all experiments in this section, the first covariance matrix in [19] which is a 1010�  

covariance matrix multiplied by 20 is used (Figure 4). The ten eigen-values of this matrix in 

descending order are 117.996, 55.644, 34.175, 7.873, 5.878, 1.743, 1.423, 1.213 and 1.007.  
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Figure 4. Covariance matrix used in part (a) of simulation to evaluate effectiveness of the introduced algorithms 
and networks to estimate  21�Σ .    
 
For each experiment, 500 samples of zero mean Gaussian data is generated that are given as 

input sequence to 21�Σ networks. Figure 5 compares the normalized estimation error of the 

introduced 21�Σ  networks as a function of sample number. As illustrated, all three proposed 

networks have a similar convergence rate and final estimation errors after 500 samples are 

0.0523 for algorithm 19, 0.0399 for algorithm 20 and 0.0523 for algorithm 21.  

 

Figure 5. Convergence rate of algorithms (19)-(21) are depicted. As expected all three algorithm show similar 
convergence rate and as number of training samples increase normalized error for estimation of 21�Σ decreases. 
 
 
Figure 6 compares convergence rate of the algorithms (16)-(19). These algorithms use input 

sample to update estimation of the covariance matrix and then apply new covariance matrix to 



  
 

improve 21�Σ estimation. As we expected algorithms (16)-(19) show nearly similar 

convergence rate that is because of certain properties of initial value. (in section III it is 

showed if initial estimation satisfies certain condition then algorithms (12)-(14) are same). 

Comparison of figures 5 and 6 confirm that 21�Σ algorithms given in (16)-(19) converge 

smoothly (as it is expected) because incoming input sample alters the covariance matrix 

slightly, but algorithm (20)-(21) depends to incoming input samples directly and therefore 

converge with more fluctuations. 

Figure 7 shows values of the cost function (7) during the process. As stated in section III, 

gradient decent based algorithms (19)-(21) create a sequence of kW ’s that try to minimize the 

cost function (7). As the number of iterations increases the cost function’s value decreases 

toward the absolute minimum which is zero. (As stated before initial matrix 0W  is chosen 

equal to the identity matrix) 

 

Figure 6. Convergence rate of algorithms (16)-(18) are compared. As it is expected all three algorithms shows 
very similar convergence rate. In contrast to algorithms (19)-(21) (figure 5) these algorithms converge smoothly. 



  
 

 

Figure 7. Values of cost function (7) during training phase. It is obvious as number of training samples increase; 
cost function converges to its absolute minimum point (which is zero).  
 
 
Figure 8 compares the convergence rate of the algorithm (16) and algorithm (20). It is obvious 

that although estimated error in algorithm (20) is less than algorithm (16), but the second one 

converges smoothly in contrast with the first one.  

Convergence rate of the adaptive 21�Σ algorithms are evaluated in 4, 6, 8 and 10 dimensional 

spaces. The same covariance matrix as in the first experiment is exploited for generating 10 

dimensional data and three other matrices were selected as the principal minors of that matrix. 

In all experiments, the initial value 0W  is considered to be identity matrix, and then a 

sequence of Gaussian input data are given to the introduced  21�Σ  networks. For each 

covariance matrix, 500 samples of zero-mean Gaussian data generated and simulations are 

done using 21�Σ network associated to algorithm (19). For each experiment normalized error 

ke  between the estimated and actual 21�Σ  at k -th iteration is recorded.  
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Figure 8. Convergence rate of algorithms (16) and (20) are compared. As mentioned before algorithm (16) uses 
incoming input vector directly to update 21�Σ estimation but algorithm (20) depends to new input through  kΣ . 
Because of that algorithm (16) shows more variation compared to algorithm (20). 
 
Figure 9 demonstrates estimation errors during iterations for each covariance matrix. The 

final values of the error after incoming 500 samples are 0.075 for d=10, 0.071 for d=8, 0.0482 

for d=6 and 0.0186 for d=4. In order to demonstrate the tracking ability of the introduced 

algorithms when encounter non-stationary data, 500 samples of zero mean Gaussian data in 

10� with the covariance matrix as stated before generated. Then drastically data sequence 

changed by generating another 500 zero mean 10-dimensional Gaussian data with the second 

covariance matrix introduced in [19] and after that suddenly covariance matrix altered to the 

third covariance matrix given in [19] by generating another 500 zero mean Gaussian samples.  

Figure 10 shows the convergence of 21�Σ networks for non-stationary data. As it is  expected 

after incoming 500th sample and 1000th sample, estimation error increase suddenly but by 

coming new samples belong to the new covariance matrix, 21�Σ network adapt itself to new 

condition and gradually estimation error decreases.  



  
 

 

Figure 9.  Convergence rate of 21�Σ algorithm in 4, 6, 8 and10 dimensional spaces are compared. Covariance 
matrix showed in figure 4 is used for simulation in 10 dimensional space and other matrices are selected as 
principal minors of that matrix. 

 

 

 

Figure 10. This simulation demonstrates tracking ability of the introduced algorithms and networks when facing 
non-stationary data. Simulation is done in 10 dimensional space and covariance matrix at iterations 500 and 1000 
changed drastically. When covariance matrix changes, estimation error suddenly increases but gradually 
introduced algorithms adapt themselves to new covariance matrix and estimation error reduces.   
     
To demonstrate advantage of the availability of the cost function to evaluate accuracy of the 

estimations resulted from different initial values and learning rates, 500 zero mean 10 



  
 

dimensional Gaussian data with first covariance matrix in [19] generated  and given to the 

21�Σ network. The 21�Σ  estimated using three different initial weight matrices equal to 

I 5.0 � , I  , I 5.1 �  (where I  is the identity matrix). At the end of the experiments, three 

different estimations of the 21�Σ will result. Authors in [5]-[8] did not introduce any criterion 

to compare these estimations and find the most accurate one. Existence of the cost function 

makes it possible to compare accuracy of these estimations. Substitution of these estimations 

resulted by different initial conditions into the cost function (7), will produce 0.2289, 1.117 

and 3.335 respectively, which means estimation resulted from the initial weight matrix equal 

to I 5.0 �  is the most accurate one. Figure 11 compares convergence of 21�Σ  network for 

those three different initial weight matrices. (Algorithm (17) is used for this experiment but 

similar outputs will results if other presented algorithms are used) 

 

Figure 11. This figure shows estimation errors resulted starting with different initial weight matrices. Existence 
of the cost function makes it available to compare accuracy of these estimations and find out which one is more 
precise. 
 
b. Extracting optimal features from two class Gaussian data 

As discussed in the section II, it is apparent that for the Gaussian data the optimal feature 

)(xif  is given by 
221 )()( iiif mxΣx �� � . Input sequence is given to the two layers optimal 



  
 

Gaussian feature extraction network (implemented in section IV) and Gaussian data 

transformed into the optimal feature space. For each training data belongs to i� , 21�
iΣ updated 

using 21�Σ networks (Figures 1, 2) and im refreshed by applying (23). Finally, quadratic 

features 
221 )()( iiif mxΣx �� �  are computed for class i�  using the Gaussian optimal feature 

extraction network (Figure 3) and x  is classified according to the values of )(xif . In this 

experiment good classification performance is not main goal but it is important to show how 

accurate features are estimated using presented networks to preserve classification capability 

of the real features.   

Figure 12. Distribution of two Gaussian classes with different covariance matrices and mean vectors in two 
dimensional space. Data samples are given to the introduced optimal Gaussian feature extraction network in 
order to estimate Gaussian features.  
 
For testing the effectiveness of proposed network in the case of two class Gaussian data,  500 

samples of two-dimensional Gaussian data from each of two classes with different covariance 

matrices and mean vectors generated. For each pattern x , features )(1 xf and )(2 xf  are 

computed. Two Gaussian classes 1�  and 2�  have the following parameters: 
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Figure 12 shows the distribution of samples from two classes. It is obvious that two classes 

are not linearly distinguishable. As mentioned before 21�Σ networks estimate 21�Σ and the 

two layer Gaussian feature extraction network (figure 3) estimates  1f  and 2f  .  

After training the Gaussian feature extraction network for one epoch, 1f  and 2f  are extracted 

from training data and training pattern x  is assigned to the class associated with the minimum 

of 1f  and 2f . Figure 13 illustrates the transformed data in the optimal feature space. It is 

apparent from Figure 13 that two Gaussian classes are linearly separable in the optimal 

feature space. In other words, in the optimal feature space, it is possible to draw a straight line 

to separate two classes. However, in their original space; two classes are overlapped and are 

not linearly separable. By extracting optimal features, only 6 data samples among 1000 total 

samples, were misclassified by a linear classifier.  

 

 

Figure 13. Distribution of two dimensional Gaussian data in the optimal feature space is shown. It is obvious 
two classes using line )()( 21 xx ff �  are linearly separable. However these two classes in the original space are 
not linearly separable and overlapped.  
 

The same experiment is repeated with 2-dimensional Gaussian data from 3 classes with 500 

input samples from each class. Three Gaussian classes 321  , , ���  have following Parameters: 
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To check how accurate introduced networks estimate the actual features, estimated features 

are compared with the actual ones. The following normalized formula is used for the 

comparison 

. ..., ,2 ,1      
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           (33) 

where n  is total number of samples (in this experiment 1500�n ), m is total number of classes 

(in this experiment 3�m ), if is the estimated Gaussian feature for class i�  and actualif �  is 

actual Gaussian feature for class i� . After training the network for one epoch, normalized 

errors obtained 0144.0
1
�fE , 0356.0

2
�fE  and 0495.0

3
�fE  which all are less than %5  

implying estimated features are close to their real values. 

 

 

VI. CONCLUSION 

In this paper, new adaptive algorithms and associated networks for computing 21�Σ  and 

extracting optimal features from Gaussian data are presented. The new algorithms are drawn 

by optimization of a new cost function. Existence of the cost function makes it possible to 

evaluate the accuracy of the estimations resulted from different initial weight matrices and 

learning rates, also it simplifies convergence analysis. Simulation results for optimal feature 

extraction from two class Gaussian data demonstrated the ability of the proposed algorithms 

and networks to estimate the actual Gaussian features. The new adaptive algorithms and 

networks can be used in many fields of on-line application such as feature extraction for face 

and gesture recognition and on line signal processing.  
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