

Abstract--In this paper, new adaptive learning algorithms and correspondent networks are presented in

order to extract optimal features from a sequence of multidimensional Gaussian data. For this purpose, novel

adaptive algorithms for the estimation of the square root of the inverse covariance matrix 21�Σ are

introduced and applied for Gaussian optimal feature extraction. New adaptive algorithms are drawn by

optimization of an appropriate cost function that is presented for the first time. Based on the proposed

adaptive algorithms, related networks are implemented in order to extract optimal features from a sequence

of multidimensional Gaussian data. Adaptive nature of the new feature extraction methods makes them

appropriate for on-line pattern recognition applications. Experimental results using multidimensional

Gaussian data demonstrated the effectiveness of the new adaptive feature extraction methods.

Keyword-- Adaptive Learning Algorithm, Feature Extraction, Multidimensional Gaussian Data.

I. INTRODUCTION

Feature extraction is generally considered as a process of mapping the original

measurements into a more effective feature space which satisfies certain properties. When we

have two or more classes, feature extraction consists of choosing those features which are

most effective for preserving class separability in addition to dimension reduction [1]. One of

the most popular techniques for this purpose is linear discriminant analysis (LDA) algorithm.

LDA algorithm has been widely used in pattern recognition applications which feature

extraction is inevitable, such as face and gesture recognition and hyper-spectral image analysis

Adaptive algorithms and networks for optimal

feature extraction from Gaussian data

Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam

*Manuscript [Word or (La)TeX]
Click here to view linked References

[2]-[4]. Conventional feature extraction algorithms are used only in off-line applications which

a chunk of data is available in advance. However, the need for dimensionality reduction in the

real time applications such as on-line classification motivated researchers to introduce

adaptive feature extraction algorithms. Chaterjee and Roychowdhury [5] presented an adaptive

algorithm and a self-organized network for feature extraction from Gaussian data .They

introduced an adaptive method for the computation of the 21�Σ (which Σ is the covariance

matrix of the input sequence) and used it for on-line Gaussian data classification. Authors in

[5] applied stochastic approximation theory in order to prove the convergence of the given

adaptive equation and outlined network. The approach presented in [5] uses a fixed or

decreasing learning rate causing a low convergence rate that is not desirable. Recently,

Abrishami Moghaddam et al. [6]-[8] proposed three new adaptive methods based on steepest

descent, conjugate direction and Newton-Raphson optimization techniques to hasten

convergence of the algorithm given in [5]. However, the authors in [6]-[8] used an implicit

cost function for obtaining their adaptive algorithms. No convergence analysis was given in

[6]-[8] and convergence of the proposed algorithms is not assured. None of authors in [5]-[8]

introduced an appropriate cost function related to the proposed adaptive algorithms. Hence

there is not a criterion available to evaluate the accuracy of final estimations in [5]-[8]. The

main benefit of the presenting a cost function for the adaptive algorithms is the opportunity to

assess accuracy of the estimations resulted by different initial conditions and learning rates.

Furthermore, existence of the cost function makes it possible to find optimal learning rates in

each iteration in order to accelerate the convergence rate.

In this study, new adaptive algorithms are presented for the computation of the 21�Σ .

Moreover, we introduce a cost function related to these algorithms and prove their convergence

by optimizing the correspondent cost function. Existence of the cost function and its

differentiability facilitate the convergence analysis of the new adaptive algorithms. Single layer

networks associated to the new proposed adaptive algorithms, called 21�Σ networks, are

implemented. 21�Σ network is used as the first layer of a two layers network in order to extract

optimal features from a sequence of Gaussian data. Adaptive nature of the presented two layers

network, called Gaussian optimal feature extraction network, makes it an appropriate tool for

on line Gaussian feature extraction. Optimization of the learning rate using the cost function

makes it available to derive accelerated 21�Σ algorithms that lead to construct fast optimal

Gaussian features extraction networks. The effectiveness of these new adaptive algorithms and

associated networks for extracting optimal features from two-class multidimensional Gaussian

sequences are shown.

 The organization of the paper is as follows. The next section describes the fundamentals of

optimal feature extraction from Gaussian data. Section III, presents the new adaptive learning

algorithms and discuss their convergence by introducing an appropriate cost function. Section

IV, describes how to implement networks based on the proposed adaptive algorithms and

introduces single layer 21�Σ and two layers optimal Gaussian feature extraction networks,

respectively. Section V is devoted to simulations and experimental results. Finally, concluding

remarks are given in section VI. Notations used in this paper are fairly standard. Boldface

symbols are used for vectors (in lower case letters) and matrices (in upper case letters). We

also have the following notations:

t)(� Transpose;

)(�E Expectation;

)(�tr Trace;

 � Determinant;

2
 � 2L -norm;

)(�P Probability of �

)(xp Probability density function

II. OPTIMAL FEATURES FROM GAUSSIAN DATA

Let },...,,{ 21 L��� denoted L different classes and n��x be a pattern vector whose

mixture distribution is given by)(xp . In a sequel, it is assumed that a priori

probabilities LiP i ,...,1,)(�� , are known. If they are not explicitly known, it is simply

possible to estimate them from the available training vectors. (i.e. if N is the total number of

available training patterns and),..,1(LiNi � of them belong to the class i� , then

NNP ii �)(�). Assume conditional probability densities Lip i ,...,1,)|(��x and a posteriori

probabilities LiP i ,...,1,)|(�x� are known. Using the Bayes classification rule, it can be

stated the pattern vector x is classified to i� if and only if

ijLjPP ji 	�
 and ,...,1),|()|(xx �� (1)

In other words, the L a posteriori probability functions mentioned above are sufficient

statistics and carry all information for classification in the Bayes sense. The Bayes classifier in

this feature space is a piecewise bisector classifier, which is its simplest form [9]. Gaussian

distribution in general has a density function in the following form

)(
2
1

212

2

||)2(
1),(

x

Σ
Σm

d

n eN
�

�
�

 (2)

Distance function)(2 xd , is defined by:

)()()(12 mxΣmxx ��� �td (3)

where n��x is a random vector, Σ is a nn� symmetric positive definite covariance matrix

and m is a 1�n vector denoted the mean value of the random sequence. Consider the

following feature for the class Lii ,...,1 , ��

)(ln)(ln)|(ln)|(ln xxx pPpP iii �� ��� (4)

Obviously)|(ln ip �x is the relevant feature for the class i� (recalling that in feature

extraction, additive and multiplicative constants do not modify the subspace onto which the

distributions are mapped and assuming priory probabilities are equal). Supposing unimodal

Gaussian distribution, the feature)|(ln ip �x reduces to a quadratic function)(xif , defined

as:

Lif ii
t

ii ,...,1),()()(1 ���� � mxΣmxx (5)

where im and iΣ are the class i� ’s mean value and covariance matrix, respectively. The

function)(xif , can be expressed in the form of a 2L norm function [1]:

Lif iii ,...,1 ,)()(
221 ��� � mxΣx (6)

 From the above discussion, it is concluded the function)(xif is the sufficient information

for the classification of Gaussian data with minimum Bayes error. In the other words,

incoming unknown vector x will be assigned to the class with the smallest)(xif . For non-

Gaussian data it is possible to convert them to a Gaussian like data by a non-linear transform

[10]. Generally in on-line applications the values of 21�Σ and im are unknown in advance and

computed during the process using incoming sequence of data samples. Therefore, adaptive

estimation of 21�Σ and im is highly necessary to compute)(xif in on-line Gaussian data

classification. In the next section, new methods for adaptive computation of 21�Σ are

presented.

III. ADAPTIVE COMPUTATION OF 21�Σ AND CONVERGENCE PROOF

Assume a cost function)(WJ , ��� �nnJ : is defined as follows

)]2()[(
3
1)(21221 ��� ΣWIWΣW trJ (7)

Where W is a symmetric positive semi-definite nn� matrix which commutes with 21Σ

(WΣWΣ 2121 �). It is apparent)2(21� ΣW and 221)(IWΣ � are positive semi definite

matrices, therefore trace of their product is always non-negative [11]. As a result absolute

minimum of the cost function (7) is zero. If both sides of WΣWΣ 2121 � (which equality

comes from assumptions) are multiplied by 21Σ from the right hand side, it leads to

ΣWWΣ � , that shows commutative property between W andΣ . The cost function (7)

reaches to its minimum point when 21�� ΣW or 212 ��� ΣW , where 212 ��� ΣW is negative

semi-definite matrix hence is not acceptable (It is assumed W is positive semi-definite

matrix). Computing the first derivative of the cost function [11] and equating it to zero, shows

that 21�� ΣW is the only candidate that minimizes the cost function:

IΣWWWΣΣW
W
W

��
�

� 3) ()(22J (8)

Using the commutative property ΣWWΣ � , equation (8) can be reduced to one the

following forms

IΣWWW ���� 2)(J (9)

IWWΣWW ����)(J (10)

IΣWWW ���� 2)(J (11)

where equating to zero each of equations (9)-(11) will result 21�� ΣW . Therefore, the cost

function (7) has only one strict absolute minimum that occurs at 21�Σ . Using the gradient

descent optimization method [17]-[18], the following adaptive equations for the estimation of

the 21�Σ are drawn

)(2
1 ΣWIWW kkkk �� � (12)

)(1 kkkkk ΣWWIWW �� � (13)

)(2
1 kkkk ΣWIWW �� � (14)

 where 1kW is the estimation of the covariance matrix at 1k th iteration and k� is the

learning rate which meets Ljung [12] conditions. If initial matrix 0W be a symmetric, positive

semi-definite matrix satisfying 0
2121

0 WΣΣW � , then it is easy to show 1kW (0�k) is also a

symmetric matrix satisfying 1
2121

1 � kk WΣΣW and there is also an upper bound (1�) for

k� such that makes 1kW positive semi-definite. Therefore during each iteration, 1kW always

remains a symmetric positive semi-definite matrix and finally converges to the minimum of

the cost function (which is 21�Σ). In on-line applications covariance matrix is not available

but it can be estimated by

)(1111 k
t
kkkkk ΣxxΣΣ �� � (15)

where kΣ is estimation of the covariance matrix at k -th iteration, 1kx and 1k� are input

sample and learning rate at 1k - th iteration, respectively. Thus adaptive algorithms given

in (12)-(14) may change to the following adaptive forms in the case of on-line applications

)(2
1 kkkkk ΣWIWW �� � (16)

)(1 kkkkkk WΣWIWW �� � (17)

)(2
1 kkkkk WΣIWW �� � (18)

Equations (16)-(18) can be further simplified by substituting kΣ with t
kk 11 xx as follows

)(11
2

1
t
kkkkkk �� xxWIWW � (19)

)(111 k
t
kkkkkk WxxWIWW �� � (20)

)(2
111 k

t
kkkkk WxxIWW �� � (21)

Algorithms (16)-(18) use the incoming input vector to update the covariance matrix and then

use updated covariance matrix but algorithms (19)-(21) use incoming input sample directly.

The only constraint on (16)-(21) is for initial condition. As mentioned before 0W must be a

symmetric, positive semi-definite matrix satisfying 0
2121

0 WΣΣW � . To avoid confusion,

without loss of generality it is assumed that 0W is equal to identity matrix multiplied by a

positive constant � (IW 0 ��). In all simulations are done in this paper, 0W is considered

equal to identity matrix.

According to the result reported in [13]-[15], the stochastic gradient algorithm in the form of:

 111 ,(�� nnnnn Yf ����) (22)

where f(θ,y)=gradθ F(θ,y) and (Yn)n>0 are independent identically distributed k� -valued

random variables, converges almost surely towards a solution of the minimization problem:

minθ E (F (θ,Y)). As indicated in (22), in order to minimize E (F (θ,Y)), the stochastic gradient

algorithm uses the random variable f(θ,Y) instead of its expectation in the ordinary gradient

method. The above argument shows that equations (16)-(21) converge surely to the solution

of the minimization problem)(min WW J , which is 21�Σ . Existence of the cost function

makes it possible to evaluate accuracy of the estimations resulted using different initial

conditions and learning rate. It also gives us a good criterion for termination of iterations

when an accurate estimation is achieved. Algorithms introduced in [5]-[8] used difference of

two consecutive estimations as a criterion to stop the iterations. Obviously the difference

consecutive estimations can not be a reliable measure of accuracy, because there are cases that

difference of two consecutive estimations is too low but they are far from the exact value.

Explicit cost function can be used as a criterion to terminate the iterations. By substituting the

resulted estimations into the cost function their accuracy can be compared. The lowest cost

function associated with the most accurate estimation (As mentioned before the sequence of

kW updated using a gradient decent algorithm tends to converge to the absolute minimum of

the cost function).

 There are different adaptive estimations of the mean vector. The following equation used in

[16]:

)(11 kkkk mxmm �� � (23)

where km is the estimation of the mean vector at k -th iteration and ηk satisfies Ljung

assumptions [12] for the step size. Alternatively, one may use the following equation:

11
1

1

�

 kk
k k

kk
xmm (24)

For the experiments reported in this paper, we used (23) in order to estimate the mean value in

each iteration.

IV. NETWORK IMPLEMENTATION

In this section, first implementations of single layer 21�Σ networks based on (19)-(21) are

given. Then, using 21�Σ networks, a two layers network for the optimal feature extraction

from multidimensional Gaussian data is introduced.

a. 21�Σ Network

 Equations (19)-(21) are used to implement associated networks for adaptive estimation of

21�Σ . Suppose a single layer network with the training input vector)(kx and output vector

)(ko . Let)()()(kkk xWo � , where)(kW is a weight matrix updated by the sequential update

rule presented in (19). Let)(kx j denote the j-th component of)(kx ,)(kWij denote the ij -th

element of)(kW .)(koi and)(kiW represent i-th component of)(ko and i-th row of)(kW ,

respectively. First of all adaptive learning algorithm described in (19) is used in order to train

the weight matrix. With arrival of each training Gaussian sample, the weight matrix is

updated in order to take into consideration the effect of the new training data. The weight

matrix update according to (19) can be written as follow

))()()((

))()()()(()(
t

t

kkkI

kkkkIk

xoW

xxWWW

��

���

�

�
 (25)

From (25), the element update equation for the weight matrix is

))(]...[(

))()()(()(

2211 kxowowow
kxkkkw

jniniiij

jiijij

��

���

��

�� ow
 (26)

Where ij� is the Kronecker’s delta function (when i=j then ij� =1, otherwise 0�ij�). Similar

equation can be drawn for the element update of the weight matrix using (20)-(21). For

example the weight matrix update according to (20) and (21) can be written as

))()((

))()()()(()(
t

tt

kkI

kkkkIk

oo

WxxWW

��

���

�

� , for equation (20) (27)

))()()((

))()()()(()(

kkkI

kkkkIk
t

tt

Wox

WWxxW

��

���

�

� , for equation (21) (28)

Using the equations (27)-(28), element updates for the weight matrix are as follows

))()(()(t
jiijij kkkw oo��� �� , for equation (20) (29)

))(]...[(

))()()(()(

2211 kxowowow
kkkxkw

injnjjij

t
j

t
iijij

��

���

��

�� wo
 , for equation (21) (30)

Figure 1 shows a network implementation for updating)(kWij),...,1,(nji � using (25) and

(26). Which o is a 1�n vector represents output and)(kiW is i -th row of the estimated)(kW

matrix at k -th iteration.

Figure 1. 21�Σ network based on (19).)]()([)(1 kxkxk n��x and)(kjW are the input vector and jth row

of the weight matrix at iteration k, respectively. Output)(ko j is j th element of vector)(ko defined by

)()()(kkk xWo � .

Figure 2 shows network implementation for the estimation of 21�Σ according to updating

rules (27), (29). Using the symmetric property of the weight matrix, it can be shown that

21�Σ network based on updating rules (28), (30) is similar to 21�Σ network drawn using (25),

(26).

Figure 2. 21�Σ network based on (20).)]()([)(1 kxkxk n��x is the input vector at iteration k. Output
)(ko j is j th element of vector)(ko defined by)()()(kkk xWo � .

b. Networks for optimal feature extraction from Gaussian data

Recalling from the section II, when data is unimodal Gaussian, the feature)(xif for class

i� is expressed by (6), which is squared norm of)(21
imxΣ �� . Hence, it is necessary to use

the 21�Σ network described in the previous subsection and combine it with another layer to

compute the 2L norm. The proposed new feature extraction network consists of two layers:

1) the first layer is trained by one of the algorithms given in (19)-(21), and as proved

previously, it’s weight matrix converges to 21�Σ . (21�Σ networks given in figures 1, 2)

2) the second layer computes the square of the norm of the first layer's outputs. The weights

for the second layer are fixed to one.

Since, in general, the mean value of each class is a priori unknown; algorithm (23) is used in

order to estimate the mean values of each class in every iteration. The input sequence of the

first layer for a specific class is defined by

)()()(kkk iii mxy �� (31)

where)(kim is the mean value of the class i estimated at k -th iteration. Figure 3 shows the

network implementation for the unimodal Gaussian case. Given an input pattern i��x , the

feature)(xif is obtained at the output of the network.

Figure 3. Two layers network for optimal feature extraction from Gaussian data. The first layer is a
21�Σ network and the second layer computes square of the norm of the first layer’s output. Output of this

network is optimal Gaussian feature.

V. SIMULATION RESULTS

Networks described in the previous section are used to estimate 21�Σ and to extract optimal

features from multidimensional Gaussian data for the classification purpose.

a. Experiments on 21�Σ networks

In all experiments in this section, the first covariance matrix in [19] which is a 1010�

covariance matrix multiplied by 20 is used (Figure 4). The ten eigen-values of this matrix in

descending order are 117.996, 55.644, 34.175, 7.873, 5.878, 1.743, 1.423, 1.213 and 1.007.

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

���
����
������

�
����

��
��

�

�

0341.0015.0028.0120.0095.0003.0003.0030.0065.0032.0
067.0078.0011.0005.0008.0001.0041.0031.0002.0

450.1343.0248.0069.0022.0298.0057.0030.0
750.2544.0058.0042.0038.0154.0155.0

720.5088.0016.0450.0367.0136.0
071.0005.0055.0011.0010.0

084.0017.0028.0005.0
430.1018.0053.0

373.0038.0
091.0

 2010Σ

Figure 4. Covariance matrix used in part (a) of simulation to evaluate effectiveness of the introduced algorithms
and networks to estimate 21�Σ .

For each experiment, 500 samples of zero mean Gaussian data is generated that are given as

input sequence to 21�Σ networks. Figure 5 compares the normalized estimation error of the

introduced 21�Σ networks as a function of sample number. As illustrated, all three proposed

networks have a similar convergence rate and final estimation errors after 500 samples are

0.0523 for algorithm 19, 0.0399 for algorithm 20 and 0.0523 for algorithm 21.

Figure 5. Convergence rate of algorithms (19)-(21) are depicted. As expected all three algorithm show similar
convergence rate and as number of training samples increase normalized error for estimation of 21�Σ decreases.

Figure 6 compares convergence rate of the algorithms (16)-(19). These algorithms use input

sample to update estimation of the covariance matrix and then apply new covariance matrix to

improve 21�Σ estimation. As we expected algorithms (16)-(19) show nearly similar

convergence rate that is because of certain properties of initial value. (in section III it is

showed if initial estimation satisfies certain condition then algorithms (12)-(14) are same).

Comparison of figures 5 and 6 confirm that 21�Σ algorithms given in (16)-(19) converge

smoothly (as it is expected) because incoming input sample alters the covariance matrix

slightly, but algorithm (20)-(21) depends to incoming input samples directly and therefore

converge with more fluctuations.

Figure 7 shows values of the cost function (7) during the process. As stated in section III,

gradient decent based algorithms (19)-(21) create a sequence of kW ’s that try to minimize the

cost function (7). As the number of iterations increases the cost function’s value decreases

toward the absolute minimum which is zero. (As stated before initial matrix 0W is chosen

equal to the identity matrix)

Figure 6. Convergence rate of algorithms (16)-(18) are compared. As it is expected all three algorithms shows
very similar convergence rate. In contrast to algorithms (19)-(21) (figure 5) these algorithms converge smoothly.

Figure 7. Values of cost function (7) during training phase. It is obvious as number of training samples increase;
cost function converges to its absolute minimum point (which is zero).

Figure 8 compares the convergence rate of the algorithm (16) and algorithm (20). It is obvious

that although estimated error in algorithm (20) is less than algorithm (16), but the second one

converges smoothly in contrast with the first one.

Convergence rate of the adaptive 21�Σ algorithms are evaluated in 4, 6, 8 and 10 dimensional

spaces. The same covariance matrix as in the first experiment is exploited for generating 10

dimensional data and three other matrices were selected as the principal minors of that matrix.

In all experiments, the initial value 0W is considered to be identity matrix, and then a

sequence of Gaussian input data are given to the introduced 21�Σ networks. For each

covariance matrix, 500 samples of zero-mean Gaussian data generated and simulations are

done using 21�Σ network associated to algorithm (19). For each experiment normalized error

ke between the estimated and actual 21�Σ at k -th iteration is recorded.

��
� �

���
n

i

n

j
actualij kke

1 1

221))(()(ΣW , n=4, 6, 8, 10 (32)

Figure 8. Convergence rate of algorithms (16) and (20) are compared. As mentioned before algorithm (16) uses
incoming input vector directly to update 21�Σ estimation but algorithm (20) depends to new input through kΣ .
Because of that algorithm (16) shows more variation compared to algorithm (20).

Figure 9 demonstrates estimation errors during iterations for each covariance matrix. The

final values of the error after incoming 500 samples are 0.075 for d=10, 0.071 for d=8, 0.0482

for d=6 and 0.0186 for d=4. In order to demonstrate the tracking ability of the introduced

algorithms when encounter non-stationary data, 500 samples of zero mean Gaussian data in

10� with the covariance matrix as stated before generated. Then drastically data sequence

changed by generating another 500 zero mean 10-dimensional Gaussian data with the second

covariance matrix introduced in [19] and after that suddenly covariance matrix altered to the

third covariance matrix given in [19] by generating another 500 zero mean Gaussian samples.

Figure 10 shows the convergence of 21�Σ networks for non-stationary data. As it is expected

after incoming 500th sample and 1000th sample, estimation error increase suddenly but by

coming new samples belong to the new covariance matrix, 21�Σ network adapt itself to new

condition and gradually estimation error decreases.

Figure 9. Convergence rate of 21�Σ algorithm in 4, 6, 8 and10 dimensional spaces are compared. Covariance
matrix showed in figure 4 is used for simulation in 10 dimensional space and other matrices are selected as
principal minors of that matrix.

Figure 10. This simulation demonstrates tracking ability of the introduced algorithms and networks when facing
non-stationary data. Simulation is done in 10 dimensional space and covariance matrix at iterations 500 and 1000
changed drastically. When covariance matrix changes, estimation error suddenly increases but gradually
introduced algorithms adapt themselves to new covariance matrix and estimation error reduces.

To demonstrate advantage of the availability of the cost function to evaluate accuracy of the

estimations resulted from different initial values and learning rates, 500 zero mean 10

dimensional Gaussian data with first covariance matrix in [19] generated and given to the

21�Σ network. The 21�Σ estimated using three different initial weight matrices equal to

I 5.0 � , I , I 5.1 � (where I is the identity matrix). At the end of the experiments, three

different estimations of the 21�Σ will result. Authors in [5]-[8] did not introduce any criterion

to compare these estimations and find the most accurate one. Existence of the cost function

makes it possible to compare accuracy of these estimations. Substitution of these estimations

resulted by different initial conditions into the cost function (7), will produce 0.2289, 1.117

and 3.335 respectively, which means estimation resulted from the initial weight matrix equal

to I 5.0 � is the most accurate one. Figure 11 compares convergence of 21�Σ network for

those three different initial weight matrices. (Algorithm (17) is used for this experiment but

similar outputs will results if other presented algorithms are used)

Figure 11. This figure shows estimation errors resulted starting with different initial weight matrices. Existence
of the cost function makes it available to compare accuracy of these estimations and find out which one is more
precise.

b. Extracting optimal features from two class Gaussian data

As discussed in the section II, it is apparent that for the Gaussian data the optimal feature

)(xif is given by
221)()(iiif mxΣx �� � . Input sequence is given to the two layers optimal

Gaussian feature extraction network (implemented in section IV) and Gaussian data

transformed into the optimal feature space. For each training data belongs to i� , 21�
iΣ updated

using 21�Σ networks (Figures 1, 2) and im refreshed by applying (23). Finally, quadratic

features
221)()(iiif mxΣx �� � are computed for class i� using the Gaussian optimal feature

extraction network (Figure 3) and x is classified according to the values of)(xif . In this

experiment good classification performance is not main goal but it is important to show how

accurate features are estimated using presented networks to preserve classification capability

of the real features.

Figure 12. Distribution of two Gaussian classes with different covariance matrices and mean vectors in two
dimensional space. Data samples are given to the introduced optimal Gaussian feature extraction network in
order to estimate Gaussian features.

For testing the effectiveness of proposed network in the case of two class Gaussian data, 500

samples of two-dimensional Gaussian data from each of two classes with different covariance

matrices and mean vectors generated. For each pattern x , features)(1 xf and)(2 xf are

computed. Two Gaussian classes 1� and 2� have the following parameters:

�
�

�
�
�

�
���

�

�
�
�

�
�

��
�

�
�
�

�
���

�

�
�
�

��
�

20
02

2

2

22
24

2
2

2211 mm

Figure 12 shows the distribution of samples from two classes. It is obvious that two classes

are not linearly distinguishable. As mentioned before 21�Σ networks estimate 21�Σ and the

two layer Gaussian feature extraction network (figure 3) estimates 1f and 2f .

After training the Gaussian feature extraction network for one epoch, 1f and 2f are extracted

from training data and training pattern x is assigned to the class associated with the minimum

of 1f and 2f . Figure 13 illustrates the transformed data in the optimal feature space. It is

apparent from Figure 13 that two Gaussian classes are linearly separable in the optimal

feature space. In other words, in the optimal feature space, it is possible to draw a straight line

to separate two classes. However, in their original space; two classes are overlapped and are

not linearly separable. By extracting optimal features, only 6 data samples among 1000 total

samples, were misclassified by a linear classifier.

Figure 13. Distribution of two dimensional Gaussian data in the optimal feature space is shown. It is obvious
two classes using line)()(21 xx ff � are linearly separable. However these two classes in the original space are
not linearly separable and overlapped.

The same experiment is repeated with 2-dimensional Gaussian data from 3 classes with 500

input samples from each class. Three Gaussian classes 321 , , ��� have following Parameters:

�
�

�
�
�

�
���

�

�
�
�

�
��

�

�
�
�

�
���

�

�
�
�

�
�

��
�

�
�
�

�
���

�

�
�
�

��
�

10
09

 ,
2
4

20
02

 ,
2

2

22
23

 ,
2
2

332211 mmm

To check how accurate introduced networks estimate the actual features, estimated features

are compared with the actual ones. The following normalized formula is used for the

comparison

. ..., ,2 ,1
)(

))()((

1

1 mi
f

ff
E n

j
jactuali

n

j
jactualiji

fi
�

�

�

�

�

�
�

�
�

x

xx
 (33)

where n is total number of samples (in this experiment 1500�n), m is total number of classes

(in this experiment 3�m), if is the estimated Gaussian feature for class i� and actualif � is

actual Gaussian feature for class i� . After training the network for one epoch, normalized

errors obtained 0144.0
1
�fE , 0356.0

2
�fE and 0495.0

3
�fE which all are less than %5

implying estimated features are close to their real values.

VI. CONCLUSION

In this paper, new adaptive algorithms and associated networks for computing 21�Σ and

extracting optimal features from Gaussian data are presented. The new algorithms are drawn

by optimization of a new cost function. Existence of the cost function makes it possible to

evaluate the accuracy of the estimations resulted from different initial weight matrices and

learning rates, also it simplifies convergence analysis. Simulation results for optimal feature

extraction from two class Gaussian data demonstrated the ability of the proposed algorithms

and networks to estimate the actual Gaussian features. The new adaptive algorithms and

networks can be used in many fields of on-line application such as feature extraction for face

and gesture recognition and on line signal processing.

REFERENCES

[1] S. Theodoridis, Pattern Recognition, 2n Edition, Academic Press, New York, 2003.

[2] C. Chang, H. Ren, “An Experimented-based quantitative and comparative analysis of target detection and image

classification algorithms for hyper-spectral imagery”, IEEE Trans. Geosci. Remote Sensing Vol.38, no. 2, pp. 1044-

1063, 2000.

[3] L.Chen, H. Mark Liao, J.Lin, M.Ko, G. Yu, “Anew LDA based face recognition system which can solve the small

sample size problem”, Pattern Recog., No. 33, pp. 1713-1726, 2000.

[4] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, ”Face recognition using LDA-based algorithms”, IEEE Trans.

Neural Networks, vol. 14, no.1, pp. 195-200, Jan. 2003.

[5] C. Chatterjee, V.P. Roychowdhury, “On self-organizing algorithm and networks for class-separability features”, IEEE

Trans. Neural Network, Vol. 8 m No.3, pp 663-678, 1997.

[6] H.Abrishami Moghaddam, M.Matinfar, S.M. Sajad Sadough, Kh. Amiri Zadeh, “Algorithms and networks for

accelerated convergence of adaptive LDA”, Pattern Recog , Vol. 38, No. 4, pp. 473-483, 2005.

[7] H. Abrishami Moghaddam, Kh. Amiri Zadeh, “Fast adaptive algorithms and networks for class-separability features”,

Pattern Recog., Vol. 36, No. 8, PP. 1695-1702, 2003.

[8] H. Abrishami Moghaddam, M. Matinfar, “Fast adaptive LDA using quasi-Newton algorithm,” Pattern Recog. Letters,

vol. 28, no. 4, pp. 613-621, 2007.

[9] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd Edition, Academic Press, New York, 1990.

[10] S.Ghahramani, Fundamentals of Probability with Stochastic processes, 3rd Edition, Prentice Hall, 2005.

[11] J.R. Magnus, H. Neudecker, Matrix Differential Calculus, JohnWiley , 1999.

[12] L. Ljung, “Analysis of recursive stochastic algorithms”, IEEE Trans. Automat Control, Vol. 22, pp. 551-575, Aug.

1977.

[13] M. Metivier, P. Priouret, “Application of Kushner and Clarck lemma to General Classes of Stochastic Algorithms”,

IEEE Trans. Information Theory, Vol. 30, No. 2, pp. 140-150, 1985.

[14] H. J. Kushner, and D. S. Clarck, Stochastic approximation methods for constrained and unconstrained systems,

Springer-Verlag, New York, 1978M.

[15] A. Benveniste, M. Metivier, and P. Priouret, Adaptive algorithms and stochastic approximations, 2nd Edition, Academic

Press, New York, 1990.

[16] C. Chatterjee, V. Roychowdhury,”Self –Organizing neural Networks for Class-Separability Features”, IEEE Trans.

Neural Network, pp. 1445-1450, 1996.

[17] B.Widrow, S. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.

[18] M. Hagan, H. Demuth, Neural Network Design, PWS Publishing Company, 2002.

[19] T. Okada, S.Tomita, “An Optimal orthonormal system for discriminant analysis”, Pattern Recognition, vol 18, No.2,

pp. 139-144, 1985.

