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Abstract

Subspace constrained mean shift (SCMS) is a non-parametric, iterative algorithm that

has recently been proposed to find principal curves and surfaces based on a new def-

inition involving the gradient and Hessian of a kernel probability density estimate.

Although simulation results using synthetic and real data have demonstrated the use-

fulness of the SCMS algorithm, a rigorous study of its convergence is still missing. This

paper aims to take initial steps in this direction by showing that the SCMS algorithm

inherits some important convergence properties of the mean shift (MS) algorithm. In

particular, the monotonicity and convergence of the density estimate values along the

sequence of output values of the algorithm is shown. Also, it is shown that the dis-

tance between consecutive points of the output sequence converges to zero, as does

the projection of the gradient vector onto the subspace spanned by the D − d largest

eigenvectors of the local inverse covariance matrix. These last two properties provide

theoretical guarantees for stopping criteria. By modifying the projection step, three

variations of the SCMS algorithm are proposed and the running times and performance

of the resulting algorithms are compared.

Keywords: Unsupervised learning, subspace constrained mean shift, dimensionality

reduction, principal curves, principal surfaces, convergence.

1. Introduction

Dimensionality reduction and manifold-learning techniques provide compact and

meaningful representations which facilitate compression, classification, and visualiza-

tion of high dimensional data. In many applications it is a realistic assumption that

the observed high dimensional data have an intrinsically low dimensional structure, so

that the data points lie on or near a low dimensional manifold, embedded in the high

dimensional space. A multitude of different algorithms have been introduced to find or

approximate such a low-dimensional manifold; see, e.g., [1] for an overview.

∗Corresponding author. Phone +16135332390; Fax: +16135332964.

Email addresses: aliyari@mast.queensu.ca (Y. Aliyari Ghassabeh),

linder@mast.queensu.ca (T. Linder), takahara@mast.queensu.ca (G. Takahara)

Preprint submitted to Pattern Recognition April 8, 2013

*Manuscript
Click here to view linked References



In some situations, the observed data can be modeled as low-dimensional ”clean”

data corrupted by high-dimensional noise. In this case, applying common linear or

nonlinear dimensionality reduction techniques on the noisy observations may not lead

to a meaningful low dimensional representation. Partly to overcome this problem, non-

linear generalizations of principal components, called principal curves (and surfaces)

have been proposed. The first formal definition of a principal curve was given by

Hastie and Stuetzle [2]. According to their definition, a principal curve is a smooth

(one-dimensional) curve that passes through the ”middle of a data set.” More formally,

a smooth, parameterized curve that does not intersect itself and has finite length inside

any bounded ball is a principal curve of a probability distribution if each of its points

is the (conditional) mean of the distribution given the set of points that project to it.

Several definitions of principal curves and algorithms to construct them have been

proposed based on, or inspired by, Hastie and Stuetzle’s original definition (see [3],

[4], [5], [6], [7], [8] among others). The aim of these new definitions and algorithms

was to address some of the shortcomings of the original (and subsequent) definition(s)

and to extend the range of potential applications. Recently, an interesting new defi-

nition of principal curves and surfaces has been proposed by Ozertem and Erdogmus

[9]. According to this definition, given a smooth (at least twice continuously differen-

tiable) probability density function (pdf) f on R
D, a d-dimensional principal surface

(d < D) is the collection of all points where the gradient of f is orthogonal to exactly

D − d eigenvectors of the Hessian of f , and the eigenvalues corresponding to these

eigenvectors are negative. Thus each point on the principal surface is a local maximum

of the pdf in a (D − d)-dimensional affine subspace and the principal surface is a d-

dimensional ridge of the pdf. An attractive property of this new definition is that the

smoothness of principal curves and surfaces is not stipulated by their definition, but

rather it is inherited from the smoothness of the underlying pdf or its estimate.

To estimate principal curves/surfaces based on the new definition, [9] proposed the

so-called subspace constrained mean shift (SCMS) algorithm. It is a generalization of

the well-known mean shift (MS) algorithm [10], [11], [12] that iteratively tries to find

modes of a pdf (estimated from data samples) in a local subspace. On synthetic data

sets the performance of the SCMS algorithm is comparable to (and in some situations

better than) the principal curve algorithms of Hastie and Stuetzle [2] and Kégl et al.
[7], and it is computationally less demanding. Moreover, in contrast to most previous

principal curve algorithms, the SCMS algorithm can naturally handle loops and self-

intersections, and it easily generalizes from principal curves to surfaces. Applications

to time-series denoising and independent component analysis (among others) were also

presented in [9]. Recently, the present authors have successfully applied a version of

the SCMS algorithm to vector quantization of noisy sources [13].

Based on an assertion in [12] that the MS algorithm converges, Ozertem and Erdog-

mus claimed that their SCMS algorithm converges to a principal curve/surface. How-

ever, Li et al. [14] pointed out a seemingly fundamental mistake in the proof of the

convergence of the MS algorithm in [12]. Thus it seems that, similar to most previous

principal curve algorithms (with the exception of [7] and [8]), no optimality properties
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for the SCMS algorithm have been proved.

The purpose of this paper is to investigate some convergence properties of the

SCMS algorithm. While we cannot prove that the sequence produced by the algo-

rithm converges (let alone to a principal curve/surface), we show a convergence result

concerning the estimated pdf values along the output sequence, which is indicative

of the ridge property of the newly defined principal curves. We also show that the

two stopping criteria proposed in [9] indeed ensure that the algorithm stops after a fi-

nite number of steps. Since these criteria are based on the fact that any point on the

principal curve/surface is a fixed point of the SCMS algorithm, these results can be

considered as steps toward proving the optimality of the SCMS algorithm, or an im-

proved version of it. In addition, we introduce three variations of the SCMS algorithm

for which our convergence results also apply. The performance of these algorithms is

compared through simulations.

2. Locally Defined Principal Curves and Surfaces

Let f be a pdf on R
D that is at least twice continuously differentiable with gradient

∇f and Hessian H . For d ∈ {0, 1, . . . , D − 1}, Ozertem and Ergodmus defined the

d-dimensional principal surfaces associated with the pdf f as follows:

Definition 1 ([9]). The d-dimensional principal surfacePd associated with pdf f is the
collection of all points x ∈ R

D such that the gradient ∇f(x) is orthogonal to exactly
D− d eigenvectors of the Hessian H(x), and the eigenvalues of H(x) corresponding
to these D − d orthogonal eigenvectors are negative.

For the one-dimensional (d = 1) case, this definition simplifies to the following:

the one-dimensional principal surface (principal curve)P1 is the collection of all points

x ∈ R
D at which the gradient of the pdf is an eigenvector of the Hessian of the pdf,

and the rest of the eigenvectors of the Hessian have negative eigenvalues.

Clearly, all points on a d-dimensional principal surface in Definition 1 are local

maxima of the pdf in a local affine orthogonal D−d-dimensional subspace. For exam-

ple, a principal curve is a ridge of the pdf, and every point on the principal curve is a

local maximum of the pdf in the affine subspace orthogonal to the curve. Thus Ozertem

and Ergodmus’ definition replaces Hastie and Stuetzle’s requirement that every point

on the principal curve be the conditional expectation of the pdf in a local orthogonal

subspace with the requirement that the pdf have a local maximum in a local orthogonal

subspace.

For Gaussian distribution the principal surfaces of Definition 1 coincide with sub-

spaces spanned by the eigenvectors of the covariance matrix, making connections with

principal component analysis [9]. Further existence issues and properties of the new

definition for principal surfaces were not treated in detail in [9], but an effective itera-

tive algorithm was given. This algorithm is based on the well known mean shift (MS)

procedure, which we quickly review before turning to the subspace constrained mean

shift algorithm (SCMS) of [9].
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3. The Mean Shift Algorithm

The MS algorithm is a non-parametric, iterative technique for locating modes of

a pdf obtained via a kernel density estimate (see, e.g., [15]) from a given data set.

These modes play an important role in many machine learning applications, such as

classification [12], image segmentation [16], and object tracking [17].

The MS algorithm iteratively updates its mode estimate to a weighted average of the

neighboring data points to find a stationary point of the estimated pdf [12]. Specifically,

let {x1,x2, . . . ,xn} ⊂ R
D denote the observed data. The kernel density estimate with

kernel K and bandwidth h > 0 is given by

f̂(x) =
1

nhD

n∑
i=1

K

(
x− xi

h

)
, (1)

where K : RD → R is a non-negative function satisfying
∫
RD K(x) dx = 1. Let ‖x‖

denote the Euclidean norm of the vector x. Radially symmetric kernels are defined by

K(x) = ck(‖x‖2), where c is a normalization factor and k : [0,∞)→ [0,∞) is called

the profile of the kernel, which is assumed to be nonnegative and nonincreasing such

that
∫
RD k(‖x‖2) dx <∞. The estimated pdf using the profile k and the bandwidth h

has the form

f̂(x) =
c

nhD

n∑
i=1

k

(∥∥∥x− xi

h

∥∥∥2
)
. (2)

Assuming that k is differentiable with derivative k′, taking the gradient of (2) and

equating it to zero yields that modes of the estimated pdf are roots of the function

m(x) =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2)
∑n

i=1 g
(∥∥x−xi

h

∥∥2) − x (3)

where g(t) = −k′(t). The vector m(x) is called the mean shift vector [12]. The MS

algorithm starts from an arbitrary point in R
D (typically one of the data points) and its

mode estimate yj in the jth iteration is updated as

yj+1 = yj +m(yj). (4)

The algorithm iterates this step until ‖yj+1 − yj‖ < ε, where ε is some predefined

positive threshold.

If the profile k is convex and bounded, the proof of Theorem 1 in [12] implies

that ‖yj+1 − yj‖ → 0 as j → ∞ (the algorithm always stops) and that {f̂(yj); j =

1, 2, . . .} is an increasing and convergent sequence. However, an error was pointed out

in [14] in the proof of the main statement of Theorem 1 in [12] claiming the conver-

gence of the sequence {yi; i = 1, 2, . . .}. Carreira-Perpiñán [18] showed that the MS

algorithm with the Gaussian kernel K(x) = c e−‖x‖
2

is an instance of the EM algo-

rithm and claimed that this fact implies the convergence of {yj}. However, without

additional conditions the EM algorithm may not converge (see [19] or [20]), and so it
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appears that the convergence of the MS algorithm has not yet been proved. Inciden-

tally, the error in the original proof for the convergence of the EM algorithm in [21]

and the error in the proof of the convergence of the MS algorithm in [12] are both due

to the same incorrect use of the triangle inequality.

On the positive side, if f̂ has a finite number of stationary points, the convergence

of the MS algorithm is not hard to prove (see Theorem 2 in [14]). Unfortunately, a

general and useful condition for the finiteness of the set of stationary points of f̂ for

commonly used kernels such as the Gaussian still seems to be missing (although [18]

makes the plausible claim, without proof, that the set of stationary points is always

finite for the Gaussian kernel). The following result considers the special case D = 1,

which may admittedly be of limited interest in applications.

Proposition 1. For D = 1 the mode estimate sequence {yj} generated by the MS
algorithm using the profile k(x) = e−x associated with the Gaussian kernel converges
to a stationary point of f̂(x).

Proof. Since K(x) = c e−x2

, the derivative of the kernel pdf estimate, f̂ ′(x), is pro-

portional to
n∑

i=1

(xi − x) exp
(
− (x− xi)

2

h2

)
,

which is easily seen to be a real analytic function that is not constant on R. Hence

the set of stationary points S = {x ∈ R : f̂ ′(x) = 0} has no limit points. However,

S is a bounded set since one clearly has S ⊂ [m,M ], where m = min1≤i≤n xi and

M = max1≤i≤n xi, implying that S is finite. Thus {yj} converges to a point in S by

Theorem 2 in [14]. �

4. Subspace Constrained Mean Shift Algorithms

Under some regularity conditions, the set of local maxima of a pdf is exactly the

zero-dimensional principal manifold P0 resulting from Definition 1 for d = 0. The

SCMS algorithm [9] generalizes the MS algorithm to estimate higher order principal

curves and surfaces (d ≥ 1). Similar to the MS algorithm, the SCMS algorithm starts

from a finite data set sampled from the probability distribution, forms a kernel density

estimate f̂ based on the data, and in each iteration it evaluates the MS vector. How-

ever, the SCMS algorithm projects the mean shift vector to the local (affine) subspace

spanned by the D − d eigenvectors corresponding to the D − d largest eigenvalues of

the so-called local inverse covariance matrix of the pdf estimate at that point, given by

Σ̂
−1

(x) = −Ĥ(x)f̂(x)−1 +∇f̂(x)∇f̂(x)T f̂(x)−2, (5)

where Ĥ(x) and∇f̂(x) are the Hessian and gradient of the pdf estimate at x, respec-

tively. Here and throughout the paper bold lowercase letters denote column vectors of

appropriate dimensions, and xT is the transpose of x. Note that Σ̂
−1

is the negative

Hessian of the logarithm of f̂ . The motivation for this definition and its connections
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to Definition 1 and principal component analysis are discussed in detail in [9]. Note

that Σ̂
−1

is well defined and symmetric if f̂ is positive and twice continuously differ-

entiable everywhere. The SCMS algorithm can be summarized as follows.

1, Set ε > 0, j = 1, and initialize the SCMS algorithm to an arbitrary point y1.

2. Evaluate the mean shift vector m(yj) using (3).

3. Evaluate the gradient, the Hessian matrix, and the local inverse covariance matrix

Σ̂
−1

given in (5) at yj . Perform the eigendecomposition of Σ̂
−1

j = Σ̂
−1

(yj)

and find its eigenvalues and eigenvectors.

4. Let V j = [v1, . . . ,vD−d] be the D × (D − d) matrix whose columns are the

D− d orthonormal eigenvectors corresponding to the D− d largest eigenvalues

of Σ̂
−1

j .

5. Compute yj+1 = V jV
T
j m(yj) + yj .

6. Stop if ‖yj+1 − yj‖ < ε; otherwise increment j by 1 and go to step 2.

Remark. In [9], the stopping rule ‖yj+1 − yj‖ < ε was suggested as an alternative to

the recommended rule
‖V T

j+1∇f̂(yj+1)‖
‖∇f̂(yj+1)‖

< ε

which is meant to check if the gradient is (nearly) orthogonal to the subspace spanned

by the columns of V j . However, this criterion seems to be problematic (e.g., the

denominator is zero if the algorithm starts at a stationary point). We will later consider

the following simpler stopping rule of a similar flavor:

6’. Stop if ‖V T
j+1∇f̂(yj+1)‖ < ε; otherwise increment j by 1 and go to step 2.

Typically, n instances of the SCMS algorithm are run, each time initialized to one

of the n data points. The resulting n output points are considered as a discrete ap-

proximation to the underlying principal curve or surface; see the illustrative example

in Figure 1. In both the MS and the SCMS algorithms the stopping threshold ε is set

manually so that a good tradeoff between running time and approximation accuracy

is achieved. The problem of selecting the bandwidth h for the MS algorithm is dis-

cussed in detail in [12], and variable-bandwidth, locally-adaptive MS algorithms are

introduced and investigated in [22]. The bandwidth selection problem for the SCMS

algorithm is discussed in detail in [9], but it is not clear that the automatic rules sug-

gested from the literature of kernel density estimation are in any way optimal when

applied in conjunction with the SCMS algorithm.

In [9] extensive simulation results on artificial data demonstrated the ability of the

algorithm to well approximate principal curves and surfaces. As well, promising appli-

cations of the SCMS algorithm to time-varying MIMO channel equalization and time

series signal denoising were discussed. We note here that an algorithm for manifold
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Figure 1: (a) n = 600 data points were generated by adding 3-dimensional standard Gaussian noise samples

to 600 points uniformly sampled on a spiral in R
3. (b) The output of the SCMS algorithm using D = 3,

d = 1, the Gaussian kernel with bandwidth h = 3, and stopping threshold ε = 0.005.

denoising that is somewhat similar in spirit to SCMS, but which is based on the blurring

version of the MS procedure, was given by Wang and Carreira-Perpiñán [25].

On the theoretical side, [9] claimed that the SCMS algorithm will converge to a

point on the principal surface with appropriate dimensionality. This claim was based

on the assumption that the MS algorithm always converges which, as we discussed,

has so far been unproven. In addition, it does not seem clear at all that the convergence

of MS actually implies the convergence of SCMS, let alone its convergence to the

principal surface.

The next proposition states three convergence results relating to the density estimate

values produced by the SCMS algorithm and the two stopping criteria presented earlier.

The proof is given in the Appendix.

Proposition 2. Assume the kernel pdf estimator f̂ is defined as in (2) with a radially
symmetric kernel K having profile k which is positive, nonincreasing, convex, and
such that the function t 	→ k(t2) is twice continuously differentiable at all t ∈ R. Let
{yj} denote the sequence of points generated by the SCMS algorithm with arbitrary
initialization. Then the following hold:

(i) The sequence {f̂(yj)} is nondecreasing and convergent.

(ii) lim
j→∞

‖yj+1 − yj‖ = 0.

(iii) lim
j→∞

‖V T
j ∇f̂(yj)‖ = 0.

Remarks.

(a) Parts (i) and (ii) of the proposition are analogous to what is proved in Theorem 1

of [12] for the MS algorithm, with some proof ideas being also similar. All three
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statements indicate (but by no means prove) the ability of the SCMS algorithm

to converge to the principal surface of dimension d. In particular, (i) is related to

the “ridge” property of locally defined principal curves and surfaces, (ii) and (iii)

provide useful stopping criteria, while (iii) is related to the fact that at any point

y of Pd one must have V (y)T∇f̂(yj) = 0, where V (y) is the D × (D − d)

matrix whose columns are the D− d orthonormal eigenvectors corresponding to

the D − d largest eigenvalues of Σ̂
−1

(y).

(b) The differentiability condition on the profile k ensures that f̂ is twice contin-

uously differentiable so that all quantities used in the SCMS updates are well

defined no matter how the algorithm is initialized. The condition that the kernel

K is integrable and the conditions on k imposed in the proposition imply that k

is bounded, its derivative k′ is nondecreasing and negative on [0,∞), and both

k(x) and k′(x) converge to zero as x → ∞. The profile k(x) = e−x of the

widely used Gaussian kernel satisfies these conditions.

(c) At the price of complicating the notation, the proof can straightforwardly be

extended to more general kernel density estimates of the form

f̂(x) =
c

nhD

n∑
i=1

k

(∥∥∥x− xi

h

∥∥∥2

Ki

)

where ‖y‖2Ki
= yTKiy, with Ki, i = 1, . . . , n being symmetric and positive

definite D × D matrices. The potential usefulness of considering such more

general estimates, which may account better for anisotropy and local scale infor-

mation in the data sample, has been argued in [14].

5. Simulation Results

An inspection of the proof of Proposition 2 shows that all three statements remain

valid if V j , j = 1, 2, . . ., is an arbitrary sequence of D × (D − d) matrices having

orthonormal columns. Thus for the convergence results to hold, V j does not have to

be the matrix whose columns are the D − d orthonormal eigenvectors corresponding

to the largest eigenvalues of Σ̂
−1

(yj).

Of course, for the outputs of the algorithm to be meaningful the columns of V j

should be (nearly) orthogonal to the gradient of f̂ at points on the d-dimensional prin-

cipal surface of f̂ . The choice of Σ̂
−1

was motivated in [9] by Definition 1 and the

connection to principal components when the underlying pdf is Gaussian. In this case

the local inverse covariance matrix (of the Gaussian pdf, not estimated from data) is

just the inverse covariance matrix of the Gaussian pdf up to a constant at any point with

eigendirections the principal component directions. In practice, the density estimate f̂

is never Gaussian so the use of Σ̂
−1

seems less well motivated for the SCMS algorithm

than simply using the estimated Hessian Ĥ , which is a more natural choice in the con-

text of Definition 1, as well as requiring slightly fewer operations to compute. At
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points x on the d-dimensional principal surface of f̂ , the gradient∇f̂(x) is orthogonal

to exactly D− d eigenvectors of Σ̂
−1

(x) and to exactly D− d eigenvectors of Ĥ(x),

and these two sets of eigenvectors are the same (see [9]). The eigenvalues of Ĥ(x)

associated with these eigenvectors are −f̂(x) times the corresponding eigenvalues of

Σ̂
−1

(x) and so we form V j from the D − d eigenvectors of Ĥ(yj) corresponding to

the D − d smallest eigenvalues of Ĥ(yj).

In this section, we compare the use in the SCMS algorithm of Σ̂
−1

, Ĥ , and two

local estimates (local to yj) of the covariance matrix of f̂ due to Wang and Carreira-

Perpiñán [25]. In the resulting three variations of the original SCMS algorithm, the

mean shift vectors and output updates are computed using (3) and Step 5 of the SCMS

algorithm, respectively, but instead of the local inverse covariance matrix in (5), three

different matrices are used. Let {y1
j , . . . ,y

n
j } denote the set of outputs after the jth

iteration, where y
(i)
j is the output of the algorithm when it is initialized to the ith data

point xi, i = 1, . . . , n. In the jth iteration, the proposed matrices at a point x (set to

one of the points y
(i)
j ) are

(i) The Hessian of f̂ ,

Ĥ(x) =
c

nh2+D

n∑
i=1

(
−I +

2(x− xi)(x− xi)
T

h2

)
exp

(
−‖x− xi‖2

2h2

)
,

where c is the kernel profile normalization factor and I is the D × D identity

matrix;

(ii) The estimated local covariance matrix using the κ nearest data points,

Σ̂κ(x) =
1

κ− 1

∑
xi∈Nκ(x)

(xi −mκ(x))(xi −mκ(x))
T ,

where Nκ(x) is the set of the κ nearest neighbors of x in the observed data set

{x1, . . . ,xn}, and mκ(x) is the average over members of Nκ(x);

(iii) The estimated local covariance matrix using the κ nearest outputs,

Σ̂κ,j(x) =
1

κ− 1

∑
y
(i)
j ∈Nκ,j(x)

(y
(i)
j −mκ,j(x))(y

(i)
j −mκ,j(x))

T ,

where Nκ,j(x) is the set of the κ nearest neighbors of x among the outputs

{y1
j , . . . ,y

n
j } at the jth iteration and mκ,j(x) is the average over members of

Nκ,j(x). In this case we update all the outputs in each iteration.

For each matrix above the matrix V j at Step 4 of the SCMS algorithm is given by

V j = [vd+1, . . . ,vD],

where vi, i = d + 1, . . . , D are the D − d eigenvectors corresponding to the D − d

smallest eigenvalues. The projection step and termination criterion are the same as
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in Steps 5 and 6, respectively, in the SCMS algorithm. Proposition 2 guarantees that

each of the resulting three SCMS algorithm variations stops after a finite number of

iterations.

The projection of the MS vectors onto the subspace spanned by the eigenvectors

of the Hessian matrix corresponding to the D − d smallest eigenvalues complies with

Definition 1, since a point x is located on the d-dimensional principal surface if the

gradient at x is orthogonal to the D − d smallest eigenvectors of the Hessian at x and

the corresponding eigenvalues are negative [26]. The matrices in (ii) and (iii) follow

Wang and Carreira-Perpiñán [25]. There the authors computed the blurred MS vectors

using the blurring version of the MS algorithm [27] and then a corrector projective step

is computed to constrain the motion to be orthogonal to the underlying manifold.

Although using only the κ nearest neighbors instead of the whole data set to esti-

mate the projection matrix does not change the theoretical complexity in each iteration,

in practice with a finite data set the running time significantly reduces. A good value of

κ will in general depend on the structure of the underlying manifold. In our simulations

we chose κ to be between 4 and 6 percent of the number of observations, but setting κ

in general is beyond the scope of this paper. We note that the authors in [25] suggest

that κ typically should grow sublinearly with the sample size n.

In the rest of this section, we present a simulation example using the original SCMS

algorithm and our three variations on the two and three dimensional spiral. The input

data are generated as

xi = ui + ei, i = 1, . . . , n,

where the ui’s are independently and uniformly selected on the two or three dimen-

sional spiral, called the generative curve, and the e′is are independent, zero mean spher-

ical Gaussian random vectors of appropriate dimension, independent of the ui’s and

with component variance σ2. We used ε = 0.01 in the stopping criterion in Step 6 of

the SCMS algorithm in all runs. For the two dimensional spiral we used n = 1000 data

samples, σ2 = 1 for the noise variance, h = 2 for the bandwidth of the kernel den-

sity estimator, and κ = 50 nearest neighbors for computing the two variations of the

local covariance matrix. For the three dimensional spiral we used n = 600, σ2 = 0.6,

h = 3, and κ = 40. For performance evaluation we computed the average squared

Euclidean distance between the output points and the closest points on the generative

curve, and the average running time, in seconds. All simulations were run using Matlab

on a desktop computer with an Intel Core i7-870 processor.

2-d Spiral SCMS Hessian Cov. 1 Cov. 2

Running time (sec.) 11.34 11.34 3.91 3.85

Av. Squared Euclidean Distance 0.074 0.075 0.077 0.077

3-d Spiral SCMS Hessian Cov. 1 Cov. 2

Running time (sec.) 109.89 111.56 19.53 17.89

Av. Squared Euclidean Distance 0.273 0.299 0.152 0.152

Table 1: Performance results for the two and three dimensional spirals.
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Table 1 shows the results for the two and three dimensional spirals using the orig-

inal SCMS algorithm and the three variations using the Hessian, the local covariance

matrix using the original data points (Cov. 1), and the local covariance matrix using

the output points in each iteration (Cov. 2) in place of the inverse covariance matrix.

Performance in terms of closeness to the generative curve is similar for all 4 variations

though, interestingly, use of the local covariance matrices gives no worse performance.

In terms of runtime, the local covariance matrices perform significantly better, as ex-

pected. Adaptive optimization of the local neighborhood size κ should yield improved

performance. We note that we also tested all four algorithms on a two dimensional

circle with very similar results.

Figures 2 and 3 show the generative curve, the simulated data points, and the out-

put points from the four versions of the algorithm, for the two dimensional and the

three dimensional spiral, respectively. All four versions of the algorithm show similar

performance visually.
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Figure 2: The blue points are n = 1000 samples uniformly selected on the two dimensional spiral generative

curve, the red points are the outputs of each algorithm, and the black points are the observed data points

generated by adding independent, zero mean Gaussian noise to the points on the generative curve.
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Figure 3: The blue points are n = 600 samples uniformly selected on the three dimensional spiral generative

curve, the red points are the outputs of each algorithm, and the black points are the observed data points

generated by adding independent, zero mean Gaussian noise to the points on the generative curve.

6. Discussion

We studied the SCMS algorithm for finding principal curves and proved conver-

gence result indicating that it inherits some important convergence properties of the

MS algorithm. The more challenging problem of proving the convergence of the se-

quence generated by the SCMS algorithm is the subject of future research. Further

along this line, the study of the optimality of the SCMS algorithm (i.e., its convergence

to a principal curve/surface), seems to necessitate a more careful study of the definition

of locally defined principal curves and surfaces. In particular, it is likely that exis-

tence issues should be resolved and differential geometric properties studied, before

optimality issues can be addressed.

Appendix

Proof of Proposition 2. The subspace constrained mean shift sequence {yj} is defined

recursively by

yj+1 = V jV
T
j m(yj) + yj , (6)
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where

m(yj) =

∑n
i=1 xig(

∥∥yj−xi

h

∥∥2
)∑n

i=1 g(
∥∥yj−xi

h

∥∥2
)
− yj , (7)

with y1 being an arbitrary starting point. Here g(x) = −k′(x), where k is the profile

of kernel K and V j is the D× (D− d) matrix having orthonormal columns which are

eigenvectors corresponding to the largest eigenvalues of the local inverse covariance

matrix Σ̂
−1

evaluated at yj .

Since the profile k is bounded, the sequence {f̂(yj)} is bounded, so it suffices to

show that the sequence is nondecreasing to prove convergence. The convexity of k

implies that k(t2) − k(t1) ≥ g(t1)(t1 − t2) for all t1, t2 ≥ 0, where g = −k′. This

and the definition of f̂ yield

f̂(yj+1)− f̂(yj) =
c

nhD

n∑
i=1

(
k
(∥∥∥yj+1 − xi

h

∥∥∥2 )
− k

(∥∥∥yj − xi

h

∥∥∥2
)

≥ c

nhD+2

n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )(‖yj − xi‖2 − ‖yj+1 − xi‖2
)

= Cj

n∑
i=1

pj(i)
(‖yj − xi‖2 − ‖yj+1 − xi‖2

)
, (8)

where

pj(i) =
g
(‖yj−xi

h ‖2)∑n
k=1 g

(‖yj−xk

h ‖2) , i = 1, . . . , n

and

Cj =
c

nhD+2

n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )
.

Since g(t) > 0 for all t ≥ 0, pj(1), . . . , pj(n) are well defined, positive, and sum to 1.

In fact, the name “mean shift” derives from the fact that the mean shift of yj , given in

(3), can be written in terms of an expectation; namely

m(yj) =
n∑

i=1

pj(i)(xi − yj) = E[Zj ],

where Zj is an R
D-valued random vector with discrete distribution given by Pr(Zj =

xi − yj) = pj(i), i = 1, . . . , n. Thus, letting T j = V jV
T
j , the SCMS update step

can be rewritten as

yj+1 − yj = T jm(yj) = T jE[Zj ]. (9)

Let W j be a D×D matrix representing any orthogonal projection onto the null space

of T j . Then x = T jx+W jx for all x ∈ R
D, and T jx and W jy are orthogonal for
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all x,y ∈ R
D. We can rewrite the last sum in (8) as follows

n∑
i=1

pj(i)
(‖xi − yj‖2 − ‖xi − yj+1‖2

)
= E

[‖Zj‖2
]− E

[∥∥Zj − T jE[Zj ]
∥∥2]

= E
[‖W jZj‖2 + ‖T jZj‖2

]− E
[‖W jZj‖2 +

∥∥T jZj − T jE[Zj ]
∥∥2]

= E
[‖T jZj‖2

]− E
[∥∥T jZj − E[T jZj ]

∥∥2]
=

∥∥E[T jZj ]
∥∥2

= ‖yj+1 − yj‖2,

where in the penultimate equality we applied the identity E[Z2] = Var[Z] + (E[Z])2,

valid for real random variables with finite variance, to the components of T jZj . Com-

bining this with (8), we obtain

f̂(yj+1)− f̂(yj) ≥ Cj‖yj+1 − yj‖2, (10)

where Cj > 0, which implies that {f̂(yj)} is nondecreasing and thus convergent,

proving part (i) of the proposition.

To prove part (ii), we note that k(x) > 0 for all x ≥ 0 implies that f̂(y1) >

0, so part (i) yields min{f̂(yj) : j ≥ 1} = f̂(y1) > 0. But this in turn implies

that {yj} is a bounded sequence, since otherwise it would have a subsequence {yjk
}

such that limk→∞ ‖yjk
‖ = ∞ which, in view of limx→∞ k(x) = 0, would give

limk→∞ f̂(yjk
) = 0, contradicting our uniform positive lower bound on the f̂(yj).

In view of the above, there exists R > 0 such that ‖yj −xi‖ ≤ R for all j ≥ 1 and

i = 1, . . . , n. Since g = −k′ is nonincreasing on [0,∞), we obtain

Cj =
c

nhD+2

n∑
k=1

g
(∥∥∥yj − xk

h

∥∥∥2)
≥ c

hD+2
g
(R2

h2

)
= C,

where C > 0 since g(x) > 0 for all x ≥ 0. Thus (10) implies

‖yj+1 − yj‖2 ≤ C−1
(
f̂(yj+1)− f̂(yj)

)
,

and since lim
j→∞

(
f̂(yj+1)− f̂(yj+1)

)
= 0 by part (i), we obtain lim

j→∞
‖yj+1−yj‖ = 0.

Finally, to show (iii) we note that by definition (2) of f̂ ,

∇f̂(yj) =
2c

nhD+2

n∑
i=1

(xi − yj)g
(∥∥∥yj − xi

h

∥∥∥2 )

=
2c

nhD+2

[
n∑

i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )][∑n
i=1 xig(‖xi−yj

h ‖2)∑n
i=1 g(‖

xi−yj

h ‖2)
− yj

]

=
2c

nhD+2

[
n∑

i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )]
m(yj).
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Therefore,

‖V T
j ∇f̂(yj)‖ =

2c

nhD+2

[
n∑

i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )]
‖V T

j m(yj)‖.

Since V j has orthonormal columns and T j = V jV
T
j , we have ‖T jm(yj)‖ =

‖V T
j m(yj)‖. This and (9) yield

‖V T
j ∇f̂(yj)‖ =

2c

nhD+2

[ n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )]
‖yj+1 − yj‖

so part (iii) follows from part (ii) and the fact that the conditions on k ensure that

g = −k′ is bounded. �
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