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Abstract The mean shift algorithm is a popular non-parametric technique that has

been widely used in statistical pattern recognition and machine learning. The algo-

rithm iteratively tries to find modes of an estimated probability density function.

These modes play an important role in many applications, such as clustering, im-

age segmentation, feature extraction, and object tracking. The modes are fixed points

of a discrete, nonlinear dynamical system. Although the algorithm has been success-

fully used in many applications, a theoretical study of its convergence is still missing

in the literature. In this paper, we first consider the iteration index as a continuous

variable and, by introducing a Lyapunov function, show that the equilibrium points

are asymptotically stable. We also show that the proposed function can be considered

as a Lyapunov function for the discrete case with the isolated stationary points. The

availability of a Lyapunov function for continuous and discrete cases shows that if

the mean shift iterations start in a neighborhood of an equilibrium (fixed) point, the

generated sequence remains close to that equilibrium point and finally converges to

it.

Keywords Mean Shift Algorithm, Lyapunov Function, Mode Estimate Sequence,

Asymptotically Stable, Convex Function, Equilibrium Point, Fixed Point.

1 Introduction

The mean shift (MS) algorithm is a non-parametric mode seeking technique that was

introduced by Fukunaga and Hostetler [1] and later developed by Cheng [2] and

Comanicio and Meer [3]. The algorithm starts from one of the data points and iter-

atively shifts each data point to the weighted average of the data set in order to find

Y. Aliyari Ghassabeh

Department of Mathematics and Statistics, Queen’s University

Tel.: +1613-331-4363

Fax: +1613-533-2964

E-mail: aliyari@mast.queensu.ca

Manuscript
Click here to download Manuscript: ML.tex 
Click here to view linked References

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

http://www.editorialmanager.com/mach/download.aspx?id=90152&guid=2d5c846e-8582-4542-8695-91b00d97dea9&scheme=1
http://www.editorialmanager.com/mach/viewRCResults.aspx?pdf=1&docID=2711&rev=2&fileID=90152&msid={A59D8207-89A6-4B64-AF6E-DC8B5CFC7DB7}
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the stationary points of an estimated probability density function (pdf). Modes of an

estimated pdf have been used in a wide range of applications, including image seg-

mentation [3] [4], object tracking [5] [6], noisy source vector quantization [7], and

nonlinear dimensionality reduction [8]. The main advantage of the MS algorithm is

that it does not require any prior knowledge of the number of clusters and there is

no assumption for the shape of the clusters. The MS algorithm generates a sequence,

called the mode estimate sequence, in order to estimate modes of an estimated pdf.

In the original paper, the authors claimed that the mode estimate sequence is a con-

vergent sequence [3], but the given proof was not correct. Later in another work,

Carreira-Perpiñán [9] showed that the MS algorithm with a Gaussian kernel is an

expectation maximization (EM) algorithm and therefore the generated sequence con-

verges to a mode of the estimated pdf. However, there are situations when the EM

algorithm may not converge [21], as a result of which the convergence of the MS

algorithm does not follow. The author in [9] also assumed the iteration index to be a

continuous variable; in addition, for a special case when all the terms in the Gaussian

mixture model have the same diagonal bandwidth matrix, this author introduced a

strict Lyapunov function in order to show that an equilibrium point of the system is

an asymptotically stable point

In two recent works, the convergence of the MS algorithm in the one-dimensional

space (d = 1) is investigated [10, 11]. The authors in [10] showed that the MS algo-

rithm with an analytic kernel (e.g., Gaussian kernel) generates a convergent sequence

in the one-dimensional space. The author in [11] proved that for the MS algorithm in

the one-dimensional space with certain class of kernels, the mode estimate sequence

is a monotone and convergent sequence. However, the authors in [10, 11] could not

generalize the convergence result to a high dimensional space (d > 1).

In this paper, we first generalize the results given in [9] for the iteration index as a

continuous variable. In particular, we assume that each term in the pdf estimate using

the Gaussian kernel has a unique covariance matrix instead of assuming a constant

diagonal bandwidth matrix for all the terms. Then, we introduce a strict Lyapunov

function and show that it satisfies the required condition for an equilibrium point to

be asymptotically stable. We also investigate the discrete case with isolated stationary

points and show that the proposed Lyapunov function for the continuous case can be

used for the discrete case as well. The availability of a Lyapunov function guaran-

tees the asymptotic stability of the system (i.e., the mode estimate sequence remains

close to an equilibrium point and finally converges to it). In section 2, I give a short

introduction to the MS algorithm. I also provide a brief review of the Lyapunov sta-

bility theory in section 3. The main theoretical results are given in section 4. The

concluding remarks are given in section 5

2 Mean shift algorithm

Let xi ∈ R
d, i = 1, . . . , n be a set of n independent and identically distributed

(iid) random variables. The multivariate kernel density estimation using kernel K
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Asymptotic stability of fixed points of mean shift algorithm 3

and bandwidth matrix H is given by [12]

f̂K,H(x) =
1

n|H|1/2

n
∑

i=1

K
(

H−1/2(x− xi)
)

,

where the kernel K is a non-negative, real-valued, and integrable function with a

compact support satisfying the following conditions [13]

∫

Rd

K(x)dx = 1, lim
‖x‖→∞

‖x‖dK(x) = 0,

∫

Rd

xK(x)dx = 0.

For simplicity, we assume a specific class of kernel functions called radially symmet-

ric kernels that are defined in terms of a profile k.

Definition 1. A profile k : [0,∞) → [0,∞) is a non-negative, non-increasing,

and piecewise continuous function that satisfies
∫∞

0
k(x)dx < ∞ and K(x) =

ck,dk(‖x‖
2), where ck,d is a normalization factor that causes K(x) to integrate to

one.

Furthermore, the shadow of a profile k is defined by [2]

Definition 2. A profile h is called the shadow of a profile k if and only if

h(x) = a+ b

∫ ∞

x

k(t)dt,

where b > 0 and a ∈ R is a constant.

To reduce the computational cost, in practice the bandwidth matrix H is chosen

to be proportional to the identity matrix, i.e., H = hI. The estimated pdf using the

profile function and with only one bandwidth parameter simplifies to the following

form

f̂h,k(x) =
ck,d
nhd

n
∑

i=1

k
(

‖
x− xi

h
‖2
)

. (1)

The modes of an estimated pdf are zeros of the gradient function. Taking the gradient

of (1) and equating it to zero reveals that modes of the estimated pdf are fixed points

of the following function

mh,g(x) =

∑n
i=1

xig(‖
x−xi

h ‖2)
∑n

i=1
g(‖x−xi

h ‖2)
− x, (2)

where g(x) = −k′(x). The vector mh,g is called the mean shift vector [3].

Note that the fixed point of a function f : Rd → R
d is any value x ∈ R

d such that

f(x) = x, whereas a stationary point of f is any value y ∈ R
d such that ∇f(y) = 0.

The mean shift vector can alternatively be represented by [3]

mh(x) = c
∇f̂k(x)

f̂g(x)
, (3)
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4 Youness Aliyari Ghassabeh

where c is a scalar depending on the bandwidth h, and f̂k represents the pdf estimate

using the profile k. The above expression shows that at an arbitrary point x, a mean

shift vector is proportional to the normalized density gradient estimate at x. The MS

algorithm starts from one of the data points and updates the mode estimate iteratively.

The mode estimate in the kth iteration is updated by

yk+1 = mh,g(yk) + yk

=

∑n
i=1

xig(‖
yk−xi

h ‖2)
∑n

i=1
g(‖yk−xi

h ‖2)
. (4)

It can be shown that the norm of the difference between two consecutive mode es-

timates converges to zero [8], i.e., limk→∞ ‖yk+1 − yk‖ = 0. Therefore the MS

algorithm terminates the iterations until the norm of the difference between two con-

secutive mode estimates becomes less than some predefined threshold. The conver-

gence of the algorithm for the special one dimensional case (d = 1) is proved [11],

but unfortunately the convergence result has not been generalized for higher dimen-

sions, i.e. d > 1.

3 Lyapunov Stability Theory

Consider a general nonlinear dynamical system [19]

ẋ = f(x(t), t), Continuous case,

x(k + 1) = f(x(k), k), x(0) = x0, Discrete case,

where x ∈ U ⊂ R
d, U is a neighborhood of the origin and f : R

d → R
d is a

continuous and differentiable function. An equilibrium point x∗ for continuous and

discrete cases is defined as follows [18].

Definition 3. A vector x∗ is called an equilibrium point from time t0 for the contin-

uous case if f(x∗, t) = 0, ∀t ≥ t0 and is called an equilibrium (or fixed) point from

time k0 for the discrete case if f(x∗, k) = x∗, ∀k > k0.

An equilibrium point x∗ is called Lyapunov stable if solutions starting close

enough to the equilibrium point remain close enough forever. Formally speaking,

we have [18].

Definition 4. An equilibrium point x∗ is called Lyapunov stable if for every ǫ > 0
there exists a δ(ǫ) > 0 such that if ‖x(0)− x∗‖ < δ(ǫ) then ‖x(t)− x∗‖ < ǫ for all

t ≥ 0 (the Lyapunov stability is defined similarly for the discrete case).

The equilibrium point x∗ is said to be asymptotically stable if it is Lyapunov

stable and if there exists δ > 0 such that if ‖x(0) − x∗‖ < δ then limt→∞ ‖x(t) −
x∗‖ = 0 [18].

Let x∗ denote an equilibrium point for a continuous dynamic system. Lyapunov’s

second method states that if there exists a continuous, differentiable function V (x) :
E → R, where E ⊂ R

d is a neighborhood of x∗, such that V (x∗) = 0 and V (x) > 0
if x 6= x∗, then x∗ is asymptotically stable if V̇ (x) < 0 for all x ∈ E\{x∗} [16]. For
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Asymptotic stability of fixed points of mean shift algorithm 5

a discrete time system, the theorem is slightly different: if there exist a continuous,

differentiable function V (x) : E → R, where E is defined as before, such that

V (x∗) = 0 and V (x) > 0 if x 6= x∗, then x∗ is asymptotically stable if ∆V (x) =
V (xk+1)− V (xk) < 0 for all x ∈ E\{x∗} [17].

4 Theoretical results

In this section, we first consider the iteration index for the MS algorithm to be contin-

uous and generalize the results in [9]. Then we show that the proposed function can

also be used as a Lyapunov function for the discrete case with isolated fixed points,

which shows that the fixed points of the MS algorithm are asymptotically stable.

4.1 Continuous case

Carreira-Perpiñán investigated the MS algorithm with a Gaussian kernel and consid-

ered the iteration index to be a continuous variable [9]. The Gaussian MS algorithm

with a continuous iteration index can be written as follows [9]

ẋ =

∑n
i=1

Σ−1

i (xi − x) exp(−(xi − x)tΣ−1

i (xi − x)/2)
∑n

i=1
exp(−(xi − x)tΣ−1

i (xi − x)/2)
=

∇f̂(x)

f̂(x)
, (5)

where Σi is the covariance matrix for ith component in the Gaussian mixture model.

For simplicity the author in [9] assumed that Σi = h2I. Then the above continuous

dynamical system reduces to

ẋ = ∇(h2 log(f̂(x))), (6)

where f(x) is defined in (1) and has a Gaussian kernel with the bandwidth matrix h2I.

The Lyapunov function in neighborhood E of any equilibrium point x∗ is defined

by [9]

V (x) = h2 log
f̂(x∗)

f̂(x)
. (7)

It is not difficult to show that V (x∗) = 0 and V (x) > 0 for all x ∈ E\{x∗}, i.e. V
is positive definite in E\{x∗}. The author in [9] also showed that V̇ (x) < 0 for all

x ∈ E\{x∗}. Therefore, the equilibrium point x∗ is asymptotically stable point for

the dynamical system. The author in [9] mentioned that finding a Lyapunov function

for the general case (5) is more difficult.

In a recent work, the authors provided a sufficient condition for the MS algorithm

with the Gaussian kernel to have a unique mode in the convex hull of the data set

(Theorem 2 in [23]). They showed that if the MS algorithm has a unique mode in the

convex hull of the data set, then the mode is globally stable and the mode estimated

sequence is an exponentially convergent sequence (Theorem 3 in [23]). The provided

sufficient condition in [23] depends on the data set and the covariance matrix of each

Gaussian term in the pdf estimate. In general, it may be a difficult task to choose
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6 Youness Aliyari Ghassabeh

the covariance matrices to satisfy the provided sufficient condition. Furthermore, the

MS algorithm with a unique mode has limited use in practice. The MS algorithm has

been widely used in applications such as image segmentation and clustering, which

require the algorithm to have multiple modes.

We propose a Lyapunov function for the general case (5) in order to guarantee

the asymptotic stability of the algorithm for a general Gaussian mixture model. Let

xi ∈ R
d, i = 1, . . . , n denote our samples. The density estimate using the Gaussian

kernel is given by

f̂(x) = c
n
∑

i=1

exp(−(x− xi)
tΣ−1

i (x− xi)/2), (8)

where c is the normalization factor and Σi, i = 1, . . . , n is the covariance matrix for

ith sample. Let N(xi,Σi) = exp(−(x − xi)
tΣ−1

i (x − xi)/2), then the gradient

estimate at x using f̂(x) is computed by

∇f̂(x) = c

n
∑

i=1

Σ−1

i (xi − x)N(xi,Σi)

= c
n
∑

i=1

Σ−1

i xiN(xi,Σi)− c
n
∑

i=1

Σ−1

i N(xi,Σi)x. (9)

Multiplying both sides of (9) by [
∑n

i=1
Σ−1

i N(xi,Σi)]
−1/c, we obtain

[

n
∑

i=1

Σ−1

i N(xi,Σi)]
−1∇f̂(x)

c
= [

n
∑

i=1

Σ−1

i N(xi,Σi)]
−1

n
∑

i=1

Σ−1

i xiN(xi,Σi)− x

= m(x). (10)

Consider a nonlinear continuous system ẋ(t) = m(x(t)), where m : Rd → R
d is

a continuous, differentiable function defined in (10). Let x∗ be an equilibrium point

of the system, i.e., m(x∗) = 0. Let V (x) = f̂(x∗) − f̂(x), where V : E → R is a

continuous, differentiable function and E ⊂ R
d is an open neighborhood around x∗

such that f̂(x∗) > f̂(x) for all x ∈ E 1. Since x∗ is a mode of the estimated pdf

in local neighborhood E, then V (x) = f(x∗) − f(x) > 0 for all x ∈ E\{x∗} and

V (x∗) = 0, i.e., V (x) is an strictly positive definite in local neighborhood E. Now

it is time to show that the function V̇ (x) is negative definite, i.e., V̇ (x) < 0 for all

x ∈ E\{x∗} and ˙V (x∗) = 0. By taking the derivative of V using the chain rule, we

1 We assume that the density estimate f̂ has isolated stationary points, therefore such neighborhood E

exists.
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Asymptotic stability of fixed points of mean shift algorithm 7

have

V̇ (x) = ẋt∇V

= −ẋt∇f̂(x) = −m(x(t))t∇f̂(x)

= −([

n
∑

i=1

Σ−1

i N(xi, Σi)]
−1∇f̂(x)

c
)t∇f̂(x)

=
−1

c
∇f̂(x)t[

n
∑

i=1

Σ−1

i N(xi, Σi)]
−1∇f̂(x) < 0.

The last inequality is true since the weighted sum of the inverse of the covariance

matrices is a positive definite matrix. It is also obvious that V̇ (x∗) = 0. Therefore,

V (x) = f̂(x∗) − f̂(x) is a strict Lyapunov function for the continuous dynamical

system in (5) and x∗ is locally asymptotically stable, i.e., if we start from any point

x0 ∈ E then the mode estimate sequence remains close to x∗ and finally will con-

verge to x∗.

4.2 Discrete case

For the discrete case, Fashing and Tomasi proved the following theorem (Theorem 2
in [14]).

Theorem 1. The mean shift procedure with a piecewise constant profile k is equiva-

lent to Newton’s method applied to a density estimate using the shadow of k.

Theorem 1 implies that for a very special class of profile functions, piecewise

constant profiles, the MS algorithm tends to be equivalent to the Newton’s method. A

piecewise constant profile (e.g., uniform profile) defines a piecewise constant kernel.

Piecewise constant kernels (e.g., uniform kernels) have limited use in kernel density

estimation, since the pdf estimate using a piecewise constant kernel is a non-smooth

function that is not desirable. Theorem 1 is not correct for widely used kernels (e.g.,

Gaussian kernel) and therefore the MS algorithm in general is not equivalent to the

Newton’s method. Furthermore, even for a piecewise constant profile k, Theorem 1

does not necessarily imply the convergence of the sequence. There are situations

where the Newton’s method diverges. For example, consider function f(x) = x1/3:

starting at point x1 = a (a ∈ R), the Newton’s method generates the following

sequence

xn+1 = xn −
f(xn)

f ′(xn)
= −2xn.

It is clear that for a 6= 0 the sequence {xn}n=1,2,... grows instead of converging,

hence the Newton’s method fails to find the root x = 0. The authors in [14] showed

that the MS procedure at step k, k ≥ 1 maximizes a quadratic function ρk(x) (The-

orem 3 in [14]). Furthermore, they proved that ρk(x) can be considered as a (lower)

bounding function for the density estimate f̂(x), where the bounding function ρk(x)

for f̂(x) is defined by [15]
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8 Youness Aliyari Ghassabeh

Definition 5. Let f̂(x) : X → R denote our objective function, where X ⊂ R
D, D ≥

1. The bounding function ρk(x) for f̂(x) is a function such that ρk(x
∗) = f̂(x∗) at

some point x∗ ∈ X and ρk(x) ≤ f̂(x) for every other x ∈ X .

The authors in [14] showed that the MS algorithm with profile k is a quadratic

bound maximization over a density estimate f̂ using the shadow of k (Theorem 4
in [14]). This result implies that the pdf estimate along the sequence generated by

the MS algorithm is an increasing sequence, i.e., f̂(yk+1) ≥ ρk(yk+1) > ρk(yk) =

f̂(yk) [14].

Assume we are interested in maximizing a scalar valued function L(θ) of a

free parameter vector Θ. The bound maximizer algorithms (e.g., EM algorithm for

maximum likelihood learning in latent variable models) never worsen the objec-

tive function. In other words, the bound maximizer algorithms generate a sequence

{Θk}k=1,2,... such that L(θk+1) > L(θk), k ≥ 1 [15]. However, a bound maximizer

algorithm (e.g., EM algorithm) without additional conditions may not converge [20].

For example, Boyles presented a counterexample that satisfies all the hypotheses

of Theorem 2 in [22] but converges to a unit circle instead of converging to a sin-

gle point [21]. Thus, showing that the MS algorithm is a bound optimization is not

enough to prove the convergence of mode estimate sequence.

From (4) and (10), the discrete dynamical system for the MS algorithm is

y(k + 1) = m(y(k)) + y(k), (11)

where y(k) is the mode estimate at kth iteration. Let y∗ denote the equilibrium point

of (11), then y∗ is a fixed point of (11), which implies m(y∗) = 0. Consider the

proposed Lyapunov function V (y) = f̂(y∗)− f̂(y). For any isolated mode y∗ of the

estimated pdf there is an open neighborhoodE around y∗ such that the estimated pdf

attains its maximum at y∗, i.e., V (y) = f̂(y∗)−f̂(y) > 0 for all pointsy ∈ E\{y∗}.

It is clear that V (y∗) = 0, therefore V (x) is a strict Lyapunov function in E. To show

that ∆V (y) < 0 , we need the following lemma 2.

Lemma 1. If the profile k is a convex and strictly decreasing function, then the den-

sity estimate values f̂ are increasing along the mode estimate sequence.

Proof. Let yj 6= yj+1, we show that f̂(yj+1) > f̂(yj). From Equation (1), we have

f̂(yj+1)− f̂(yj) =
ck,d
nhd

[

n
∑

i=1

k
(

‖
yj+1 − xi

h
‖2
)

−
n
∑

i=1

k
(

‖
yj − xi

h
‖2
)

]

=
ck,d
nhd

n
∑

i=1

[

k
(

‖
yj+1 − xi

h
‖2
)

−
(

‖
yj − xi

h
‖2
)

]

>
ck,d
nhd

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)(

‖
yj+1 − xi

h
‖2 − ‖

yj − xi

h
‖2
)

,

2 The authors in [3] assumed that yj = 0 and based on this assumption, they showed that the pdf

estimate is an increasing sequence along the mode estimate sequence. Here, we relax the assumption

yj = 0 and prove the monotonicity of the f̂(yj). The proof is a reproduction of the proof in [3], except

yj 6= 0.
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Asymptotic stability of fixed points of mean shift algorithm 9

where the last inequality is true since the convexity of the profile function k implies

that k(x2)− k(x1) > k′(x1)(x2 − xx1). By expanding the terms in the right side of

the above inequality and using Equation (4), we have

f̂(yj+1)− f̂(yj) =>
ck,d
nhd

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)(

‖
yj+1 − xi

h
‖2 − ‖

yj − xi

h
‖2
)

=
ck,d

nhd+2

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)

(

‖yj+1‖
2 + ‖xi‖

2 − 2yj+1 · xi − ‖yj‖
2 − ‖xi‖

2 + 2yj · xi

)

=
ck,d

nhd+2

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)

(

‖yj+1‖
2 − ‖yj‖

2 − 2(yj+1 − yj) · xi

)

=
ck,d

nhd+2

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)

(

‖yj+1‖
2 − ‖yj‖

2 − 2(yj+1 − yj) · yj+1

)

=
ck,d

nhd+2

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)

(

− ‖yj+1‖
2 − ‖yj‖

2 + 2yj · yj+1

)

= −
ck,d

nhd+2

n
∑

i=1

k′
(

‖
yj − xi

h
‖2
)

(

‖yj+1 − yj‖
2 > 0,

where · denotes the inner product. The last inequality comes from the fact that the

profile function k is strictly decreasing, therefore its derivative is strictly less than

zero, i.e., k′(x) < 0. Therefore, the sequence {f̂(yj)}j=1,2,... is strictly increasing

and for an arbitrary j, we have f̂(yj+1)− f̂(yj) > 0. �

Using Lemma (1), we have

∆V (y) = V (y(k + 1))− V (y(k))

= f̂(y∗)− f̂(y(k + 1))− f̂(y∗) + f̂(y(k))

= f̂(y(k)) − f̂(y(k + 1)) < 0. (12)

The last inequality holds since from Lemma 1 the sequence {f̂(y(k))}k=1,2,... is an

increasing sequence. Therefore, for the discrete dynamical system in (11), function

V is a Lyapunov function and equilibrium point y∗ is asymptotically stable.

Remarks

1. For the Lyapunov function in [9], it is required that all the covariance matrices be

the same and proportional to the identity matrix, i.e., Σi = h2I, i = 1, 2, . . . , n.

But for the proposed Lyapunov function, there is no constraint on the covariance

matrices except being positive definite.

2. The systems in (5) or (11) can have many equilibrium points and, as long as the

equilibrium points are isolated, the above argument works. For each equilibrium

point x∗
i , i = 1, 2, . . . (y∗ for the discrete case), there is an open neighborhood

Ei such that the estimated pdf f̂(x) attains its maximum at x∗
i on Ei.
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3. By proving the asymptotic stability of the isolated equilibrium points of the MS

algorithm, we showed that if we start from a point close to an specific equilibrium

point, then the MS algorithm remains close to the equilibrium point and finally

converges to it.

4. In real world applications, where digital computers store numbers in floating point

representation, the MS algorithm may not converge exactly to a fixed point due

to the rounding error. As mentioned before, the MS algorithm stops when the dis-

tance between two mode estimates becomes less that some predefined threshold,

i.e., ‖yk+1 − yk‖ < ǫ. By choosing a small threshold we can guarantee that the

stopping point is close enough to the fixed point.

5 Conclusion

The MS algorithm is a widely used technique for estimating modes of an estimated

pdf. Although the algorithm has been used in many applications, it seems that the

study of the theoretical properties of the algorithm has been missing in the literature.

In this paper, we generalized the asymptotic stability results in [9] by introducing a

Lyapunov function for the MS algorithm with a continuous iteration index. The au-

thor in [9] proposed a Lyapunov function for the MS algorithm with the Gaussian

kernel when all terms in the pdf estimate have equal covariance matrices that are

proportional to the identity matrix. In our case, there is not any constraint on the co-

variance matrices and they just need to be positive definite matrices. We also showed

that the proposed function satisfies the required condition for an equilibrium (fixed)

point of the discrete MS algorithm with isolated stationary points to be asymptotically

stable. In other words, we proved that for the MS algorithm with isolated stationary

points, if we start the iterations close enough to an equilibrium point, then the mode

estimate sequence remains close to that point and finally converges to it.
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