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Abstract

The mean shift (MS) algorithm is a non-parametric, iterative technique that has been used to find modes of

an estimated probability density function (pdf). Although the MS algorithm has been widely used in many

applications, such as clustering, image segmentation, and object tracking, a rigorous proof for its convergence

is still missing. This paper tries to fill some of the gaps between theory and practice by presenting specific

theoretical results about the convergence of the MS algorithm. To achieve this goal, first we show that all

the stationary points of an estimated pdf using a certain class of kernel functions are inside the convex hull

of the data set. Then the convergence of the sequence generated by the MS algorithm for an estimated pdf

with isolated stationary points will be proved. Finally, we present a sufficient condition for the estimated pdf

using the Gaussian kernel to have isolated stationary points.

Keywords: Mean Shift Algorithm, Mode Estimate Sequence, Convex Hull, Isolated Stationary Points,

Kernel Function, Gaussian KDE, Convergence.

1. Introduction

The modes of a probability density function (pdf) play an essential role in many applications, including

classification [1], clustering [2], multi-valued regression [3], image segmentation [4], and object tracking [5].

Due to the lack of knowledge about the pdf, a nonparametric technique is proposed to find an estimate for the

gradient of a pdf [6]. The gradient of a pdf at a continuity point is estimated using the sample observations

that fall in the vicinity of that point. By equating the gradient estimate to zero, we can find an equation for the

modes of a pdf. The mean shift (MS) algorithm is a simple, non-parametric, and iterative method introduced

by Fukunaga and Hostetler [6] for finding modes of an estimated pdf. The algorithm was generalized by

Cheng [7] in order to show that the MS algorithm is a mode-seeking process on a surface constructed with a

shadow kernel. Later, the algorithm became popular in the machine learning society when its potential usage

∗Corresponding author. Phone +1613314363.
Email address: aliyari@cs.toronto.edu (Youness Aliyari Ghassabeh)

Preprint submitted to Journal of Multivariate Analysis January 30, 2015



for feature space analysis was studied [4].

The MS algorithm shifts each data point to the weighted average of the data set in each iteration. It

starts from one of the data points and iteratively improves the mode estimate. The algorithm can be used

as a clustering tool, where each mode represents a cluster. In contrast to the k-mean clustering approach,

the mean shift algorithm does not require any prior knowledge of the number of clusters and there is no

assumption of the shape of the clusters. The algorithm has been successfully used for applications such as

image segmentation [8, 9], edge detection [10, 11], object tracking [5, 12], information fusion [13], and noisy

source vector quantization [14][15].

In spite of using the MS algorithm in different applications, a rigorous proof for the convergence of the

algorithm is still missing in the literature. The authors in [4] claimed that the MS algorithm generates a

convergent sequence. But a crucial step for the convergence proof of the sequence in [4] is not correct. In

another work, it was shown that the MS algorithm with the Gaussian kernel is an instance of the expectation

maximization (EM) algorithm and hence the generated sequence converges to a mode of the estimated pdf

[17]. However, without additional conditions, the EM algorithm may not converge.

In this paper, we first show that the gradient of the estimated pdf cannot be zero outside the convex hull of

the data set. The previous statement implies that all the stationary points of the estimated pdf must be inside

the convex hull. Then, we consider the MS algorithm in D-dimensional space (D ≥ 1) and prove that if the

estimated pdf has isolated stationary points then the MS algorithm converges to a mode inside the convex

hull of the data set. Furthermore, we provide a sufficient condition for the pdf estimate using the Gaussian

kernel to have isolated stationary points.

The organization of the paper is as follows. In Section 2, a brief review of the MS algorithm is given.

The incompleteness of the previously given proofs for the convergence of the MS algorithm is discussed

in Section 3. The convergence proof of the MS algorithm with the isolated stationary points is given in

Section 4. Furthermore, a sufficient condition to have isolated stationary points for an estimated pdf using

the Gaussian kernel is given in Section 4. The concluding remarks are given in Section 5.

2. Mean shift algorithm

A D-variate kernel K : RD → R is a non-negative real-valued function that satisfies the following

conditions [18]

∫
RD

K(x)dx = 1, lim
‖x‖→∞

‖x‖DK(x) = 0,

∫
RD

xK(x)dx = 0,

∫
RD

xxTK(x)dx = cKI,
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where cK is a constant and I is the identity matrix. Let xi ∈ RD, i = 1, . . . , n be a sequence of n independent

and identically distributed (iid) random variables. The kernel density estimate f̂ at an arbitrary point x using

a kernel K(x) is given by

f̂(x) =
1

n

n∑
i=1

KH(x− xi), (1)

whereKH(x) = |H|−1/2K(H−1/2x), H is a symmetric positive definiteD×D matrix called the bandwidth

matrix, and |H| denotes the determinant of H. A special class of kernels, called radially symmetric kernels,

has been widely used for pdf estimation. Radially symmetric kernels are defined by K(x) = ck,Dk(‖x‖2),

where ck,D is a normalization factor that causes K(x) to integrate to one and k : [0,∞) → [0,∞) is

called the profile of the kernel. The profile of a kernel is assumed to be a non-negative, non-increasing, and

piecewise continuous function that satisfies
∫∞
0
k(x)dx < ∞. Two widely used kernel functions are the

Epanechnikov kernel and the Gaussian kernel, both of which are defined by [19],

1. Epanechnikov kernel

KE(x) =


1
2c
−1
D (D + 2)(1− ‖x‖2) if ‖x‖ ≤ 1

0 if ‖x‖ > 1,

where cD is the volume of the unit D-dimensional sphere.

2. Gaussian kernel

KN (x) = (2π)−D/2 exp
(
− ‖x‖

2

2

)
.

The probability density estimation that results from this technique is asymptotically unbiased and consistent

in the mean square sense [20]. For the sake of simplicity, the bandwidth matrix H is chosen to be proportional

to the identity matrix, i.e., H = h2I . Then, by using the profile k and the bandwidth h, the estimated pdf

changes to the following well-known form [19]

f̂h,k(x) =
ck,D
nhD

n∑
i=1

k(‖x− xi
h
‖2). (2)

Assuming that k is differentiable with derivative k′, taking the gradient of (2) yields [4]

∇f̂h,k(x) =
2ck,D
nhD+2

[ n∑
i=1

g
(
‖x− xi

h
‖2
)][∑n

i=1 xig(‖
x−xi

h ‖
2)∑n

i=1 g(‖
x−xi

h ‖2)
− x

]
, (3)
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where g(x) = −k′(x). The first term in the above equation is proportional to the density estimate at x using

kernel G(x) = cg,Dg(‖x‖2). The second term is called the mean shift (MS) vector, mh,g(x), and (3) can be

rewritten in the following form [4]

∇f̂h,k(x) = f̂h,g(x)
2ck,D
h2cg,D

mh,g(x). (4)

The above expression indicates that the MS vector computed with bandwidth h and profile g is proportional

to the normalized gradient density estimate obtained with the profile k (normalization is done by density

estimate with profile g). Therefore, the MS vector always points toward the direction of the maximum

increase in the density function. In fact, the MS algorithm is an instance of the gradient ascent algorithm with

an adaptive step size [21].

The modes of the estimated density function are located at the zeros of the gradient function, i.e.,

∇f̂(x) = 0. Equating (3) to zero reveals that the modes of the estimated pdf are fixed points of the fol-

lowing function

mh,g(x) + x =

∑n
i=1 xig

(
‖x−xi

h ‖
2
)∑n

i=1 g
(
‖x−xi

h ‖2
) . (5)

The MS algorithm initializes the mode estimate sequence to be one of the observed data. The mode estimate

yj in the jth iteration is updated as

yj+1 = yj +m(yj) =

∑n
i=1 xig

(
‖yj−xi

h ‖2
)∑n

i=1 g
(
‖yj−xi

h ‖2
) . (6)

The MS algorithm iterates this step until the norm of the difference between two consecutive mode estimates

becomes less than some predefined threshold. Typically n instances of the MS algorithm are run in parallel,

with the ith instance initialized to the ith data point.

3. Incompleteness of the previous proofs

Although the MS algorithm has been used widely in different applications, a rigorous proof for the con-

vergence of the algorithm has not been given. The following statement is claimed to be true about the MS

algorithm [4]: if the kernel K has a convex, monotonically decreasing, and bounded profile, the mode esti-

mate sequence {yj}j=1,2,... and the sequence {f̂h,k(yj)} converge. The authors in [4] successfully showed

that the sequence {f̂h,k(yj)}j=1,2,... is an increasing and convergent sequence. However, the second part

of the statement of Theorem 1 in [4], which claims that the sequence {yi; i = 1, 2, . . .} converges, is not
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correct. The authors in [4] claimed that the mode estimate sequence {yj}j=1,2,... is a Cauchy sequence and

therefore it converges to a point in the convex hull of the data set. To show that the mode estimate sequence

is a Cauchy sequence, they used the following inequality (See Eq. (A.7) in [4])

‖yj+m − yj+m−1‖2 + ‖yj+m−1 − yj+m−2‖2 + . . .+ ‖yj+1 − yj‖2

≥ ‖yj+m − yj‖2, for j,m > 0.

It is clear that the above inequality is not correct in general, hence the mode estimate sequence is not neces-

sarily a Cauchy sequence. It is also clear that the convergence of f̂h,k(yj) does not imply the convergence of

{yj} (the implication in the reverse direction is true since f̂ is a continuous function). Through further manip-

ulation of the proof in [4], it can be shown that the norm of difference between two consecutive mode estimate

converges to zero, i.e., limj→∞ ‖yj+1 − yj‖ = 0, which does not imply convergence of {yj}j=1,2,.... The

following inequality is proved in [4]

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
nhD+2

‖yj+1 − yj‖2
n∑
i=1

g
(
‖
yj − xi

h
‖2
)
,

where g(x) = −k′(x), and the mode estimate yj is defined in (6). If k(x) is a convex and strictly decreasing

function such that 0 < |k′(x)| < ∞ for all x ≥ 0, then g(x) = −k′(x) is always positive. Let M(j) =

min{g
(
‖yj−xi

h ‖2
)
, i = 1, . . . , n}. Since yj lies in the convex hull C of the data set {x1, . . . ,xn}, we have

M(j) ≥ g( a
2

h2 ), where a = diam C < ∞ is the diameter of C. Let ϕ = g( a
2

h2 ). Hence, the above inequality

can be simplified as follows

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
nhD+2

‖yj+1 − yj‖2
n∑
i=1

g
(
‖
yj − xi

h
‖2
)

≥ ck,D
nhD+2

‖yj+1 − yj‖2nM(j)

≥ ck,D
hD+2

‖yj+1 − yj‖2ϕ.

Therefore, we have

(
f̂h,k(yj+1)− f̂h,k(yj)

) hD+2

ϕck,D
≥ ‖yj+1 − yj‖2 ≥ 0.
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Since f̂h,k(yj+1) is a convergent sequence [4], the limit of the left side of the above inequality as j →∞ is

zero. Therefore, the following limit relation holds

lim
j→∞

‖yj+1 − yj‖ = 0. (7)

This implies that the norm of the difference between two consecutive mode estimates converges to zero.

According to the definition of the mean shift vectors, it is obvious that the mode estimate sequence {yj} is

in the convex hull of the data set, i.e., yj ∈ C, j = 1, 2, . . . . Therefore {yj}j=1,2..., is a bounded sequence,

satisfying the above limit. Despite the claim in [4], the last two properties are not enough to prove the

convergence of {yj}j=1,2...,. For example, consider the sequence {zj}j=1,2,... ∈ R2 defined as follows

zj =
(
sin(2π

j∑
k=1

1

k
), cos(2π

j∑
k=1

1

k
)
)
, j = 1, 2, . . .

The above sequence is bounded and satisfies the inequality

‖zj − zj+1‖ ≤ 2π
1

j + 1
.

The left side is the length of the chord connecting two consecutive members of the sequence, and the right

side is the geodesic distance along the unit circle between those two members. It can be observed that the

right side of the above inequality goes to zero as j →∞, but {zj} is not a convergent sequence.

In another work, Carreira-Perpiñán [17] showed that the MS algorithm with the Gaussian kernel K(x) =

c e−‖x‖
2

is an instance of the EM algorithm and claimed that this fact implies the convergence of {yj}.

Authors in [22] incorrectly claimed the EM algorithm converges (see Theorem 2 in [22]). A counterexample

in [23] shows that a sequence may satisfy all the hypotheses of Theorem 2 in [22] but converges to a unit circle

instead of converging to a single point. In other words, without additional conditions, the EM algorithm may

not converge (the stringent regularity conditions for the convergence of the EM algorithm has been discussed

in [24]). Incidentally, the error in the original proof for the convergence of the EM algorithm in [22] and the

error in the proof of the convergence of the MS algorithm in [4] are both due to the same incorrect use of

the triangle inequality. Also, in a footnote in [17], Carreira-Perpiñán claimed that according to Morse theory

[34], the modes of a Gaussian mixture are always isolated. But, to my knowledge, the Morse theory does not

imply the isolatedness of modes of a Gaussian mixture. In fact, a general and useful condition to have a set

of isolated stationary points for the estimated pdf using the Gaussian kernel still seems to be missing in the
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literature. Finding the number of modes of a pdf estimate using the Gaussian kernel is still an open problem

and needs to be investigated.

On the positive side, the authors in [25][16] claimed that an estimated pdf has a finite number of modes

and using this assumption they showed that the MS algorithm generates a convergent sequence. Unfor-

tunately, the authors in [25][16] did not provide a proof to support their claim about the finiteness of the

number of the stationary points of an estimated pdf. In another work, Carreira-Perpiñán made a claim, with-

out proof, that the estimated pdf using the Gaussian kernel always has a finite number of stationary points

[26]. However, to my knowledge, there has not been a rigorous proof in the literature to show the finiteness

of the set of stationary points of the estimated pdf for commonly used kernels such as the Gaussian kernel. In

two recent works, the convergence of sequence generated by the MS algorithm in the one-dimensional space

(D = 1) was investigated [27, 28]. The authors in [27] showed that the MS algorithm with an analytic kernel

(e.g., the Gaussian kernel) generates a convergent sequence in the one-dimensional space. The author in [28]

proved that for the MS algorithm in the one-dimensional space with a certain class of kernel functions, there

exists some N > 0 such that for all j > N the mode estimate sequence {yj}j=1,2,... is a monotone and

convergent sequence. The special one-dimensional case has limited use in applications and the authors in

[27, 28] could not generalize the convergence results for the MS algorithm for the general D-dimensional

(D > 1) case.

In this way, it appears that the convergence of the sequence generated by the MS algorithm in the D-

dimensional (D > 1) case has not yet been proved.

4. Theoretical results for the convergence of the MS algorithm

In this section, we first show that all the stationary points of the estimated pdf are inside the convex hull

of the data set. Then, we consider the MS algorithm with the Gaussian kernel and find a sufficient condition

to have isolated stationary points. The Gaussian kernel has been widely used in various applications, and its

properties have been extensively studied in the literature. Later in this section, we prove that if the stationary

points of the estimated pdf are isolated then the mode estimate sequence generated by the MS algorithm

converges.

4.1. Isolated stationary points using the Gaussian kernel

Let xi ∈ RD, i = 1, . . . , n be the input data. From (2), the estimated pdf using the Gaussian kernel is

given by f̂(x) = c
∑n
i=1 k(‖(x − xi)/h‖2), where k(x) = exp(−x/2) and c = (2π)−D/2/(nhD). Let C
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denote the convex hull of the data set {x1, . . . ,xn}. The authors in [30] showed that all the stationary points

of the estimated pdf using the Gaussian kernel are inside the convex hull of the data set. In the following

lemma, we prove the same result for a wide class of kernels K with a strictly decreasing and differentiable

profile k.

Lemma 1. If a kernel function K has a strictly decreasing differentiable profile k, such that |k′(x)| > 0 for

all x > 0, then the gradient of the estimated pdf using the kernel K and bandwidth h is nonzero outside the

convex hull of the data set.

Lemma 1 guarantees that for a certain class of kernel functions, e.g., the Gaussian kernel, all the stationary

points of the estimated pdf lie inside the convex hull C.

Now, we are in a position to introduce a sufficient condition for the stationary points of the estimated pdf

using the Gaussian kernel to be isolated. The probability density estimate using the Gaussian kernel with the

covariance matrix Σ is given by f̂(x) = cN
∑n
i=1 exp(−

(x−xi)
T Σ−1(x−xi)

2 ), where cN > 0 is a normaliza-

tion factor to ensure that f̂(x) integrates to one. The gradient and Hessian matrix of the estimated pdf are

given by

∇f̂(x) = cN

n∑
i=1

Σ−1(xi − x) exp(−(x− xi)
TΣ−1(x− xi)/2),

H(x) = cN

n∑
i=1

Σ−1(−I + (x− xi)(x− xi)
TΣ−1) exp(−(x− xi)

TΣ−1(x− xi)/2).

Let

C(x) =
n∑
i=1

exp(−(x− xi)
TΣ−1(x− xi)/2),

A(x) =

n∑
i=1

(x− xi)(x− xi)
T exp(−(x− xi)

TΣ−1(x− xi)/2).

Let S denote the set of stationary points of the estimated pdf, i.e., S = {x∗ : ∇f̂(x∗) = 0}. Since f̂(x) has

partial derivatives of arbitrarily high order, we have the following lemma

Lemma 2. If the Hessian matrix at the stationary points is of full rank, the stationary points are isolated.

We provide a sufficient condition for Σ such that the Hessian matrix at the stationary points has full

rank. If the Hessian matrix H is not full rank, then there exists a vector v 6= 0 such that Hv = 0. This is
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equivalent to A(x)Σ−1v = C(x)v. By expanding the last equality, we obtain

(
xxTC(x)− 2x

n∑
i=1

xTi exp(−(x− xi)
TΣ−1(x− xi)/2)

+

n∑
i=1

xix
T
i exp(−(x− xi)

TΣ−1(x− xi)/2)
)
Σ−1v = C(x)v. (8)

By definition, at a stationary point x∗, we have

x∗ =

∑n
i=1 xi exp(−

(x∗−xi)
T Σ−1(x∗−xi)

2 )

C(x∗)
. (9)

Then, equation (8) at a stationary point x∗ can be simplified to

B(x∗)︷ ︸︸ ︷(
− x∗x∗TC(x∗) +

n∑
i=1

xix
T
i exp(−(x∗ − xi)

TΣ−1(x∗ − xi)/2)
)

Σ−1v = C(x∗)v. (10)

The above equality implies that if the Hessian matrix is not of full rank at a stationary point x∗, then C(x∗)

is an eigenvalue of B(x∗)Σ−1.

Let Σ be a symmetric, positive definite matrix. We show that if Σ satisfies a certain condition, then

C(x∗) can never be an eigenvalue of B(x∗)Σ−1. We need the following lemmas

Lemma 3. Let Σ be a nonsingular D ×D matrix and x ∈ RD. Then, for any x ∈ RD, xxTΣ−1 has rank

one and its only nonzero eigenvalue λ̂ is xTΣ−1x.

Lemma 4. [31] Let ‖.‖ be any matrix norm on CD×D. Let λ1, λ2, . . . , λD be the (real or complex) eigen-

values of A ∈ CD×D. Then, we have

ρ(A) ≤ ‖A‖,

where ρ(A) is the spectral radius of A and is defined as ρ(A) = maxi |λi|.

Lemma 5. [31] Let A be a D × D matrix. Let A∗ denote the conjugate transpose of A. Then A∗A and

AA∗ have the same eigenvalues.

Lemma 6. [31] Let A be a D ×D Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λD. Then

max
x 6=0

xTAx

‖x‖2
= λ1.
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Lemma 7. [32] Let A and B be two D ×D Hermitian matrices. Then we have the following inequality

λmax(A+B) ≤ λmax(A) + λmax(B),

where λmax denotes the largest eigenvalue.

Lemma 8. [31] Let A be an arbitrary D ×D matrix. Then the induced matrix norm by L2 vector norm is

given by

‖A‖2 =
√
λmax(A

∗A),

where ‖A‖2 is also called the spectral norm.

From Lemma 8, the spectral norm of a D ×D matrix A induced by L2 vector norm is given by

‖A‖2 =
√
λmax(A

∗A),

where λmax denotes the largest eigenvalue of A∗A. Note that A∗A is a positive semi-definite matrix,

therefore λmax ≥ 0. Using the triangle inequality for the norm of any two D × D matrices A and B, we

have ‖A+B‖ ≤ ‖A‖+ ‖B‖ [31]. Using Lemma 4 and triangle inequality for spectral norm, we have

ρ(B(x∗)Σ−1) ≤ ‖B(x∗)Σ−1‖2

= ‖ − x∗x∗TC(x∗)Σ−1 +

n∑
i=1

xix
T
i exp(−(x∗ − xi)

TΣ−1(x∗ − xi)/2)Σ
−1‖2

≤ ‖x∗x∗TC(x∗)Σ−1‖2 +
n∑
i=1

‖xixTi exp(−(x∗ − xi)
TΣ−1(x∗ − xi)/2)Σ

−1‖2

= C(x∗)‖x∗x∗TΣ−1‖2 +
n∑
i=1

exp(−(x∗ − xi)
TΣ−1(x∗ − xi)/2)‖xixTi Σ−1‖2. (11)

Using Lemma 5 for ‖xixTi Σ−1‖2, i = 1, 2, . . . , n, we have

‖xixTi Σ−1‖2 =

√
λmax(Σ

−1xixTi xix
T
i Σ−1) =

√
λmax(xixTi Σ−1Σ−1xixTi )

=

√
λmax(xixTi Σ−2xixTi ) = ai

√
λmax(xixTi ) = ai

√
‖xi‖2 = ai‖xi‖, (12)
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where ai =
√
xTi Σ−2xi and ‖xi‖2 is the largest eigenvalue of xixTi . Combining (11) and (12), we obtain

ρ(B(x∗)Σ−1) ≤ C(x∗)a∗‖x∗‖+
n∑
i=1

exp(−(x∗ − xi)
TΣ−1(x∗ − xi)/2)ai‖xi‖

≤ C(x∗)a∗‖x∗‖+ amax‖xmax‖
n∑
i=1

exp(−(x∗ − xi)
TΣ−1(x∗ − xi)/2)

= C(x∗)a∗‖x∗‖+ amax‖xmax‖C(x∗)

≤ C(x∗)a∗‖xmax‖+ amax‖xmax‖C(x∗), (13)

where a∗ =
√
x∗TΣ−2x∗, amax = maxi ai, and ‖xmax‖ = maxi ‖xi‖. Let ‖x∗‖2 = b (b is unknown but

less than ‖xmax‖2), then from Lemma 6, a∗ ≤
√
bλmax(Σ

−2) ≤ ‖xmax‖λmax(Σ−1).

If ‖xmax‖2λmax(Σ−1)+amax‖xmax‖ < 1, then we observe that ρ(B(x∗)Σ−1) < C(x∗). This means

C(x∗) cannot be an eigenvalue of B(x∗)Σ−1, which contradicts (10). Therefore, we have the following

result.

Lemma 9. Let xi ∈ RD, i = 1, . . . , n. Let ‖xmax‖2 denote the largest norm among all xi, i = 1, . . . , n. Let

amax = maxi

√
xTi Σ−2xi. Let f̂(x) denote the estimated pdf using the Gaussian kernel with the covariance

matrix Σ. If ‖xmax‖2λmax(Σ−1) + amax‖xmax‖ < 1, then the Hessian matrix of the estimated pdf at the

stationary points is of full rank and the stationary points are isolated.

Remark. Note that for the special case that Σ = h2I , using Lemma 3 we know the only nonzero eigenvalue

of xixTi /h
2, i = 1, . . . , n is equal to xTi xi/h

2. Then using Lemma 7, we obtain

λmax(B(x∗)/h2) ≤ λmax(−x∗x∗TC(x∗)/h2)

+

n∑
i=1

λmax(xix
T
i exp(−(x∗ − xi)

T (x∗ − xi)/(2h
2))/h2)

≤
n∑
i=1

xTi xi/h
2 exp(−(x∗ − xi)

T (x∗ − xi)/(2h
2))

≤ ‖xmax‖2C(x∗)/h2, (14)

where λmax(A) denotes the largest eigenvalue of A and ‖xmax‖2 = maxi=1,...,n ‖xi‖2.

If ‖xmax‖2/h2 < 1, then we observe from (14) that λmax(B(x∗)Σ−1) < C(x∗). This means C(x∗)

cannot be an eigenvalue of B(x∗)Σ−1, which contradicts equation (10). Therefore, we have the following

result
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Lemma 10. Let xi ∈ RD, i = 1, . . . , n. Let f̂(x) denote the estimated pdf using the Gaussian kernel with

the covariance matrix Σ = h2I . Let ‖xmax‖2 = maxi=1,...,n ‖xi‖2. If ‖xmax‖ < h, then the Hessian

matrix of the estimated pdf at the stationary points is of full rank and the stationary points are isolated.

Note that the number of the stationary points of a Gaussian kernel density estimate would be invariant

under centering or location shift of data points. Thus, one can can expect that if max1≤i≤n ‖xi − x0‖ < h

for some proper centering point x0, then Lemma 10 would hold and the sufficient condition will be more

practical.

4.2. Convergence proof when the set of stationary points is finite

Assuming that the stationary points are isolated, then the total number of stationary points of the estimated

pdf inside the convex hull C cannot be infinite. Since the stationary points are inside the closed and bounded

set C, an infinite number of stationary points would have a convergent subsequence whose limit would not be

isolated. By continuity, the limit point is also a stationary point and it is not isolated, which contradicts the

fact that each stationary point is isolated. Hence, the number of stationary points is finite. Next, we show that

when the stationary points of the estimated pdf are isolated, then the mode estimate sequence {yj}j=1,2,... is

a convergent sequence. We prove the following theorem

Theorem 1. Let xi ∈ RD, i = 1, . . . , n. Assume that the stationary points of the estimated pdf are isolated.

Then the mode estimate sequence {yj}j=1,2,... converges.

Proof. Let C denote the convex hull of the data set {x1, . . . ,xn}. Let S denote the set of stationary points

of the estimated pdf f̂h,k, i.e., S =
{
x∗i : ‖∇f̂h,k(x∗i )‖ = 0

}
. Let ζ be the smallest distance between

the points in S, i.e., ζ = min{‖x∗i − x∗j‖ : x∗i ,x
∗
j ∈ S, i 6= j}. Since S is finite, we have ζ > 0. Let

{yj}j=1,2,... be the mode estimate sequence generated by the MS algorithm. From the definition, it is clear

that the mode estimate sequence {yj}j=1,2,... is always inside the convex hull C. Equation (7) implies that

there exists N1 > 0 such that ‖yj+1 − yj‖ <
ζ
3 for all j ≥ N1. Combining (4), (6), and (7), we get

lim
j→∞

∇f̂h,k(yj) = 0. (15)

Assume S = {x∗1, . . . ,x∗M} and define B(x∗i , ζ/3) as the open ball of radius ζ/3 centered at x∗i . Then the

gradient of the estimated pdf outside of these balls is nonzero, i.e., ∇f̂h,k(yj) 6= 0, yj 6∈ B(x∗i , ζ/3), i =

1, 2, . . . ,M . If these open balls are removed from the convex hull of the data set, then the remaining set is

12



compact. The norm of the gradient is a continuous function and attains its minimum value, say c, over this

compact set. From (15), we can find N2 such that ‖∇f̂h,k(yj)‖ < c for all j ≥ N2. Thus for j ≥ N2,

yj cannot be outside
⋃M
i=1B(x∗i , ζ/3). Letting N = max{N1, N2}, we will prove that for all j > N , if

yj ∈ B(xi, ζ/3) then yj+1 ∈ B(xi, ζ/3). We know that for j ≥ N , yj+1 ∈
⋃M
i=1B(x∗i , ζ/3). Assume

yj+1 ∈ B(x∗k, ζ/3), k 6= i. Then by the triangle inequality

‖x∗k − x∗i ‖ = ‖yj+1 − yj+1 + x∗k − x∗i + yj − yj‖ ≤ ‖yj+1 − yj‖+ ‖yj − x∗i ‖+ ‖x∗k − yj+1‖.

Since by definition of ζ, ‖x∗k − x∗i ‖ ≥ ζ and by assumption ‖yj − x∗i ‖ ≤ ζ/3 and ‖yj+1 − x∗k‖ ≤ ζ/3, we

have

‖yj+1 − yj‖ ≥ ‖x∗k − x∗i ‖ − ‖yj − x∗i ‖ − ‖x∗k − yj+1‖ ≥ ζ −
ζ

3
− ζ

3
=
ζ

3
.

This contradicts that ‖yj+1 − yj‖ <
ζ
3 . Therefore if yj ∈ B(x∗i , ζ/3), then yj+1 ∈ B(x∗i , ζ/3) for

all j ≥ N . Since yj ∈
⋃M
i=1B(x∗i , ζ/3) for all j ≥ N , we obtain that there is an index i such that

yj ∈ B(x∗i , ζ/3) for all j ≥ N . Since ‖∇f̂h,K(yj)‖ → 0 and x∗i is the unique zero of ‖∇f̂h,K‖ in

B(x∗i , ζ/3), by the continuity of ‖∇f̂h,K‖ we have limj→∞ yj = x∗i . �

Theorem 1 guarantees the convergence of the mode estimate sequence when the modes of the estimated

pdf are isolated. Lemma 10 also provides sufficient conditions to have isolated stationary points. Using a fully

parameterized Σ increases the computational complexity of the Gaussian pdf estimate. Furthermore, finding

a covariance matrix Σ that satisfies the sufficient condition in Lemma 9 is a challenging task, especially

when the size of the input data set is large. Therefore, in practice in order to reduce the computational cost,

the covariance matrix Σ is chosen either as a diagonal matrix Σ = diag(h21, h
2
2, . . . , h

2
D) or is proportional

to the identity matrix Σ = h2I . The main advantage of the latter case is that only one parameter, h (the

bandwidth), needs to be set in advance. When the covariance matrix is chosen proportional to the identity

matrix, Lemma 10 states that the modes of the Gaussian pdf estimate are isolated if h2 ≥ ‖xmax‖2. Choosing

a large value of the bandwidth h generates a smooth pdf estimate with low estimation variance, at the expense

of introducing a large bias into the estimation [19]. The latter is not practically desirable, since a large bias

will lead to a poor estimation of the pdf that results in an inaccurate mode estimate. Furthermore, it has been

shown that conditions for the consistency1 of such a Gaussian pdf estimate are hn → 0 and nhn → ∞,

1A consistent pdf estimate f̂(x) is an estimator having the property that as the number of data points increases indefinitely, the
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as n → ∞ [19]. It is clear that the first consistency condition contradicts the sufficient condition given in

Lemma 10.

Therefore, the theoretical conditions provided by Lemma 9 and Lemma 10 for a Gaussian pdf estimate to

have isolated stationary points are of limited use in practice.

5. Conclusion

In this paper, we first reviewed the given proofs in the literature for the convergence of the MS algorithm

and discussed their incompleteness. Then we studied some theoretical properties of the MS algorithm. In

particular, we showed that for a certain class of kernel functions, the gradient of the estimated pdf is always

nonzero outside the convex hull of the data set. Then we proved that the MS algorithm with isolated stationary

points generates a convergent sequence. We also provided a sufficient condition for the MS algorithm with the

Gaussian kernel to have isolated stationary points. Although the given conditions in Lemma 9 and Lemma 10

guarantee for a Gaussian pdf estimate to have isolated stationary points, they have limited use in practice.

Specifically, satisfying the sufficient condition in Lemma 10 will generate a biased estimation of the pdf that

leads to inaccurate mode estimates. Unfortunately, a general and useful condition that leads to a set of isolated

stationary points of the estimated pdf for commonly used kernels (e.g., the Gaussian kernel) still seems to be

missing.
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Appendix

Proof of Lemma 1.

Let t 6∈ C be an arbitrary point outside the convex hull C. Since the input data is a finite set, C is a bounded

closed set. Therefore, there exists x0 ∈ C such that x0 has the smallest distance to t

d(x0, t) = inf
x∈C

d(x, t) > 0,

resulting sequence of estimates converges in probability to f(x).
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where d(x, t) = ‖x − t‖. Since the profile function k is strictly decreasing and |k′(x)| > 0, we have

k′(x) < 0, x ∈ (0,∞). The estimated pdf and the gradient of the estimated pdf at point t 6∈ C are computed

as follows

f̂(t) = c

n∑
i=1

k(‖(t− xi)/h‖2)

∇f̂(t) = c

h2

n∑
i=1

2(t− xi)k
′(‖(t− xi)/h‖2). (16)

The directional derivative Du in the direction of the unit vector u = x0−t
‖x0−t‖ at point t is given by

Du(t) = ∇f̂(t) · u, (17)

where x ·y denotes the inner product of x,y ∈ RD. We will show thatDu(t) is positive. Because the profile

k is a strictly decreasing function, we have

k′(‖(t− xi)/h‖2) < 0.

It follows from (16) that it suffices to show that (t − xi) · u < 0, i = 1, . . . , n. According to the separating

hyperplane theorem [33], there exists a hyperplane P with normal vector u = x0−t
‖x0−t‖ that contains x0 and

separates t and C. The hyperplane P is defined by

P = {x : (x− x0) · (x0 − t) = 0}

= {x : x · (x0 − t) = c},

where c = x0 · (x0 − t). Let P− and P+ be the half spaces separated by the hyperplane P such that C ⊂ P+

and t ∈ P−, i.e., P+ = {x : x · (x0− t) ≥ c} and P− = {x : x · (x0− t) ≤ c}. Consider a new hyperplane

P̂ with the same normal vector u that contains t. The new hyperplane P̂ is parallel to P and is defined by

P̂ = {x : (x− t) · (x0 − t) = 0}

= {x : x · (x0 − t) = ĉ},

where ĉ = t · (x0− t). The half spaces P̂− and P̂+ corresponding to P̂ are P̂+ = {x : x · (x0− t) ≥ ĉ} and

P̂− = {x : x · (x0 − t) ≤ ĉ}. Since C ⊂ P+, we have x · (x0 − t) ≥ c for x ∈ C. Since ĉ+ ‖x0 − t‖2 = c,
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we obtain x · (x0− t) > ĉ for all x ∈ C. The last inequality naturally holds for x = xi, i = 1, . . . , n, so that

xi · (x0 − t) > c− (x0 − t) · (x0 − t),

which is easily seen to be equivalent to

(xi − t) · (x0 − t) > 0, i = 1, . . . , n.

From the above inequality and equations (16) and (17), we conclude that Du(t) > 0 for all t 6∈ C. Therefore,

the gradient of the estimated pdf cannot be zero outside of the convex hull, so all stationary points of f̂(x)

must lie in C2. �

Proof of Lemma 2.

This result can be deduced from the inverse function theorem [35]. The inverse function theorem states

that if f : Rn → Rn is a continuously differentiable function on some open set containing a ∈ R, such that

|Jf(a) 6= 0|, where J denotes the Jacobian of f , then there is some open set V containing a and an open W

containing f(a) such that f : V → W has a continuous inverse f−1 : W → V , which is differentiable for

all y ∈ W . Therefore, if f denotes the pdf estimate, then the Hessian matrix is the Jacobian of the gradient

of f . If the Hessian matrix is of full rank at some stationary point x∗, then its determinant is nonzero and,

based on the inverse function theorem, the stationary point x∗ is isolated. �

Proof of Lemma 3.

First, we show that xxTΣ−1 has rank one. Since Rank(Σ) = D and Rank(xxT ) = 1, we have [36]

Rank(xxTΣ−1) ≤ min{Rank(xxT ),Rank(Σ−1)} = 1. (18)

Also, according to the Sylvester’s rank inequality [37], we have

Rank(xxTΣ−1) ≥ Rank(Σ−1) + Rank(xxT )−D = 1. (19)

Using (18) and (19), Rank(xxTΣ−1) = 1. Assume y is an eigenvector of xxTΣ−1 so that xxTΣ−1y =

λy. If λ 6= 0, then λy = (xTΣ−1y)x, so y is a constant multiple of x. Setting y = x, we obtain that

2An alternative proof for the special case of the Gaussian kernel can be found at [29].
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xTΣ−1x is the only nonzero eigenvalue of xxTΣ−1. �
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