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Abstract. In this paper, we introduced new adaptive learning algorithms to 

extract linear discriminant analysis (LDA) features from multidimensional data 

in order to reduce the data dimension space. For this purpose, new adaptive 

algorithms for the computation of the square root of the inverse covariance 

matrix 21−
Σ are introduced. The proof for the convergence of the new 

adaptive algorithm is given by presenting the related cost function and 

discussing about its initial conditions.  The new adaptive algorithms are used 

before an adaptive principal component analysis algorithm in order to construct 

an adaptive multivariate multi-class LDA algorithm. Adaptive nature of the 

new optimal feature extraction method makes it appropriate for on-line pattern 

recognition applications. Both adaptive algorithms in the proposed structure are 

trained simultaneously, using a stream of input data. Experimental results using 

synthetic and real multi-class multi-dimensional sequence of data, demonstrated 

the effectiveness of the new adaptive feature extraction algorithm.  

Keywords: Adaptive Learning Algorithm, Adaptive Linear Discriminant 

Analysis, Feature Extraction. 

1   Introduction 

Feature extraction is generally considered as a process of mapping the original 

measurements into a more effective feature space. When we have two or more 

classes, feature extraction consists of choosing those features which are most effective 

for preserving class separability in addition to dimension reduction [1]. Linear 

discriminant analysis (LDA) has been widely used in pattern recognition applications, 

such as feature extraction, face and gesture recognition [2-4]. LDA also known as 

fisher discriminant analysis (FDA) seeks directions for efficient discrimination during 

dimension reduction [1].  

Typical implementation of this technique assumes that a complete dataset for 

training is available, and learning is carried out in one batch. However, when we 

conduct LDA learning over datasets in real-world applications, we often confront 

difficult situations where a complete set of training samples is not given in advance. 

Actually, in most cases such as on-line face recognition and mobile robotics, data are 

presented as a stream. Therefore, the need for dimensionality reduction, in real time 



applications motivated researchers to introduce adaptive versions LDA.  Mao and Jain 

[5] proposed a two layer network, each of which was an adaptive principal component 

analysis (APCA) network. Chatterjee and Roychowdhury [6] presented adaptive 

algorithms and a self-organized LDA network for feature extraction from Gaussian 

data using gradient descent optimization technique. They described algorithms and 

networks for (i) feature extraction from unimodal and multi-cluster Gaussian data in 

the multi-class case and (ii) multivariate linear discriminant analysis in multi-class 

case. Approach presented in [7] suffers from low convergence rate. To solve this 

drawback, Abrishami Moghaddam et al. [7] derived accelerated convergence 

algorithms for adaptive LDA (ALDA), based on steepest descent, conjugate direction 

and Newton-Raphson methods.  

 In this study, we present new adaptive learning algorithms for the computation of 
21−

Σ . Furthermore, we introduce a cost function related to these algorithms and 

prove their convergence by discussing about its properties and initial conditions. 

Finally, we combine our 
21−

Σ  algorithm with an APCA algorithm for ALDA. Each 

algorithm discussed in this paper considers a flow or sequence of inputs for training; 

therefore there is no need to a large set of sample data. Memory size and complexity 

reduction provided by the new ALDA algorithm make it appropriate for on-line 

pattern recognition and machine vision applications [8, 9].  We will show the 

effectiveness of these new adaptive algorithms for extracting LDA features using 

different on-line experiments. 

 The organization of the paper is as follows. The next section describes the 

fundamentals of LDA.  Section 3, presents the new adaptive algorithms for estimation 

of the square root of the inverse covariance matrix 
21−

Σ  and analyzes its 

convergence. Then, by combination of this algorithm with an APCA algorithm in 

cascade, we implemented an ALDA feature extraction algorithm. Section 4 is devoted 

to simulations and experimental results. Finally, conclusion remarks are given in 

section 5. 

2 Linear Discriminant Analysis Fundamentals  

 Let }{ N21 x,...,x,x , 
nℜ∈x  be N  samples from L  classes },...,,{ 21 Lωωω . 

Consider m  and Σ  denote the mean vector and covariance matrix of samples, 

respectively. LDA searches the directions for maximum discrimination of classes in 

addition to dimensionality reduction. To achieve this goal, within-class and between-

class matrices are defined [1]. A within-class scatter matrix is the scatter of the 

samples around their respective class means 
im and denoted by

wΣ . The between-

class scatter matrix is the scatter of class means 
im  around the mixture meanm , and 

denoted by
bΣ . Finally, the mixture scatter matrix is the covariance of all samples 

regardless of class assignments, and represented by Σ .  In LDA, the optimum linear 

transform is composed of )( np ≤ eigenvectors of 
bw ΣΣ

1− corresponding to its p  

largest eigenvalues. Alternatively, ΣΣ
1−

w
 can be used for LDA. A simple analysis 



shows that both 
bw ΣΣ

1− and ΣΣ 1−
w

 has the same eigenvector matrix. In general, 
bΣ is 

not a full rank matrix, hence we shall use Σ in place of
bΣ . The computation of the 

eigenvector matrix 
LDAΦ of ΣΣ

1−
w

 is equivalent to the solution of the generalized 

eigenvalue problem ΛΦΣΣΦ w LDALDA = , where Λ  is the generalized eigenvalue 

matrix. Under assumption of 
wΣ  being a positive definite matrix, if we consider 

LDAw ΦΣΨ
21= , there exists a symmetric 

21−
wΣ such that the problem can be reduced 

to a symmetric eigenvalue problem [1] : 

ΨΛΨΣΣΣ ww =−− 2121 . (1) 

 

3 New Adaptive Learning Algorithms for the LDA Feature 

Extraction 

We use two adaptive training algorithms in cascade for extracting optimal LDA 

features. The first algorithm called 
21−

Σ algorithm is for the computation of the 

square root of the inverse covariance matrix. We prove the convergence of the new 

adaptive 
21−

Σ algorithms by introducing a cost function related to them. By 

minimization of the cost function using gradient descent method, we present our new 

adaptive 
21−

Σ algorithms. The second algorithm is an APCA algorithm introduced by 

Sanger [10] and is used for the computation of the eigenvectors of the covariance 

matrix. We prove the convergence of the cascade architecture as an ALDA feature 

selection. 

3.1 New Adaptive 
21−

Σ Algorithm and Convergence Proof 

            We define the cost function )(wJ  with parameter W  , ℜ→ℜ ×nn
J :  as 

follows: 
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     The cost function )(wJ  is a continuous function with respect to W . If the sample 

vectors have zero mean value, the expected value of J will be given by: 
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Where Σ  is the covariance matrix. The first derivative of (3) is computed as 

follows [11]: 

IWWΣΣWΣW
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If W  is selected such that ΣWWΣ = , equating (4) to zero will result in 21−= ΣW . 

Therefore, 21−
Σ is a critical point (matrix) of (4). The second derivative of )(JE with 

respect to W  is [11]: 
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where it is assumed that W is symmetric and ΣWWΣ = . Substituting 21−= ΣW  

in (5) will result in a positive definite matrix . The above analysis implies that if W is 

a symmetric matrix satisfying ΣWWΣ = , the cost function )(wJ  will have a 

minimum that occurs at 21−= ΣW  [11]. 

Using the gradient descent optimization method [12] we obtained the following 

adaptive equation for the computation of 
21−

Σ :                           
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 where 
1+k

W  is the estimation of 
21−

Σ in k+1-th iteration, η  is the step size and 1+kx  

is the input vector at iteration k+1. The only constraint on (6) is its initial conditions, 

that is 
0W  must be a symmetric and positive definite matrix satisfying

00 ΣWΣW = . It 

is quite easy to prove that if 
0W  is a symmetric and positive definite matrix, then all 

values of 
kW  (k=1, 2 ,…) will be symmetric and positive definite. Therefore, the final 

estimation also will have these properties. To avoid confusion for choosing the initial 

value
0W , we consider 

0W  equal to identity matrix multiplied by a positive constant 

α  ( IW  α=0
). 

3.2 Reduction of Computational Cost 

As mentioned above, we consider the initial condition equal to identity matrix 

multiplied by a constant. It is clear that for this initial condition we have
00 ΣWΣW = ; 

hence the expected value of (6) is equal to: 
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It is quite easy to prove that if 
00 ΣWΣW = , then we will obtain: 
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Therefore (6) is simplified to three more efficient forms as follows: 
 

)( 11

2

1

t

kkkkkk +++ −+= xxWIWW η  (9) 
 
 

 

 

 

     )( 111 k

t

kkkkkk WxxWIWW +++ −+= η  (10) 

 

 )( 2

111 k

t

kkkkk WxxIWW +++ −+= η  (11) 
 

Equations (9-11) have less computational cost with respect to (6). Obviously, the 

expected values of 
kW  as ∞→k  in (6) and (9-11) are equal to

21−
Σ , provided that 

00 ΣWΣW = .  

3.3 Adaptive Computation of Eigenvectors 

We use the following algorithm for the computation of eigenvectors: 

)][( k

t

kk

t

kkk1k TyyxyTT LTk −+=+ γ . (12) 

where 
kkk xTy =  and 

kT  is a np ×  matrix that converges to a matrix T whose rows 

are the first p  eigenvectors of Σ . [.]LT  sets all entries of its matrix argument 

which are above the diagonal to zero and and 
kγ is learning rate which meets Ljung’s 

conditions [13]. The convergence of this algorithm has been proved by Sanger [10] 

using stochastic approximation theory. It has been shown that algorithm (12) 

computes the eigenvectors of the covariance matrix corresponding to its eigenvalues 

in descending order. Therefore, choosing initial value as a random np ×  matrix, 

algorithm (12) will converge to a matrix T  whose rows are the first p  eigenvectors 

of covariance matrix, ordered by decreasing eigenvalues.  

 There are different adaptive estimations of the mean vector. The following 

equation was used in [6, 7]: 

)( 111 kkkkk mxmm −+= +++ η . (13) 

where 
1+k

η satisfies Ljung assumptions [13]. 



3.4 New Adaptive LDA Algorithm 

As discussed in section 2, the LDA features are significant eigenvectors of ΣΣ
1−

w
. 

For adaptive computation of them, we combine two algorithms discussed in the 

previous sub-sections in cascade and show that this architecture asymptotically 

computes LDA features. Consider the training sequence described at the beginning of 

section 2. Furthermore, let i

km denote the estimated mean vector of class 

),...,2,1( Lii =  at k-th iteration and )( kxω  denote the class of 
kx . The training 

sequence }{ ky  for 
21−

Σ  algorithm is defined by )( k

kkk

x
mxy

ω−= . With the arrival 

of every training sample
kx , i

km is updated according to its class using (13). It is easy 

to show that the correlation of the sequence }{ ky  is the within-class scatter matrix 

wΣ . Therefore, we have the following equation: 
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Suppose the sequence }{ kz  is defined by,
kkk mxz −= . Where 

km is the estimated 

mixture mean value in k-th iteration. We train the 
21−

Σ algorithm by the sequence 

}{ ky  and use 
kW  in (8-11) to create the new sequence }{ ku  as follows, 

kkk zWu = . 

The sequence }{ ku  is used to train the algorithm (12). As mentioned before, the 

matrix T  in the algorithm (12) converges to the eigenvectors of the covariance 

matrix of the input vectors, ordered by decreasing eigenvalues. Hence, (12) will 

converge to the eigenvectors of  )( t

kkE uu  . It is quite easy to show:    

2121
)(lim

−−

∞→
= ww

t

kk
k

E ΣΣΣuu . (15) 

Our aim is to estimate the eigenvectors of ΣΣ
1−

w
. Suppose Φ  and Λ  denote the 

eigenvector and eigenvalue matrices corresponding to ΣΣ
1−

w
. Following equations are 

held [1]: 

ΦΛΣΦΣ =−1
w

, ΨΛΨΣΣΣ =−− 2121

ww
. (16) 

where ΦΣΨ 21

w= . From (16), it is concluded that the eigenvector matrix of 

2121 −−
ww ΣΣΣ is equal to Ψ . In the other words, the matrix t

T  in the second algorithm 

converges to Ψ  and the following equation is held: 
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By multiplying the outputs of the first and second algorithms as ∞→k , we will have: 
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 Therefore, the combination of the first and second algorithms will converge to the 

desired matrix Φ , whose columns are eigenvectors of ΣΣ
1−

w
. As described in the 

previous sections, by choosing a np ×  random matrix as the initial value of (12), the 

final result of (8-11) in cascade with (12) will converge to a np ×  matrix, composed 

of p significant eigenvectors of the ΣΣ
1−

w
ordered by decreasing eigenvalues. By the 

definition given in section 2, these eigenvectors are used as the LDA features. 

 

 

Fig. 1 Samples covariance matrix used 
21−

Σ  in experiments. 

 

4. Simulation Results 

We used the new adaptive algorithm given in (9-11) to estimate 21−
Σ and then 

used combination of (9-11) and (12) in cascade in order to extract LDA features. In 

all experiments described in this section, we used a sequence of training data and 

trained each algorithm adaptively with it.  

4.1 Experiments with 
21−Σ Algorithm 

 In these experiments, we compared the convergence rate of the new adaptive 
21−

Σ  algorithm in 4, 6, 8 and 10 dimensional spaces. We used the first covariance 

matrix in [14], which is a 1010×  covariance matrix and multiplied it by 20 (fig.1). 

The ten eigenvalues of this matrix in descending order are 117.996, 55.644, 34.175, 

7.873, 5.878, 1.743, 1.423, 1.213 and 1.007. Three other matrices were selected as the 

principal minors of this matrix. In all experiments, we chose the initial value 
0W  

equal to identity matrix multiplied by 0.6, and then using a sequence of Gaussian 

input data estimated
21−

Σ . For each experiment, at k-th iteration, we used 

)( )(
21−−= actualnormke ΣW  for the computation of the error e(k) between the estimated 



and actual 
21−

Σ  matrices. Fig.2 shows values of the error during iterations for each 

covariance matrix. Final values of the error after 500 samples are 0.1755 for d=10, 

0.1183 for d=8, 0.1045 for d=6 and 0.0560 for d=4. As expected, the simulation 

results confirmed the convergence of (6) toward
21−

Σ . We repeated the same 

experiment for (9-11) and in all of experiments and get the same results. 

 

Fig.2  Convergence of 
21−

Σ algorithm toward its final value, for different covariance matrices.  

4.2 Experiments on Adaptive LDA Algorithm 

We tested the performance of the new ALDA using i) ten dimensional five class 

Gaussian data and  ii) PIE database. 

4.2.1 Experiment with Ten Dimensional Data 
For this purpose, we generated 500 samples of 10-D Gaussian data, each from five 

classes with different mean vectors and covariance matrices. The means and 

covariances were obtained from [14] with the covariance matrices multiplied by 20. 

The eigenvalues of 
b

1
ΣΣ

−
w

 are 10.84, 7.01, 0.98, 0.34, 0, 0, 0, 0, 0, 0. Thus, the data 

has intrinsic dimensionality of four for classification, of which only two features 

corresponding to the eigenvalues 10.84 and 7.01 are significant. We used the 

proposed ALDA to extract relevant features for classification and compared these 



features with their actual values computed from samples scatter matrices. The graph 

in the left side of Fig. 3 shows the convergence of the first algorithm. As mentioned 

before through this algorithm, 
kW converges to the square root of the inverse within-

class scatter matrix. The graph in the right side of Fig. 3 illustrates the convergence of 

the first and second feature vectors of ΣΣ
1

w

−  corresponding to the largest eigenvalues. 

 

Fig. 3 Left: Convergence of the first algorithm toward the square root of the inverse within-

class scatter matrix, Right: Convergence of the estimated first and second LDA features toward 

their final values. 

Normalized error 
φE  is defined as 2,1, ˆ =−= iE iii ϕϕϕφ

, where ϕ  is computed 

from the sample scatter matrices and ϕ̂  is estimated using the proposed ALDA. It can 

be observed that the feature vectors computed by the new adaptive LDA algorithm 

converge to their actual values through the training process. The normalized errors at 

the end of 2500 samples are =
1ϕE 0.0724, =

2ϕE 0.0891. Figure 4 illustrate the 

distribution of samples during the training process. The graph in the top left side of 

Fig. 4 illustrates the distribution of training data on estimated LDA feature space after 

500 iterations, the top right graph in fig.4 demonstrate the distribution of samples on 

estimated LDA feature sub-space after 1000 iterations. The left below and right below 

graphs in fig. 4 shows the distribution of samples on estimated LDA feature space 

after 1500 and 2500 iterations, respectively. It is obvious that the distribution of data 

is not clearly separable at first iterations; however by training the algorithm, they 

separated into five clusters (although overlapping) with only two significant feature 

vectors. Fig. 4 verifies ability of proposed algorithm for adaptive dimension reduction 

while preserving separability. 



 

Fig. 4 top-Left: Distribution of data on the estimated LDA sub-space after 500 iterations. 

Top-right after 1000 iterations. Down left: after 1500 iteration. Down right: after 2500 iteration. 

4.2.2 Experiment on PIE data base 

 This database contains images of 68 people under different poses and 

illuminations with 4 different expressions. In this experiment, we chose 3 random 

subjects and for each subject 150 images are considered. We manually cropped all 

images to size of  4040×  in order to omit the background. Figure 5 shows some of 

selected subjects in different position and illumination. We vectorized these images 

(every image produce a 11600×  vector) and considered them as a sequence of data.  

Prior to our algorithm, we applied PCA algorithm on the training images and 

considering the 60 important eigen-faces, we reduced the vector sizes to 60. We 

trained the proposed algorithm with this sequence of images and reduced the 

dimensionality of the feature space into three. Figure 6 shows estimated fisher faces 

[15] at the end of process. Hence there are 3 subjects, the adaptive algorithm will 

estimate the two fisher faces. Figure 6 shows distribution of images related to each 

subject in the three dimensional feature space. The top left diagram shows distribution 

after 100 iteration and other three diagrams demonstrated the distribution of subject 

images in feature space after 200, 300 and 450 iteration, respectively. it is clear from 

figure 6 that images at first iterations are not clearly separable but gradually by 

training of the algorithm, each subjects separate from others and at the end of process 

(after 450 iteration) all of the  subjects are linearly separable (although overlapping) 

in three dimensional estimated feature space 



 

Fig. 5 Sample images from five subjects in different illumination and posses. 

 

 

 

Fig. 6 Distribution of subject images in the estimated three dimensional feature space, 

after100, 200, 300 and 450 iteration. 



5. Conclusion Remarks 

In this paper, a new ALDA feature extraction algorithm was presented. The new 

algorithm was considered as a combination of a new adaptive 
21−

Σ algorithm in 

cascade with APCA. Convergence of the new adaptive algorithms was proved. 

Simulation results for LDA feature extraction using synthetic and real 

multidimensional data demonstrated the ability of the proposed algorithm for adaptive 

optimal feature extraction. The new adaptive algorithm can be used in many fields of 

on-line pattern recognition applications such as face and gesture recognition.  
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