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ABSTRACT

Mean shift (MS) and subspace constrained mean shift (SCMS)
algorithms are iterative methods to find an underlying mani-
fold associated with an intrinsically low dimensional data set
embedded in a high dimensional space. Although the MS and
SCMS algorithms have been used in many applications re-
lated to information and signal processing, a rigorous study
of their convergence properties is still missing. This paper
aims to fill some of the gaps between theory and practice.
We present theoretical results about convergence of the MS
and SCMS algorithms. As well, we discuss potential appli-
cations of the SCMS algorithm as a preprocessing step for
noisy source vector quantization and nonlinear dimensional-
ity reduction with noisy observations.

Index Terms— Mean shift algorithm, subspace constrained
mean shift algorithm, noisy source vector quantization, non-
linear dimensionality reduction

1. INTRODUCTION
Dimensionality reduction and manifold learning are two im-
portant problems in many fields related to information pro-
cessing, including data compression, signal processing, infor-
mation retrieval, statistical pattern recognition, and artificial
intelligence. Real world data, such as speech signals, digi-
tal images, genomic data, and fMRI scans, often have high
dimensionality that makes their processing difficult and time
consuming. It is often desirable that the observed high di-
mensional data be represented in a lower dimensional space
while preserving the original information as much as possi-
ble. Dimensionality reduction techniques provide compact
and meaningful representations which facilitate compression,
classification, and visualization of the high dimensional data.
One approach to achieve these goals is to assume that the
data of interest lie on or near a low dimensional manifold,
embedded in a high dimensional space. This assumption is
realistic in many applications where the observed high di-
mensional data have an intrinsically low dimensional struc-
ture. The problem becomes more complicated when the high
dimensional input data is corrupted by noise. In this case
applying common linear/nonlinear dimensionality reduction
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techniques [1] on the noisy observations may not lead to a
meaningful low dimensional representation of the observed
data. To overcome this problem, principal curves and sur-
faces [2] [3] [4] have been proposed to estimate the low di-
mensional embedded manifold. A promising class of algo-
rithms, which we refer to as mean shift type algorithms, move
the data points in an iterative manner to a low dimensional
manifold that can be thought of as principal curves or sur-
faces. The original mean shift (MS) algorithm [5] iteratively
computes modes of an estimated probability density func-
tion (pdf). The modes of a pdf play an important role in
many machine learning applications, such as classification,
image segmentation [5], and object tracking [6]. The collec-
tion of these modes can be viewed as a zero-dimensional prin-
cipal manifold. The recently introduced subspace constrained
mean shift (SCMS) algorithm [4] is used to estimate princi-
pal curves and surfaces with potential applications in time-
varying MIMO channel equalization and time series signal
denoising.
Although the MS and SCMS algorithms seem to work well in
some applications, a rigorous theoretical study of their con-
vergence properties seems to be missing in the literature. This
paper aims to fill some of the gaps between theory and prac-
tice, in particular by studying some convergence properties
of these algorithms. We show the convergence of the MS al-
gorithm when the stationary points of the underlying kernel
density estimate are isolated and propose a sufficient condi-
tion for isolated stationary points. We also prove the distance
between two consecutive members of the sequence generated
by the SCMS algorithm converges to zero which can be used
as a stopping criteria for the SCMS algorithm. Furthermore,
we consider two applications of the SCMS algorithm: as a
preprocessing step for noisy source vector quantization and
nonlinear dimensionality reduction for noisy observations.

2. MEAN SHIFT AND SUBSPACE CONSTRAINED
MEAN SHIFT ALGORITHMS

2.1. Mean shift (MS) algorithm
The MS algorithm is a non-parametric, iterative method intro-
duced by Fukunaga and Hostetler [7] for locating modes of an
estimated probability density function (pdf). It was general-
ized by Cheng [8] and became popular in the computer vision
community where its potential uses for feature space analy-
sis were studied [5]. The MS algorithm iteratively shifts each



data point to a weighted average of neighboring points to find
stationary points of the estimated pdf. It has been success-
fully used in many applications ranging from image segmen-
tation [9] to object tracking [10] and information fusion [11].
Let xi ∈ RD, i = 1, . . . , n be a sequence of n independent
and identically distributed (iid) random variables. Assume ra-
dially symmetric kernel K defined by K(x) = ck,Dk(∥x∥2),
where ck,D is a normalization factor and k : [0,∞) → [0,∞)
is the differentiable profile of the kernel. The estimated pdf
using the profile k and bandwidth h is given by [12]

f̂h,k(x) =
ck,D
nhD

n∑
i=1

k
(
∥x− xi

h
∥2
)
. (1)

Taking the gradient of (1) and equating it to zero reveals that
modes of the estimated pdf are fixed points of the function

mh,g(x) =

∑n
i=1 xig

(
∥x−xi

h ∥2
)∑n

i=1 g
(
∥x−xi

h ∥2
) − x, (2)

where g(x) = −k′(x). The vector mh,g(x) is called mean
shift vector [5]. The MS algorithm initializes MS vectors to
be one of the observed data. The mode estimate y in the jth
iteration is updated as

yj+1 = yj +m(yj). (3)

The MS algorithm iterates this step until the norm of the dif-
ference between two consecutive mode estimates becomes
less than some predefined threshold. Although the MS algo-
rithm has been used in different applications, a rigorous proof
for the convergence of the algorithm has not been given. For
example, a crucial step in the proof given in [5] for the con-
vergence of mode estimate sequence is not correct. In another
work [13], it was shown that the MS algorithm is an expec-
tation maximization (EM) algorithm and hence the sequence
{yj} converges to the modes of the estimated pdf. However,
the EM algorithm may not converge (e.g., a counterexample
is given in [14]), so the convergence of the MS algorithm does
not follow.

2.2. Subspace constrained mean shift (SCMS) algorithm
A new definition of a d-dimensional principal surface in RD

is given by Ozertem and Erogmus [4] as the set of points that
are local maximum of a pdf in a local orthogonal D − d-
dimensional subspace. They proposed the SCMS algorithm
[4] to find points that satisfy that definition. Similar to the
MS algorithm, the SCMS algorithm starts from data points.
It evaluates the MS vector for every data point and computes
the mode estimate similarly to the MS algorithm. To estimate
points on the d-dimensional principal surface, it projects the
MS vectors to the subspace spanned by the D − d eigenvec-
tors corresponding to the D − d largest eigenvalues of the
local covariance matrix. The local covariance matrix is de-
fined by [4] Σ−1(x) = −H(x)f̂(x)−1 + g(x)g(x)tf̂(x)−2,
where f̂(x) is the pdf estimate at x, and H(x) and g(x) are
the Hessian and gradient of the pdf estimate at x, respectively.

The above procedure is iterated until the norm of the differ-
ence between two consecutive projections becomes less than
a predefined threshold. In [4] simulations for the SCMS algo-
rithm were presented which demonstrated the ability of this
algorithm in finding principal curves and surfaces. As well,
applications of the SCMS algorithm to time-varying MIMO
channel equalization and time series signal denoising were
discussed. However, the convergence of the algorithm has not
been proved. In the next section, we show that the distance
between two consecutive members of the sequence generated
by the SCMS algorithm converges to zero. We also propose
novel applications of the SCMS algorithm as a preprocessing
step for the noisy source vector quantization and nonlinear
dimensionality reduction with noisy observations.

3. CONVERGENCE RESULTS
It is proved in [5] that if the kernel K has a convex, differ-
entiable, and strictly decreasing profile k, then the sequence
{f̂h,k(yj)}j=1,2,... is monotonically increasing and thus con-
verges. The authors of [5] claimed that the mode estimate se-
quence {yj}j=1,2,... is a Cauchy sequence, which is not true
in general. This result was also observed by [15]. For the se-
quence {yj}j=1,2,... defined in (4) the following inequality is
proved in [5]:

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D

nhD+2
∥yj+1 − yj∥2

n∑
i=1

g(∥
yj − xi

h
∥2).

If k(x) is a convex and strictly decreasing function such that
0 < |k′(x)| for all x ≥ 0, then g(x) = −k′(x) is always
positive. Let M(j) = min{g

(
∥yj−xi

h ∥2
)
, i = 1, . . . , n}.

Since yj lies in the convex hull C of the data set {x1, . . . ,xn},
we have M(j) ≥ g(a

2

h ), where a is the diameter of C. Let
φ = g(a

2

h ). Hence, the above equality implies

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
hD+2

∥yj+1 − yj∥2φ. (4)

Therefore, we have(
f̂h,k(yj+1)− f̂h,k(yj)

) hD+2

φck,D
≥ ∥yj+1 − yj∥2 ≥ 0. (5)

Since f̂h,k(yj+1) is a convergent sequence, the limit of the
left side of the above inequality converges to zero. Therefore,
the following limit relation holds

lim
j→∞

∥yj+1 − yj∥ = 0. (6)

According to the definition of the mean shift vectors, the se-
quence {yj}j=1,2,... is in the convex hull of the data set, i.e.
yj ∈ C, j = 1, 2, . . .. Therefore {yj} is a bounded sequence,
satisfying the above limit. But the last two properties are not
enough to guarantee the convergence of {yj}. Assuming that
the stationary points are isolated, then the total number of the
stationary points inside the convex hull of the data points is
finite. Note that all stationary points of the estimated pdf are
inside the convex hull of the data set and the gradient of the
estimated pdf is nonzero outside the convex hull. Now, we
have the following theorem for the convergence of the MS
sequence.



Theorem 1. Let xi ∈ RD, i = 1, . . . , n. Assume the station-
ary points of the estimated pdf are isolated. Then the mode
estimate sequence {yj}j=1,2,... converges.
Proof. The proof of the theorem is quite straightforward in
view of (4) and (6) and is omitted; see also [15].
The following corollary for the one dimensional case follows
from Theorem 1.
Corollary 1. Let xi ∈ R, i = 1, . . . , n, then the mode es-
timate sequence {yj}j=1,2,... generated using the Gaussian
kernel k(x) = exp(−x2) converges.
Proof. The derivative of the estimated pdf f̂ ′

h,k(x) is a real
analytic function, defined on R. Then, either f̂ ′

h,k(x) is a con-
stant function, or the set S = {x : f̂ ′

h,k(x) = 0} has not limit
points. However, S is clearly a bounded set and f̂ ′

h,k(x) is not
a constant function, so S is finite. Then Theorem 1 implies
the statement.
A well-known theorem of differential geometry [16] states
that if the Hessian matrix at the stationary points is of full
rank, the stationary points are isolated. The following lemma
provides sufficient condition for the Hessian matrix to be full
rank at the stationary points.
Lemma 1. Let xi ∈ RD, i = 1, . . . , n. Let ∥xmax∥2 denote
the largest norm among all xi, i = 1, . . . , n. Let f̂(x) denote
the estimated pdf using the Gaussian kernel with the covari-
ance matrix Σ, and let λmin denote the smallest eigenvalue
of Σ. If ∥xmax∥λmin < 1, then the Hessian matrix of the
estimated pdf at the stationary points is of full rank and the
stationary points are isolated.
The following theorem asserts the similar results for the SCMS
algorithm.
Theorem 2. Let xi ∈ RD, i = 1, . . . , n. Let {yj}j=1,2,... be
the sequence generated by the SCMS algorithm. If kernel K
has a convex and monotonically decreasing profile k, then the
sequence {f̂h,k(yj)}j=1,2,... is monotonically increasing and
convergent and limj→∞ ∥yj+1 − yj∥ = 0.
Theorem 2 states that the norm of the distance between con-
secutive members of the sequence generated by the SCMS
algorithm gradually decreases and thus it theoretically satis-
fies the usual stopping criterion for the SCMS algorithm. The
proofs of the preceding two results are omitted due to space
constraints.

4. APPLICATIONS

4.1. Noisy source vector quantization
Vector quantization is an important building block used in
lossy data compression. It encodes (maps) points of a mul-
tidimensional vector space into a finite set of points from
the same space called the codebook. The design of quan-
tizers has been widely studied over the past decades and it
has been shown that an optimal quantizer of a given code-
book size has to satisfy the Lloyd-Max conditions [17]. The
Linde-Buzo-Gray (LBG) algorithm [17] satisfies necessary
conditions for the optimality of a quantizer and can be used
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Fig. 1: The black points represent the clean data, the blue points are
the output of the SCMS algorithm. The output of the SCMS algo-
rithm is given to the LBG quantizer and the red points are codewords
computed using the LBG vector quantization algorithm.

to derive a near optimal codebook. In practice, the source
output may be corrupted by noise due to e.g., measurement
errors [19]. The structure of the optimal noisy source quan-
tizer for mean square distortion was studied, e.g., by Wolf
and Ziv [18]. They showed that to minimize the mean square
distortion with respect to the clean data, one needs to quan-
tize the conditional expectation of the clean data given the
noisy data [18]. Thus, in order to minimize the distortion, we
need to find a good approximation (in the MMSE sense) of
the clean data from the observed noisy data. In practical situ-
ations where the statistics of the data and noise are unknown,
the clean data can be estimated by applying techniques, such
as kernel regression, based on training data. However, in
practice the availability of training data is not always a re-
alistic assumption and in many situations the designer of the
quantizer only has access to the noisy observations, not to
the clean source data or any side information. We propose to
use the output of the SCMS algorithm as an estimate for the
conditional expectation of the clean data given the noisy data.
When the data set of interest has an intrinsically low dimen-
sional structure but are corrupted by some noise, the SCMS
algorithm can be used to relocate the noisy points onto the low
dimensional manifold that supports the clean data. In other
words, the SCMS algorithm is used as a preprocessing step
and the output of the SCMS algorithm is given to the LBG
vector quantizer. Note that the SCMS algorithm only uses the
noisy data. It is of interest to numerically evaluate how well
the SCMS algorithm approximates the clean data and com-
pare its performance with that of the kernel regression method
(which is near optimal if the training data set is large enough).
To this end, we compare the mean square distortion that re-
sults from quantizing the output of the SCMS algorithm with
the near optimal distortion resulting from quantizing the esti-
mated clean data using the kernel regression method. In our



Table 1: The mean square distortion resulted from quantization of the output of the SCMS algorithm and near optimal mean
square distortion for different number of codewords ranging from 2 to 128.

Number of the codevectors 2 4 8 16 32 64 128
Optimal distortion 1 0.7271 0.3858 0.2016 0.1064 0.0595 0.0367 0.0294
SCMS algorithm 0.7274 0.3945 0.2120 0.1220 0.071 0.0498 0.0379

simulations, 1024 points are selected uniformly on the unit
circle and then perturbed by bivariate Gaussian noise with in-
dependent, zero mean components. The SCMS algorithm ac-
cepts the noisy data and produces an estimation of the clean
data. The output of the SCMS algorithm is quantized with
a quantizer that is trained using the LBG algorithm. Fig. 1
shows the codewords resulting from the LBG algorithm for
32 codewords. The black points in Fig. 1 represent the clean
data, the blue points represent the output of the SCMS algo-
rithm, and the red points represent the codewords computed
by the LBG algorithm. We vary the number of codewords and
run the algorithm for 1, 2, 4, 8, 16, and 32 codewords. Fig. 2
shows the output of the SCMS algorithm and the computed
codewords for each simulation. Table 1 compares the mean
square distortions resulting from the quantization of the esti-
mated clean data using the SCMS algorithm and the kernel re-
gression method, respectively, as a function of the number of
the codevectors (ranging from 2 to 128). Although we do not
have access to the training data when using the SCMS algo-
rithm, the simulation results indicate that the mean square dis-
tortion resulting from quantization of the output of the SCMS
algorithm is close to the near optimal mean square distortion
obtained by quantizing the estimated clean data using the ker-
nel regression method.

4.2. Nonlinear dimensionality reduction for noisy obser-
vations
Often it is reasonable to assume that the observed data set has
an intrinsically low dimensional structure but are corrupted by
some noise. In this case applying common nonlinear dimen-
sionality reduction techniques such as locally-linear embed-
ding (LLE) [20], kernel principal component analysis (kernel
PCA) [21], or Isomap [22] algorithms on the noisy observa-
tions may not lead to a meaningful low dimensional repre-
sentation of the data. When the observed noisy data are not
located on an underlying manifold of interest, before applying
a dimensionality reduction technique we need first to estimate
the points on the underlying manifold. Principal curves and
surfaces provide a reasonable low dimensional representation
of data and can be used as a preprocessing step before apply-
ing common nonlinear dimensionality reduction techniques.
As mentioned before, the SCMS algorithm has capability to
estimate principal curves and surfaces. After this estimation

1It is near optimal distortion since the kernel estimate converges to the
desired conditional expectation in the limit of large training set sizes. Also
the LBG algorithm converges to a local minimum, but is not guaranteed to
reach the global minimum.
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Fig. 2: Applying the SCMS algorithm on noisy data in order to es-
timate the clean data for noisy source vector quantization. The sim-
ulation is done for 1, 2, 4, 8, 16, and 32 codewords. The blue points
represent the output of the SCMS algorithm and the red points are
the codewords generated by the LBG vector quantization algorithm.

step, one can apply dimensionality reduction techniques to
obtain a representation of the data in a low dimensional space.
To illustrate how this works we selected 500 samples uni-
formly from a three dimensional spiral. Then independent,
three dimensional zero mean Gaussian noise with per com-
ponent variance 0.7 is added to those samples. Fig. 3 shows
a scatterplot of the noisy observations and the output of the
SCMS algorithm. To assess the performance of the SCMS al-
gorithm, we selected 12 clean data points from the spiral (the
markers in Fig. 3 represent the selected points) and applied
the LLE algorithm [20] to them to obtain a one-dimensional
representation.The second row in Fig. 4 shows the represen-
tation of the selected clean points in one dimensional space.
Then we applied the LLE algorithm to the estimates of these
points computed as the output of the SCMS algorithm that
was run on the noisy data. The first row in Fig. 4 shows the
representation of the estimated points (output of the SCMS
algorithm) after applying the LLE algorithm. The third row
in Fig. 4 is one dimensional representation of the noisy points
after directly applying the LLE algorithm. It can be observed
from Fig. 3 and Fig. 4 that although the observed data was
corrupted by Gaussian noise, applying the LLE algorithm to
the output of the SCMS algorithm gives a one-dimensional
representation very similar to that of the clean data. On the
other hand, applying the LLE algorithm directly to the noisy



version of the observed data changes pairwise distances and
the one-dimensional order of the points that is not desirable.
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Fig. 3: Applying the SCMS algorithm on the noisy data in order
to estimate the clean data.The red points represent the output of the
SCMS algorithm and the blue points are the noisy data.
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Fig. 4: The first row shows the output of the LLE algorithm when
applied to the SCMS estimates of the selected points.The second
row shows the output of the LLE algorithm applied to the clean data
points. The third row shows the output of the LLE algorithm applied
directly to the noisy data points.
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