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Abstract

Machine Learning for Helicopter Dynamics Models
by

Ali Punjani
Master of Science in Computer Science

University of California, Berkeley
Professor Pieter Abbeel, Chair

We consider the problem of system identification of helicopter dynamics.
Helicopters are complex systems, coupling rigid body dynamics with aerody-
namics, engine dynamics, vibration, and other phenomena. Resultantly, they
pose a challenging system identification problem, especially when considering
non-stationary flight regimes.

We pose the dynamics modeling problem as direct high-dimensional regres-
sion, and take inspiration from recent results in Deep Learning to represent the
helicopter dynamics with a Rectified Linear Unit (ReLU) Network Model, a hi-
erarchical neural network model. We provide a simple method for initializing
the parameters of the model, and optimization details for training. We describe
three baseline models and show that they are significantly outperformed by the
ReLU Network Model in experiments on real data, indicating the power of the
model to capture useful structure in system dynamics across a rich array of aero-
batic maneuvers. Specifically, the ReLU Network Model improves 58% overall
in RMS acceleration prediction over state-of-the-art methods. Predicting accel-
eration along the helicopter’s up-down axis is empirically found to be the most
difficult, and the ReLU Network Model improves by 60% over the prior state-of-
the-art. We discuss explanations of these performance gains, and also investigate
the impact of hyperparameters in the novel model.
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1 Introduction and Background
System identification, the modeling of a system’s dynamics, is a basic and important part of
control. Constructing such a model is typically the first step in controller design. Modeling
accuracy directly impacts controller success and performance, as inaccuracies appear to the
controller as external disturbances.

The aerobatic helicopter has received attention in the past as a system that is difficult to
both model and control but which humans can fly effectively, even through complex maneu-
vers. The helicopter system couples rigid body dynamics with aerodynamic forces, internal
control loops and lag, engine dynamics, vibration, etc.[1, 2, 3, 4]. Much of this dynamic
coupling involves state variables like airflow which are not easily measured, and thus re-
main hidden. The resulting system identification problem for aerobatic helicopters poses a
challenging problem. This paper focuses on a method to learn a system dynamics model by
leveraging captured state-action trajectories from expert demonstrations.

The helicopter is well studied, and simple linear models from aerodynamic first-principles
allow construction of controllers for simple trajectories (hover, forward flight) [5, 6, 7]. More
complex nonlinear models from first-principles with parameters learned from data have en-
abled some simple aerobatics (roll, hammerhead, split-S) [8, 9, 10]. Advanced aerobatics,
however, have only been successfully flown under autonomous control using Apprenticeship
Learning [11]. In the Apprenticeship Learning approach for autonomous helicopter aerobat-
ics, demonstrations of interest are collected, then aligned in time using a variant of Dynamic
Time Warping (DTW) [12, 13]. From the aligned trajectories, a target trajectory for control
and time-varying dynamics are estimated. Together, the target trajectory and time-varying
dynamics around that trajectory allow for successful control of the helicopter through ad-
vanced aerobatics, using Model Predictive Control (MPC). The Apprenticeship Learning
work demonstrates that in fact helicopter dynamics during aerobatics are predictable enough
for MPC to be successful in control around even the most complex trajectories [11]. This
suggests that the difficulty in modeling helicopter dynamics does not come from stochas-
ticity in the system or unstructured noise in the demonstrations. Rather, the presence of
unobserved state variables causes simple models to be innacurate, even though repeatability
in the system dynamics is preserved across repetitions of the same maneuver.

Modeling systems with hidden latent state is often treated as a parameter learning prob-
lem in a graphical model [14, 15]. One illustrative example is Expectation Maximization -
Extended Kalman Smoothing (EM-EKS) [15] which treats the dynamical system as a latent
variable model, and aims to directly estimate the hidden latent state at each timestep along
a demonstration trajectory while simultaneously learning a simple dynamics model. In EM-
EKS, the form of the dynamics model as well as the number of hidden state variables needs
to be prescribed a-priori. The Apprenticeship Learning method of [11], on the other hand,
deals with hidden state by relying on the assumption that across different demonstrations of
the same maneuver, the trajectories of both observed and hidden state variables are similar.
For example, [11] expects that the airflow around the helicopter is similar at the apex of
two different loop demonstrations. Using DTW to align annotated loop trajectories and their
corresponding state trajectories allows the method of [11] to estimate the dynamics of the
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Figure 1: The dynamical modeling method presented in this work is used to model a helicopter’s
dynamics as it is flown through aerobatics. A unified model is learned for a rich array of maneu-
vers, including flips, loops, stop and go, vertical sweeps, circles, dodging, orientation sweeps, gentle
freestyle, tictocs, chaos, and aggressive freestyle.

helicopter at the apex without explicitly inferring the hidden state.
Although the DTW step in [11] aligns demonstrations based on their entire state tra-

jectory, it is clear that at any particular time, the hidden states (for instance airflow) of the
helicopter system depend only on the past. A well known result from dynamical systems
theory, Takens Theorem, [16, 17] provides further insight into this viewpoint. Takens The-
orem states that for a large class of nonlinear dynamical systems with d-dimensional state
space, only 2d + 1 previous measurements of a single system output are required to effec-
tively reconstruct the system state. Naturally, this leads to the idea of directly learning a
dynamical model from time-lagged outputs, and skipping the intermediate step of inferring
hidden states. This paper aims to exploit this notion in order to construct a global nonlinear
model of the helicopter that does not require annotation or alignment of trajectories, has few
tuning parameters and that captures dynamics throughout the entire set of flight regimes over
which data is collected.

A sequence of time-lagged system outputs and controls grows in dimensionality as the
time horizon is increased. Thus, learning a direct high-order dynamics model requires a
method for regression of a nonlinear function in a high-dimensional input space. Recently,
Deep Learning (regression using hierarchical neural network representations) has had much
success in high-dimensional learning problems in domains like image understanding [18],
natural language processing [19, 20], and most relevantly with time-series inputs as in hand-
writing [21] and speech recognition [22]. In Deep Learning, the lowest layers in the hierar-
chical representation partition the input space, by computing a transformation of the inputs
where each component is only active in a certain region. This makes the regression task of
the next layer in the hierarchy, taking the transformed components as input, much simpler.
This is a similar notion to Hybrid System Identification [23], where a system is modeled
using a set of simple sub-models, along with definitions of regions in state-control space
where each sub-model is active. We believe the power of Deep Learning can be brought to
the system identification task through this connection; deep learning methods can be used to
learn sub-models and the definitions of their corresponding active regions jointly. This paper
develops the Rectified Linear Unit (ReLU) Network Model, a hierarchical neural network
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model, as an instantiation of this idea.
Our main contribution in this work is proposing the novel ReLU Network Model, pro-

viding details about parameter initialization and optimization methods. We compare the
model against three baseline methods, and show that it performs well in modeling helicopter
dynamics across all flight regimes for which data was collected. The range of maneuvers
covered includes forward/sideways flight, vertical sweeps, inverted vertical sweeps, stop-
and-go, flips, loops, turns, circles, dodging, orientation sweeps, orientation sweeps with
motion, gentle freestyle, tic-toc, chaos, and aggressive freestyle. We describe the ReLU
Network Model in Section 4 after defining baseline models in Section 3 for performance
comparison. Section 2 gives details of the helicopter system on which our experiments are
carried out. Results and discussion follow in Section 5.

2 The Helicopter System
Consider a dynamical system with state vector s and control inputs u. The task of system
identification is to find a function F which maps from state-control space to state-derivative:

ṡ = F(s,u,θ)

Typically F is restricted to be from a certain family of functions F parameterized by θ .
The system identification task then becomes to find, given training data, a vector θ (and
the corresponding F) which minimizes prediction error on a set of held-out test data. In
our problem setting, training and test data sets consist of state-control trajectories, with no
additional labels.

The helicopter state s is represented by a total of twelve degrees of freedom, three for
each of position r, attitude q, linear velocity v, and angular velocity ω . The control space u
for the helicopter consists of four inputs. Cyclic pitch controls u1 and u2 cause the helicopter
to pitch forward-back or sideways respectively. Tail rotor collective pitch u3 modulates tail
rotor thrust, causing yaw. The main rotor collective pitch control u4 modulates the pitch
angle of blades in the main rotor, and consequently impacts the total thrust of the main rotor
in the up-down direction.

Following standard practice in system identification and helicopter modeling in particular
[24, 11], we make an informed choice about the family of functions F . Knowledge of
gravity and the kinematics of rotation are both directly incorporated into F , so that only
the dynamics particular to the helicopter are encoded in θ . Consider a fixed world reference
frame (1) and a frame (2) fixed to the center of mass of the helicopter. Rotation matrix C12
(parameterized by quaternion q) rotates vectors from frame 2 to frame 1, and the velocity
and angular velocity of the helicopter can be expressed in frame 2 as v and ω . Then the
kinematics of rotating frames, along with the differential equation for quaternion rotations
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[25] provide the form of F :

ṡ =


ṙ
q̇
v̇
ω̇

= F(s,u,θ) =


C12v
1
2ω̂q

CT
12g−ω× v+ fv(s,u,θ)

fω(s,u,θ)

 (1)

Here g is the known acceleration of gravity, and f = ( fv, fω) is the unknown linear and
angular acceleration that the helicopter undergoes, measured in the helicopter frame, as a
function of state, control, and model parameters. The system identification task for the
helicopter is now to find θ , given observed values of f , s, and u. In this work we minimize
mean squared prediction error over a training set of demonstration data, solving

min
θ

T

∑
t=1

1
T
‖ f̃t− f (st ,ut ,θ)‖2 (2)

where f̃t are the observed values of f along a demonstration trajectory. Equation 2 results in
a linear or nonlinear least squares problem depending on the form of f (s,u,θ).

3 Baseline Models
A simple dynamics model can be constructed by selecting f from the class of affine func-
tions, and fitting the linear coefficients θ to the observed data with least squares regression.
This Linear1Acceleration Model (originally proposed in [24]) serves as our baseline model,
and has been shown to acheive state of the art performance in our problem setting [24]. In
the alternate setting of learning trajectory specific models, where maneuver labels are given
at training and test time, Apprenticeship Learning provides state of the art models [11].

In this work, the Linear Acceleration Model is defined as

f = Pxt +Qyt (3)

Where x =
[
v ω 1

]T, y =
[
u u̇

]T, and P, Q are matrices of parameters which are
learned.

Note that we include the control derivatives u̇ in the model. This is important especially
in the case of yaw-rate control u3, due to the presence of an internal gyroscope and control
loop in the helicopter. The input u3 modulates the setpoint of the internal control loop rather
than directly controlling the yaw torque, so the helicopter acts more like a first-order system
than a second-order system. Thus the rate of change of the yaw input is a better predictor of
the yaw acceleration than the control input value itself.

1The Linear Acceleration Model is not a linear dynamics model, as it only predicts accelerations measured
in the helicopter frame as linear functions of state variables measured in the helicopter frame. The entire
dynamics model, given by Equation 1, is highly nonlinear.
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Based on the Linear Acceleration Model, we construct a slightly more advanced baseline
model in which f is a function of the current state and controls, and also of a sequence of
past control inputs. This modification results in the Linear Lag Model, and serves to allow
the model to capture control lag which can be seen as a simple but important type of hidden
system state. The Linear Lag Model is defined as

f = Pxt +
H

∑
i=0

Qiyt−i (4)

where H is a horizon into the past, and P, Q0...QH are matrices of parameters to be learned.
We develop a third baseline model which extends the Linear Lag Model to capture some

simple nonlinearities in the helicopter dynamics. In particular, it is known from physics that
many aerodynamic forces (for instance drag) grow approximately quadratically in velocities.
Furthermore, these forces depend on the frontal shape of the moving body and are thus
expected to be assymetric with respect to direction of motion (for instance up versus down).
To incorporate this knowledge, we define a feature transformation β :

β (z) =
[
z max(0,z)2 min(0,z)2]T

This transformation is applied elementwise to x and y in the Linear Lag Model to arrive at
the Quadratic Lag Model:

f = Pβ (xt)+
H

∑
i=0

Qiβ (yt−i) (5)

The transformation β provides the model with flexibility to capture quadratic nonlinearities
in both state variables and lagged control inputs.

In our experiments, we show that our novel modeling method (the ReLU Network Model,
presented in Section 4) significantly outperforms these baseline models in prediction accu-
racy. The Linear Acceleration Model serves as a direct state-of-the-art performance baseline
[24]. Comparison with the Linear Lag Model serves to show the impact of additionally ac-
counting for control lag, and the Quadratic Lag Model serves to show the impact of directly
accounting for some nonlinear dependence on the current state and controls. The ReLU Net-
work Model, presented next, accounts for all of these system features and also attempts to
extract information about the hidden state of the helicopter system from state trajectories,
which we show provides a major performance increase.

4 ReLU Network Model
Consider the space P of state-control trajectory segments, each of length H. Each point pt =
(xt−H ,yt−H ,xt−H+1,yt−H+1, ...,xt ,yt) in this space corresponds to a small part of a helicopter
maneuver, H timesteps long, ending at time t. Takens Theorem suggests that if H is large
enough, then from any segment pt in P , the entire hidden state zt of the helicopter at the
end of pt can be reconstructed. Assuming that the mapping from pt to zt is smooth, we
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can expect that two points in P which are similar will also have similar hidden state, and
thus similar dynamics. This leads to a implicit notion of neighborhoods in P , focused
around regions that have been explored in trajectories where system dynamics are similar.
For example, the apex of a loop might correspond to one neighborhood, while the beginning
of a roll might correspond to another. This same notion is the principle behind the method of
[11] using Apprenticeship Learning, where alignment of similar trajectories is used to define
neighborhoods.

In this work, we do not use any explicit grouping or alignment of similar trajectories, and
we aim to learn these neighborhoods directly from training data. In a similar vein as feature
learning [26], and using ideas from recent advances in computer vision and speech due to
Deep Learning [18, 22], we define the Rectified Linear Unit Network Model specifically
for system identification. The ReLU Network Model is a combination of the Quadratic
Lag Model and a two-layer neural network using rectified-linear units in the hidden layer.
Algebraically, the model can be written

f = Pβ (xt)+
H

∑
i=0

Qiβ (yt−i)+η(pt ;θ) (6)

η(pt ;θ) = wT
φ(W T pt +B)+b (7)

φ(·) = max(0, ·) (8)

Here, η is the neural network of N hidden units with weights W and biases B, and a linear
output layer with weights w and biases b. The hidden unit activation function φ is a soft
threshold function. Matrices P, Q are parameters of the Quadratic Lag Model to be learned.
Figure 2 shows a diagrammatic representation of the network η .

4.1 Interpretation
The neural network η can be interpreted as follows. The input layer takes in a point p from
P , representing a segment of state-control trajectory with length H. Each of N hidden units
computes the inner product of p and one of the columns of W . Each of these columns, or
weight vectors, is also a point in P . The hidden units add a bias to the inner product and
rectify this value at zero. The output layer is a linear combination of the hidden units, plus a
final bias.

The inner product computed by hidden unit i can be thought of as a measurement of
similarity between the input p and the hidden unit’s weight vector Wi. This is made more
concrete by noting that the inner product computes the projection of p onto the direction
Wi. The nonlinearity φ(·) from Equation 8 simply sets the hidden unit’s output to zero if
the projection is less than the unit’s bias Bi. This means that any input p that does not have
sufficient projection along Wi will be ignored by the hidden unit, while those inputs that are
sufficiently similar to Wi will cause an output which is proportional to their similarity. In
the ReLU Network Model, both the projection directions W and biases B are learned from
training data. Each hidden unit linearly partitions the input space into two parts based on
W and B; In one part the unit is inactive with zero output, while in the other it is active
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Figure 2: Left: A diagrammatic representation of the neural network used in the ReLU Network
Model. Input p is sent to each of N hidden units. Each unit computes the inner product of p and Wi,
the weight vector for that unit. A bias Bi is added, and the result sent to the unit activation function,
φ(·) = max(·,0). This rectified-linear activation function simply zeroes its input if negative. The
outputs of all hidden units are then linearly mixed by the output unit, with weights w and bias b.
Right: A pictorial representation of the flexibility of the ReLU Network Model. Each hidden unit
can be thought of as defining a hyperplane (line) in the 2D input space pictured. The data points
(grey) each fall somewhere in input space and each has a value we wish to regress (not pictured).
Consider the hidden unit i, drawn in purple. The purple arrow points in the direction of weight vector
Wi, and has length according to Bi. Points on one side of this line do not activate unit i, while points
on the other side (shaded) cause positive output. This effectively partitions the input space, and the
partitions generated by considering many hidden units (blue) together split the space into regions.
These regions give the model flexibility to capture structure in the input data. In the ReLU Network
Model, the partitions are learned from data.
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with positive output. This allows for learning of regions around training examples, where
each region is defined by the set of hidden units which are active in that region. Figure 2
shows a pictorial representation of this notion, where each hidden unit separates the space
into an active and inactive part, and the overlap of these parts partitions the data. In each
of these regions, the model has flexibility to learn a correction to the Quadratic Lag Model
which better represents the dynamics locally. Furthermore, the total output of the network
is piecewise linear in inputs and continuous over all regions in the input space since all the
hidden units are piecewise linear and continuous in the inputs.

4.2 Optimization
For all the models presented in this work, the optimization problem in Equation 2 can be
split into six subproblems, one for each component of f̃ . These six subproblems are solved
independently. In the case of the ReLU Network Model, this means training six different
neural networks. Empirically we find that the component of f̃ corresponding to the up-down
acceleration of the helicopter is the most difficult to predict.

Unlike the baseline models, Equation 2 for the ReLU Network Model is non-convex. We
solve this optimization problem by first fitting the P, Q matrices with the output of η set
to zero, using simple least-squares regression. This corresponds to fitting a Quadratic Lag
Model. We then fix P and Q, and optimize over the weights and biases of the neural network
(W , B, w, b) using Stochastic Gradient Descent (SGD) [27]. This entire procedure can be
seen as one iteration of Block-Coordinate Descent.

Stochastic Gradient Descent is the standard optimization method for training recent neu-
ral network models [18, 22, 28] and is very simple to implement. In each iteration, the
objective in Equation 2 is computed over a small subset of training data, called a minibatch.
The gradient of the objective over the minibatch with respect to the parameters of the neural
network is computed using Backpropagation [29]. An update step is computed as an aver-
age of the past update step and the current gradient, where the past step is weighted by a
hyperparameter called momentum (typically set to 0.9). Parameters (weights and biases) are
updated by the new update step, scaled by a learning rate. A new minibatch is randomly
selected from training data and the next iteration proceeds. The learning rate is decreased
during optimization. Section 5.2 provides specific details used in our experiments.

4.3 Initialization
When optimizing neural networks in general, initialization is an important and often tricky
problem. In the case of the ReLU Network Model, we provide a very simple, effective and
tuning-free method for initializing the weights and biases before beginning SGD. First, note
that in the ReLU Network, any hidden unit is not useful if it is always active or always inac-
tive over the space of trajectory segments. If the unit is always inactive, the error gradients
with respect to the unit’s weights will always be zero, and no learning will occur. If the
unit is always active, its contribution to the network output will be entirely linear in the in-
puts, which will not allow for learning of any interesting structure not already captured by
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the Quadratic Lag Model. Conventional initialization techniques for neural networks would
call for initializing weight vectors randomly from a zero-mean Gaussian distribution. Em-
pirically we find that this produces a very large fraction of hidden units which are always
on or always off over the entire training set. Our initialization strategy is designed to solve
this problem and remove the need for tuning or adjustment. We simply select examples
randomly from the training set and use these as initial weight vectors. This corresponds to
setting each hidden unit to compare the input with a direction in P known to contain some
training points. Furthermore, we set the bias of each hidden unit uniformly at random so
that the threshold between inactive and active lies somewhere between the origin of P and
the selected exemplar. This ensures that the unit is unlikely to be always active. Section 5.3
provides experimental results demonstrating the advantage of our initialization method.

5 Experiments

5.1 Real-World Data
In order to investigate the efficacy of the baseline models and the ReLU Network Model, we
use data from the Stanford Autonomous Helicopter Project [11]. The data is collected from
a Synergy N9 model helicopter weighing 4.85 kg with a 720 mm main rotor blade length,
shown in Figure 1. The helicopter is powered by a two-stroke engine. The helicopter was
flown repeatedly through a variety of aerobatic maneuvers by an expert pilot. The recorded
trajectories include smoothed estimates of the helicopter state s and controls u at 100Hz sam-
ple rate. Using these and Equation 1 we compute observed values of f̃ along the trajectories.
In total there are 6290 seconds of flight time recorded, across 19 maneuvers.

We slice each trajectory into ten second long parts, resulting in 629 parts. A randomly
selected 318 of these are used as the training set, 152 as a validation set, and 159 as a testing
set. Although each trajectory part comes from a known maneuver, these labels are not used
in training, and a single, global model is learned that is applicable across all maneuvers. The
training set is used to optimize model parameters and the validation set is used to choose
hyperparameters.

5.2 Optimization
For the baseline models, solving Equation 2 requires simply solving a linear least-squares
problem. For the ReLU Network, we use SGD (see Section 4.2) with a momentum term
of 0.95, a minibatch size of 100 examples, and train for 200,000 iterations. The learning
rate is set at 1× 10−8 and is halved after 100,000 iterations. The training set consists of
302,546 examples in total, meaning optimization makes about 66 passes through the dataset.
To compute gradients of the objective in Equation 2, we use an automatic differentiation
library called Theano [30].
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Figure 3: Performance Comparison of the ReLU Network Model and baseline models from Section
3. Top Left: Overall RMS prediction error of the Linear Acceleration Model over all acceleration
components, each denoted by a different color. Top Right: Overall RMS prediction error of the
ReLU Model over all acceleration components. Accross all maneuvers, this result represents a 58%
improvement in RMS error over the Linear Acceleration Model above. Bottom: RMS Error in pre-
dicting the up-down acceleration of the helicopter on test-set trajectories, which is empirically found
to be the most difficult component to predict. The Linear Acceleration Model (blue) is outperformed
succesively by the Linear Lag Model which accounts for control lag, and the Quadratic Lag Model
which accounts for some simple nonlinearities. The ReLU Network Model significantly outperforms
all baselines, demonstrating the importance of accounting for hidden system state. Performance is
displayed separately for each maneuver, but the labels are not used during training. Across all ma-
neuvers, the ReLU Network Model reduces up-down RMS error of the Linear Acceleration Model
by 60%.
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Figure 4: Observed and predicted accelerations in the up-down direction over three difficult test-set
trajectories corresponding to different aerobatic maneuvers. In all cases, the baseline Linear Accel-
eration Model captures the gross pattern of the acceleration over the maneuver, but performs very
poorly compared to the novel ReLU Network Model.

5.3 Initialization
Figure 5 is a pair of histograms showing the distribution of hidden unit activations over the
training set. With conventional random initialization, 56% of the hidden units are not useful
after initialization, while with our data-based initialization, all the units have activations
covering between 5% and 60% of the training set, making them all useful.

5.4 Performance
We train the three baseline models (see Section 3) and the ReLU Network Model on the
training set, and report performance as Root-Mean-Square (RMS) prediction error on the
held-out test set. RMS error is used because it normalizes for the length of trajectories and
has meaningful units for each of the components of f̃ which are regressed. In all models,
we use a horizon H = 0.5 s, and downsample our observed data to 50 Hz. We use N =
2500 hidden units for each of six neural networks in the ReLU Network model. The three
baseline models are fit to the training set first. Each takes about 10 minutes to train over the
entire training set, for all components. The ReLU Network Model is trained with SGD over
200,000 iterations, taking less than 1 hour for each component on a 6-core Intel i7 server
with 32GB RAM.

Empirically, we find that the up-down acceleration direction is the most difficult com-
ponent of f̃ to predict (see Figure 3), likely because the main rotor thrust is the strongest
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Our Data-based Initialization

Figure 5: Histograms of hidden unit activation over the training set, showing the advantage of our
data-based initialization method. Hidden units which fall at either end of the histogram, being ei-
ther always active or always inactive, are not useful to the ReLU Network Model. Our initialization
method does not produce any units which are not useful, and requires no tuning or setting of hyper-
parameters.

force on the helicopter. For this reason, we focus on the up-down component in displaying
prediction results. The RMS error in up-down acceleration is measured in units of ms−2, and
results should be interpreted with the yardstick of gravity g = 9.8ms−2 in mind. Figure 4
shows the up-down acceleration as measured over three difficult trajectory segments, along
with predictions along those trajectories from the Linear Acceleration Model and the ReLU
Network Model. The baseline model captures some gross patterns, but the local corrections
provided by ReLU Network Model perform much better.

Figure 3 shows the ReLU Network Model’s RMS error on the testing set over all com-
ponents, as well as for the up-down direction in particular. The ReLU Network significantly
outperforms the baselines, showing that directly regressing from state-control history space
P to acceleration captures important system dynamics structure. In overall prediction error,
the ReLU Network model improves over the Linear Acceleration baseline by 58%. In up-
down acceleration prediction, the ReLU Network model has 60% smaller RMS prediction
error than the Linear Acceleration baseline, improving from 6.62ms−2 to 2.66ms−2. The
performance improvements of the Linear Lag and Quadratic Lag Models over the Linear
Acceleration Model are also significant, and show that control lag and simple nonlinearities
are useful parts of the helicopter system to model. In Figure 3 the errors are shown sepa-
rately across maneuvers, to illustrate the relative difficulty of some maneuvers over others in
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Figure 6: Training and validation set performance as a function of the number of hidden units (N)
used in the ReLU Network Model. Training time increases linearly with N. Training set performance
decreases as more units are added, but validation set performance levels out indicating that further
model complexity is not required. In our performance experiments we use N = 2500 hidden units.

terms of acceleration prediction. Maneuvers with very large and fast changes in main rotor
thrust (aggressive freestyle, chaos) are the most difficult to predict, while those with very
little change and small accelerations overall (forward/sideways flight) are the easiest.

It is important to note that there are more inputs to the ReLU Network Model than to the
baseline models. Specifically, the past states xt−H ,xt−H+1, ...xt−1 are included in the input to
the ReLU Network Model, while the baseline models only have access to xt . This raises the
question of whether a simpler model given the same input would be able to capture system
dynamics as effectively as the ReLU Network Model. To answer this question, we train an
extended Linear Lag Model using both past states and past controls as inputs. This model
has the same input at prediction time as the ReLU Network Model. We find, however, that
this extended Linear Lag Model performs only marginally better than the original Linear Lag
Model; performance on up-down acceleration prediction is improved by only 2.3%. Thus the
ReLU Network Model’s ability to represent nonlinear locally corrected dynamics in different
regions of the input space allow it to extract structure from the training data which simpler
models cannot.

Our work in developing the ReLU Network Model was inspired by the challenges of
helicopter dynamics modeling, but the resulting performance improvements indicate that
this approach might be of interest in system identification beyond helicopters.

5.5 Number of Hidden Units
In Figure 6 we show the results of an experiment evaluating the impact of changing the
number of hidden units in the ReLU Network Model. We find that, as expected, having more
hidden units improves training set performance. Performance on the held out validation
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Figure 7: Activations of a random selection of hidden units, along a test-set trajectory. Green lines
are zero activity for each unit displayed. Interestingly, the hidden units are inactive over most of the
trajectory, and only become active in particular regions. This observation corresponds well to the
intuition that motivated the ReLU Network Model, as explained in Section 4.
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set, however, improves more slowly as N is increased, and there are diminishing returns.
Gradient computation time for training is linear in N, which is why we chose N = 2500 as a
suitable number of hidden units for the experiments in Section 5.4.

5.6 Sparse Activation
The ReLU Network Model outperforms the Linear Acceleration Model baseline by a large
margin. Some of the improvement is due to accounting for control lag and simple nonlinear-
ity (as in the Linear and Quadratic Lag Models), and the remainder is due to the flexibility of
the neural network. Along with quantifying the performance of the ReLU Network Model,
it is important to investigate the intuition motivating the model, namely that the hidden units
of the neural network partition the space P and their pattern of activations corresponds to
different regions which have similar dynamics. A simple way to understand the influence
of each hidden unit is to visualize the activations of the hidden units along a particular tra-
jectory. Figure 7 shows normalized activations of a random subset of hidden units along a
trajectory from a single maneuver.

Interestingly, each hidden unit is mostly inactive over the trajectory shown, and smoothly
becomes active in a small part of the trajectory. We find this to be true in all the trajectory
segments we have visualized. This observation fits well with the motivating intuition behind
the ReLU Network Model.

6 Conclusion and Future Work
In this work, we define the ReLU Network Model and demonstrate its effectiveness for dy-
namics modeling of the aerobatic helicopter. We show that the model outperforms baselines
by a large margin, and provide a complete method for initializing parameters and optimiz-
ing over training data. We do not, however, answer the question of whether this new model
performs well enough to enable autonomous control of the helicopter through aerobatic ma-
neuvers. Future work will aim to answer this question, either through simulation with MPC
in the loop, or through direct experiments on a real helicopter. We will also investigate the
efficacy of this model for modeling other dynamical systems.
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