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Abstract The situation calculus is a versatile logic for reasoning about actions
and formalizing dynamic domains. Using the non-Markovian action theories for-
mulated in the situation calculus, one can specify and reason about the effects of
database actions under the constraints of the classical, flat database transactions,
which constitute the state of the art in database systems. Classical transactions are
characterized by the so-called ACID properties. With non-Markovian action theo-
ries, one can also specify, reason about, and even synthesize various extensions of
the flat transaction model, generally called advanced transaction models (ATMs).

In this paper, we show how to use non-Markovian theories of the situation
calculus to specify and reason about the properties of ATMs. In these theories,
one may refer to past states other than the previous one. ATMs are expressed as
such non-Markovian theories using the situation calculus. We illustrate our method
by specifying (and sometimes reasoning about the properties of) several classical
models and known ATMs.

1 Introduction

1.1 Motivation

Transaction systems that constitute the state of the art in database systems have
a flat structure defined in terms of the so-called ACID (Atomicity-Consistency-
Isolation-Durability) properties. From the system point of view, a database trans-
action is a sequence of operations on the database state, which exhibit the ACID

? Early short versions of this paper appeared in [18,19]
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properties and are bracketed byBegin andCommit orBegin andRollback [14].
A transaction makes the results of its operations durable when nothing goes wrong
before its normal end by executing a Commit operation, upon which the database
cannot be rolled back. Should anything go wrong before the commitment, the
transaction rolls the database back to the state before beginning.

A transaction is atomic when it either brings the database from the initial state
to a final state, or it appears as if it had never changed the database content. Con-
sistency of a transaction means that, given an initial database state that satisfies all
the integrity constraints of the database, the final state also satisfies them. Isolation
is the requirement that a transaction running concurrently with other transactions
must exactly behave in the same way as if it were running in a single-transaction
mode; it is traditionally ensured through the serializability property. A concurrent
execution of a set of transactions is serializable iff it has the same outcome as
some sequential execution of the involved transactions. Finally, durability means
that from the commitment point onwards, the results of a transaction are perma-
nent.

Over the last two decades, various other transaction models have been pro-
posed to extend the classical, flat transaction model by relaxing some of the ACID
properties [10].Many of these extensions introduced various models of nested
transactions [28], which are sets of transactions (called subtransactions) forming
a tree structure. Such extensions, generally called advanced transaction models
(ATMs), are proposed for dealing with new applications involving long-lived, end-
less, and cooperative activities. In the classic transaction model and its extensions
into transactions with savepoints and chained transactions [14], the components of
a transaction are sequenced. On the contrary, most ATMSs permit a hierarchical
organization structure of their components. Moreover, ATMs generally relax the
ACID properties of the flat transactions by dropping or modifying some of these
properties. The ATMs aim at improving the functionality and the performance of
the new applications.

The ATMs, however, have been proposed in an ad hoc fashion, thus lacking
in generality in a way that it is not obvious to compare the different ATMs, to say
exactly how they extend the traditional flat model, and to formulate their properties
in a way that one sees clearly which new functionality has been added, or which
one has been subtracted. To address these questions, there is a need for a general
and common framework within which to specify ATMs, specify their properties,
and reason about these properties. Thus far, ACTA [9], T R [6,7], and Statelog
[21] seem to be the only frameworks in the literature that address the specification
of ATMs at a general level. In ACTA, a logic-like language is used, whereas in
T R and Statelog, pure logic is used.

1.2 Contributions

We extend the specification of database updates given in [32] to a logical frame-
work to specify and reason about the properties of ATMs. This framework con-
stitutes a general theory of database transactions with (relaxed) ACID properties.
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To do so, we appeal to the non-Markovian action theories formulated in the sit-
uation calculus, which is a classical second order logic for specifying dynamic
domains [34,12] where one may refer to past states other than the previous one.
Non-Markovian theories are needed, for example, to concisely (i.e., with few ax-
ioms) capture the semantics of transaction actions which very often refer to the
history of a database. Next, we introduce the building blocks of our specification
framework for representing relational database transactions in the situation cal-
culus. After that, we model relational flat database transactions as second order
theories called basic relational theories, and define a legal log as one in which
all database actions that are possible have indeed been executed. Here, we focus
on using basic relational theories to model flat transactions with ACID properties,
which turn out to be properties of logs that are legal. We then generalize these
relational theories to deal with variations of classical flat transactions, and various
ATMs, among which closed and open nested transactions are good examples. We
show how to build relational theories corresponding to these various ATMs, to for-
mulate properties of these ATMs in the situation calculus (using the case of closed
nested transactions), and to prove these properties as logical consequences of the
relational theories. The main and crucial advantage of our framework over ACTA,
T R, and Statelog lies in the use of a logic specifically designed for dealing with
actions as first class objects of the language. Our framework is intended as a for-
mal tool for the precise analysis of existing ATMs and the systematic development
of new ATMs. Specifications thus obtained can be used as background theories for
simulating the corresponding ATMs as shown in [18].

1.3 Outline

The remainder of this paper is organized as follows. Section 2 introduces the sit-
uation calculus for representing relational database transactional domains as non-
Markovian action theories. This section also spells out the details of our speci-
fication framework. In Section 3, we specify several variants of the classical flat
transaction model, we show how to reason about some basic properties of these
variants in the situation calculus, and formalize closed and open nested transac-
tions, as well as cooperative transaction hierarchies. Them, in Section 4, we con-
sider several ATMs and show their formalization. In Section 5, we consider an
example to illustrate the formalization of a domain using a relational theory for
closed nested transactions. In Section 6, we review related work. Finally, Section
7 concludes the paper and discusses some avenues for future work.

2 The Specification Framework

2.1 The Situation Calculus

The situation calculus (Lsitcalc) is a many-sorted second order language with sorts
for actions, situations, and objects [27,33]. Actions are first order terms con-
sisting of an action function symbol and its arguments, situations are first order
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terms denoting finite sequences of actions, and objects represents domain specific
individuals other than actions and situations. In formalizing databases, actions
correspond to the elementary database operations of inserting, deleting and
updating relational tuples, and situations represent the database log. Relations
and functions whose truth values vary from situation to situation are called fluents,
and are denoted by predicate symbols and function symbols with last argument a
situation term.

The language has an alphabet with variables and a finite number of constants
for each sort, a finite number of function symbols called action functions (e.g.,
a del(accid, branchid, accbal, tellerid, t)), a finite number of function symbols
called functional fluents, a finite number of function symbols called situation in-
dependent functions, a finite number of predicate symbols called relational flu-
ents (e.g., accounts(accid, branchid, accbal, tellerid, s)), and a finite number of
predicate symbols called situation independent predicates. Situations are repre-
sented using a binary function symbol do: do(α, s) denotes the sequence resulting
from adding the action α to the sequence s. There is a distinguished constant S0 de-
noting the initial situation; S0 stands for the empty action sequence. The language
also includes special predicates Poss, and @; Poss(a, s) means that the action a
is possible in the situation s, and s @ s′ states that the situation s′ is reachable
from s by performing some sequence of actions. In database terms, s @ s′ means
that s is a proper sublog of the log s′.

A situation calculus axiomatization of a domain includes the following set of
axioms:

1. For each action function A(x), an action precondition axiom of the form:
Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s) where s is the only term of sort
situation in ΠA(x1, . . . , xn, s).

2. For each fluent F (x, s), a successor state axiom of the form:
F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s)
where s is the only term of sort situation in ΦF (x1, . . . , xn, a, s).

3. Unique names axioms for actions. For instance:
account insert(aid, abal) 6= address insert(aid, addr).

4. Axioms describing the initial situation, e.g. the initial database: a finite set of
sentences whose only situation term is the constant S0.

A set of these axioms, together with a set of domain independent foundational
axioms (more on these in Section 3.1), is called a (Markovian) basic action theory
[20,30].

Finally, as a notational convention in this paper, a free variable will always be
implicitly bound by a prenex universal quantifier.

2.2 Non-Markovian Control in the Situation Calculus

Including dynamic aspects into database formalization has emerged as an active
area of research. In particular, a variety of proposals have been made concerning
the formalization of the evolution of databases with respect to update operations.
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These approaches can be classified into procedural(essentially due to the work of
Abiteboul and Vianu in [35,1–3] and logical [11,39,15,13,17,6,32,5]. Procedural
approaches deal with updates at the physical level. Logical approaches generally
view updates as a removal and addition of sentences into the logical theory captur-
ing the evolution of the database.

Proposals in [32], and [5] use the language of the situation calculus [26,34].
These proposals use basic action theories for reasoning about actions that rely on
two important assumptions: their axioms describe deterministic primitive actions,
and their execution preconditions and effects depend solely on the current situa-
tion. The latter assumption is what control theoreticians call the Markov property.
Thus both indeterminate and non-Markovian actions are precluded in the theories
introduced in [32,5]. However, in formalizing database transactions, one quickly
encounters settings where using non-Markovian actions and fluents is unavoid-
able. For example, a transaction may explicitly execute a Rollback action to go
back to the last database state s′ in the past in which aBegin action was executed;
and an End action is executable only if it closes a bracket opened by a Begin
action in the past and no other transaction specific action occurred meanwhile.
Thus more than one situation is involved in considering the semantics of actions
such as Begin and Rollback. Thus one clearly needs to address the issue of non-
Markovian actions and fluents explicitly when formalizing database transactions,
and researchers using the situation calculus or similar languages to account for
updates and transactions are not addressing this need. Moreover, one also needs to
accommodate for indeterminate actions that arise in realistic database settings in
the form of null values. This issue, however, remains out of the scope of our paper.

One striking feature of the basic action theories of [32] and [5] is their inability
to characterize both the truth value of fluents and the actions preconditions in the
current situation in terms of more than one past situations. This inability is for-
mally caused by the fact that the predicate @ is not allowed on the right hand side
of successor state and action precondition axioms.

Thus, a first step towards formalizing database transactions is to extend the
action precondition axioms of the form Poss(A(x), s) ≡ ΠA(x, s) by allowing
ΠA(x, s) to be a formula with free variables among x, s that may mention the
predicate @. Similarly, we must also extend the successor state axioms of the form
F (x, do(a, s)) ≡ ΦF (x, a, s) by allowing ΦF (x, a, s) to be a formula with free
variables among x, a, s that may mention the predicate @.

Following [12], we call such an extension of action precondition and succes-
sor state axioms together with the foundational axioms, unique name axioms, and
axioms describing the initial situation a non-Markovian basic action theory. Non-
Markovian basic action theories are suited for expressing non-Markovian control
in the situation calculus.

In order to represent relational database transactions, we need some appropri-
ate restrictions on Lsitcalc.

Definition 1 A basic relational language is a subset of Lsitcalc that has the follow-
ing restrictions on the alphabet A:

1. A has a finite number of constants, but at least one.
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2. A has a finite number of action functions.
3. A has a finite number of relational fluents.

Fluents now contain a further argument specifying which transaction contributed
to its truth value in a given log. So a basic relational language is a finite frag-
ment of the situation calculus that is suitable for modeling relational database
transactions. In the sequel of this section we shall introduce an extension of non-
Markovian basic action theories called basic relational theories which is tailored
to relational languages and shall devote the subsequent sections to extending them.

For simplicity, we consider basic relational languages whose only primitive
update operations correspond to insertion or deletion of tuples into relations. For
each such relation F (x, t, s), where x is a tuple of objects, t is a transaction argu-
ment, and s is a situation argument, a primitive internal action is a parameterized
primitive action of the situation calculus of the form F ins(x, t) or F del(x, t).
Intuitively, F ins(x, t) and F del(x, t) denote the actions of inserting the tuple x
into and deleting it from the relation F by the transaction t, respectively; for conve-
nience, we will abbreviate long symbols when necessary (e.g., account ins(x, t)
will be abbreviated as a ins(x, t)). Below, we will use the following

Abbreviation 1

writes(a, F, t) =df (∃x).a = F ins(x, t) ∨ a = F del(x, t),

one for each fluent. We distinguish the primitive internal actions from primitive ex-
ternal actions which areBegin(t), Commit(t),End(t), andRollback(t), whose
meaning will be clear in the sequel of this section; these are external as they do not
specifically affect the content of the database.1 The argument t is a unique transac-
tion identifier. Finally, the set of fluents of a relational language is partitioned into
two disjoint sets, namely a set of database fluents and a set of system fluents. In-
tuitively, the database fluents represent the relations of the database domain, while
the system fluents are used to formalize the processing of the domain. Usually, any
functional fluent in a relational language will always be a system fluent.

2.3 Building Blocks for Specifying Transaction Models

In [9], five building blocks for transaction models are identified: history, intertrans-
action dependencies, visibility of operations on database objects, conflict between
operations, and delegation of responsibility for objects visible to a transaction. We
now show how these building blocks are represented in the situation calculus.

In the situation calculus, the history of [9] corresponds to the log. We extend
the basic action theories of [34] to include a specification of relational database
transactions, by giving action precondition axioms for external actions such as
Begin(t), End(t), Commit(t), Rollback(t), Spawn(t, t′), etc. Commit(t) and
Rollback(t) are coercive actions that must occur whenever they are possible. We

1 The terminology internal versus external action is also used in [24], though with a
different meaning.
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also give successor state axioms that state how change occurs in databases in the
presence of both internal and external actions. All these axioms provide the first di-
mension of the situation calculus framework for axiomatizing transactions, namely
the axiomatization of the effects of transactions on fluents; they also comprise
axioms indicating which transactions are conflicting with each other, and what
sublogs of the current log are visible; which visible sublogs are delegated to the
transactions is expressed implicitly in successor state axioms.

A useful concept that underlies most of the transaction models is that of respon-
sibility over changes operated on data items. For example, in a nested transaction, a
parent transaction will take responsibility of changes done by any of its committed
children. The only way we can keep track of those responsibilities is to look at the
transaction arguments of the actions present in the log. To that end, we introduce
a system fluent responsible(t, a, s), which intuitively means that transaction t is
responsible for the action a in the log s, which we characterize with an appropriate
successor state axiom of the form responsible(t, a′, do(a, s)) ≡ Φtm(t, a, a′, s),
where Φtm(t, a, a′, s) is a transaction model-dependent first order formula whose
only free variables are among t, a, a′, and s. For example, in the flat transactions,
we will have the following, simple axiom:

responsible(t, a, s) ≡
∨

A∈A(∃x)a = A(x, t)

i.e., each transaction is considered responsible for any action whose last argument
bears its name; here, A is the set of actions of the relational language.

To express conflicts between transactions, we need the predicate termAct(a, t)
and the system fluents updConflict(a, a′, s) and transConflict(t, t′, s), whose
intuitive meaning is that the action a is a terminal action of t, the action a is con-
flicting with the action a′ in s, and the transaction t is conflicting with the transac-
tion t′ in s; their characterization is as follows:

Abbreviation 2

termAct(a, t) =df a = Commit(t) ∨ a = Rollback(t);

Abbreviation 3

updConflict(a, a′, s) =df∨
F∈F

(∃x, t, t′)¬[F (x, t, do(a, do(a′, s))) ≡ F (x, t′, do(a′, do(a, s)))];

here,F is the set of database fluents of the relational language; this definition says
that two internal actions a and a′ conflict in the log s iff the value of the fluents
depends on the order in which a and a′ appear in s.

Abbreviation 4

transConflict(t, t′, do(a, s)) =df t 6= t′ ∧ responsible(t′, a, s)∧
(∃a′, s′)[responsible(t, a′, s)∧ do(a′, s′) @ s ∧ updConflict(a′, a, s)]∨
transConflict(t, t′, s) ∧ ¬termAct(a, t);



8 Iluju Kiringa, Alfredo Gabaldon

i.e., transaction t conflicts with transaction t′ in the log s iff t′ executes an internal
action a after t has executed an internal action a′ that conflicts with a in the log s.

Notice that we define updConflict(a, a′, s) in terms of performing action a and
action a′ one immediately after the other and vice-versa; in the definition of the
predicate transConflict(t, t′, s), however, we allow action a′ to be executed long
before action a. This does not mean that actions that are performed between a′

and a are irrelevant with respect to update conflicts. Rather, Abbreviation (3) just
means that actions a and a′ conflict whenever executing one immediately after
the other would result in a discrepancy in the truth value of at least one of the
relational fluents; and Abbreviation (4) allows for the possibility of other update
conflicts arising between a′ and other actions before the execution of a.

A further useful system fluent that we provide in the general framework is
readsFrom(t, t′, s). This is used in most transaction models as a source of de-
pendencies among transactions, and intuitively means that the transaction t reads
a value written by the transaction t′ in the log s. The axiomatizer must provide a
successor state axiom for this fluent depending on the application.

The visibility of portions of the log is characterized by a transaction model-
specific system fluent visible(t, s), which intuitively means that the transaction t
sees the log s. In general, it has the form visible(t, s) ≡ H(t, s), where H(t, s) is
a condition on the log s depending on the transaction t. In the transaction models
in which we have visible(t, s) ≡ true, no mention will be made of visibility.

The second dimension of the situation calculus framework is made of depen-
dencies between transactions. All the dependencies expressed in ACTA ([9]) can
also be expressed in the situation calculus. As an example, we have:

Commit Dependency of t on t′

do(Commit(t), s) @ s∗ ⊃
[do(Commit(t′), s′) v s∗ ⊃ do(Commit(t′), s′) @ do(Commit(t), s)];

i.e., If t commits in a log s∗, then, whenever t′ also commits in s∗, t′ commits
before t.

Strong Commit Dependency of t on t′

(∃s′)do(Commit(t′), s′) @ s∗ ⊃ (∃s)do(Commit(t), s) v s∗;

i.e., If t′ commits in a log s∗, then t must also commit in s∗.

Rollback Dependency of t on t′

(∃s′)do(Rollback(t′), s′) @ s∗ ⊃ (∃s)do(Rollback(t), s) v s∗;

i.e., If t′ rolls back in a log s∗, then t must also roll back in that log.

Weak Rollback Dependency of t on t′

do(Rollback(t′), s′) @ s∗ ⊃
{(∀s)[s @ s∗ ∧ do(Commit(t), s) 6v do(Rollback(t′), s′)] ⊃

(∃s′′)do(Rollback(t), s′′) v s∗};

i.e., If t′ rolls back in a log s∗, then, whenever t does not commit before t′, t must
also roll back in s∗.
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Begin on Commit Dependency of t on t′

do(Begin(t) @ s∗ ⊃ (∀s)do(Commit(t′), s) @ do(Begin(t′), s∗);

i.e., If t begins in a log s∗, then, t′ must commit before the beginning of t in s∗.
As we shall see below, all these dependencies are properties of legal database

logs of various transaction models.
To control dependencies that may develop among running transactions, we use

a set of predicates denoting these dependencies. For example, we use c dep(t, t′, s),
sc dep(t, t′, s), r dep(t, t′, s), wr dep(t, t′, s), and and bc dep(t, t′, s) to denote
the commit, strong commit, rollback, weak rollback, and begin on commit depen-
dencies, respectively. These are system fluents whose truth value is changed by
the relevant transaction models by taking into account dependencies generated by
the execution of its external actions (external dependencies) and those generated
by the execution of its internal actions (internal dependencies). As an example,
in the nested transaction model, we have the following successor state axiom for
wr dep(t, t′, s):

wr dep(t, t′, do(a, s)) ≡ a = Spawn(t, t′) ∨
wr dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′).

This says that a weak rollback dependency of t on t′ arises in do(a, s) when either
a is the action of t spawning t′, or that dependency existed already in s and neither
t nor t′ terminated with the action a.

3 Modeling Flat Transactions Models

3.1 Axiomatization

Flat transactions exhibit ACID properties. This section introduces a characteriza-
tion of flat transactions in terms of theories of the situation calculus. These theories
give axioms of flat transaction models that constrain database logs in such a way
that these logs satisfy important correctness properties of database transaction, in-
cluding the ACID properties.

Definition 2 (Flat Transaction) A sequence of database actions is a flat transac-
tion iff it is one of the following:

1. Atomic transaction: [a1, . . . , an], where the a1 must beBegin(t), and an must
be either Commit(t), or Rollback(t); ai, i = 2, · · · , n−1, may be any of the
primitive actions, except Begin(t), Rollback(t), and Commit(t); here, the
argument t is a unique identifier for the atomic transaction.

2. Transaction: at1•. . .•atm, where the ati, 1 ≤ i ≤ m, are atomic transactions.2

Flat transactions can be sequenced or run in parallel. Notice that we do not intro-
duce a term of a new sort for transactions, as is the case in [5]; we treat transactions

2 Given two atomic transactions A = [A1, · · · , An] and B = [B1, · · · , Bm], A • B is
an abbreviation for [A1, · · · , An, B1, · · · , Bm].
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as run-time activities, whose compile-time counterparts will be GOLOG programs
as shown in [18]. We refer to transactions by their names that are of sort object.

The axiomatization of a dynamic relational database with flat transaction prop-
erties comprises the following classes of axioms:
Foundational Axioms. These are constraints imposed on the structure of database
logs ([30]):

do(a1, s1)=do(a2, s2) ⊃ a1 =a2 ∧ s1 =s2, (1)
(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s), (2)
¬(s @ S0), (3)
s @ do(a, s′) ≡ s v s′. (4)

These characterize database logs as finite sequences of updates. Notice that the
second axiom is a second-order induction axiom; the third and fourth axioms char-
acterize the subsequence relation @.
Integrity Constraints. These are constraints imposed on the data in the database
at a given situation s; their set is denoted by ICe for constraints that must be en-
forced at each update execution, and by ICv for those that must be verified at the
end of the flat transaction.

Update Precondition Axioms. There is one for each internal action A(x, t), with
syntactic form

Poss(A(x, t), s) ≡ (∃t′)ΠA(x, t′, s) ∧ ICe(do(A(x, t), s)) ∧ running(t, s).
(5)

Here, ΠA(x, t, s) is a first order formula with free variables among x, t, and s.
These axioms characterize the preconditions of the updateA; ICe(s) and running(t, s)
are defined as follows:

Abbreviation 5 ICe(s) =df

∧
IC∈ICe

IC(s).

Abbreviation 6

running(t, s) =df (∃s′).do(Begin(t), s′) v s∧
(∀a, s′′)[do(Begin(t), s′) @ do(a, s′′) @ s ⊃ a 6= Rollback(t) ∧ a 6= End(t)].

In a banking Credit/Debit example formalized below (in Section 5), the following
states that it is possible to insert a tuple into the teller relation relative to the
database log s iff, as a result of performing the actions in the log, that tuple would
not already be present in the teller relation, the integrity constraints are satisfied,
and transaction t is running.

Poss(t delete(tid, tbal, t), s) ≡(∃t′)teller(tid, tbal, t′, s)∧
ICe(do(t delete(tid, tbal, t), s)) ∧ running(t, s).

(6)
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Successor State Axioms. These have the syntactic form

F (x, t, do(a, s)) ≡(∃t′)ΦF (x, a, t′, s) ∧ ¬(∃t′′)a =Rollback(t′′)∨
(∃t′′)a =Rollback(t′′) ∧ restoreBeginPoint(F,x, t′′, s),

(7)

where ΦF (x, a, t, s) is a formula with free variables among x, a, t, s. The formula
on the right hand side of (7) is uniform in s, and ΦF (x, a, t, s) is a formula with
free variables among x, a, t, s; ΦF (x, a, t, s) stands for the right hand side of the
successor state axioms of Section 2.1 and has the following canonical form [34]:

γ
+
F

(x, a, t, s) ∨ F (x, s) ∧ ¬γ−
F

(x, a, t, s), (8)

where γ+
F (x, a, t, s) (γ−F (x, a, t, s)) denotes a first order formula specifying the

conditions that make a fluent F true (false) in the situation following the execution
of an update a.

There is one successor state axiom for each database relational fluent F , and
restoreBeginPoint(F,x, t, s) is defined as follows:

Abbreviation 7

restoreBeginPoint(F,x, t, s) =df

[(∃a∗, s′, s∗, t′).do(Begin(t), s′) @ do(a∗, s∗) v s∧
writes(a∗, F, t) ∧ F (x, t′, s′)]∨

[(∀a∗, s∗, s′).do(Begin(t), s′) @ do(a∗, s∗) v s ⊃ ¬writes(a∗, F, t)]∧
(∃t′)F (x, t′, s).

Notice that system fluents have successor state axioms that have to be specified
on a case by case basis and do not necessarily have the form (7). Intuitively,
restoreBeginPoint(F,x, t, s) means that the system restores the value that the
database fluent F with arguments x had before the execution of the Begin action
of the transaction t in the log s if the transaction t has updated F ; it keeps the
value it had in s otherwise. Given the actual situation s, the successor state axioms
characterize the truth values of the fluent F in the next situation do(a, s) in terms
of all the past situations. In the banking example, the following successor state ax-
iom (9) states that the tuple (tid, tbal) will be in the teller relation relative to the
log do(a, s) iff the last database operation a in the log inserted it there, or it was
already in the teller relation relative to the log s, and a didn’t delete it; all this,
provided that the operation a is not rolling the database back. In the case the oper-
ation a is rolling the database back, the tellers relation will get a value according
to the logic of (7).

tellers(tid, tbal, t, do(a, s)) ≡
((∃t1)a = t insert(tid, tbal, t1) ∨ (∃t2)tellers(tid, tbal, t2, s)∧
¬(∃t3)a = t delete(tid, tbal, t3)) ∧ ¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′) ∧ restoreBeginPoint(tellers, (tid, tbal), t′, s).

(9)
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Precondition Axioms for External Actions. This is a set of action precondition
axioms for the transaction specific actions Begin(t), End(t), Commit(t), and
Rollback(t). The external actions of flat transactions have the following precon-
dition axioms:

Poss(Begin(t), s) ≡ ¬(∃s′)do(Begin(t), s′) v s, (10)
Poss(End(t), s) ≡ running(t, s), (11)

Poss(Commit(t), s) ≡ (∃s′).s = do(End(t), s′)∧∧
IC∈ICv

IC(s) ∧ (∀t′)[sc dep(t, t′, s) ⊃ (∃s′′)do(Commit(t′), s′′) v s], (12)

Poss(Rollback(t), s) ≡ (∃s′)[s = do(End(t), s′)∧

¬
∧

IC∈ICv

IC(s)] ∨ (∃t′, s′′)[r dep(t, t′, s) ∧ do(Rollback(t′), s′′) v s]. (13)

Dependency axioms. These are transaction model-dependent axioms of the form

dep(t, t′, do(a, s)) ≡ C(t, t′, a, s), (14)

where C(t, t′, a, s) is a condition involving the conflict relation between internal
actions of any two transactions t and t′, and dep(t, t′, s) is one of the dependency
predicates c dep(t, t′, s), sc dep(t, t′, s), etc. These axioms are used to capture
the notion of recoverability, avoiding cascading rollbacks, etc, of the classical
concurrency control theory [4]. For example, to achieve recoverability and avoid
cascading rollbacks, the following axioms are used, respectively:

r dep(t, t′, s)≡ transConflict(t, t′, s), (15)
sc dep(t, t′, s)≡readsFrom(t, t′, s). (16)

The first axiom says that a transaction conflicting with another transaction gener-
ates a rollback dependency, and the second says that a transaction reading from
another transaction generates a strong commit dependency. Axioms (15) and (16)
generate internal dependencies.
Unique Names Axioms. These state that the primitive updates and the objects of
the domain are pairwise unequal.
Initial Database. This is a set of first order sentences specifying the initial database
state. They are completion axioms of the form

(∀x, t).F (x, t, S0) ≡ x=C(1)∨. . .∨x=C(r), (17)

one for each (database or system) fluent F . Here, the Ci are tuples of constants.
Also, DS0 includes unique name axioms for constants of the database. Axioms of
the form (17) say that our theories accommodate a complete initial database state,
which is commonly the case in relational databases as unveiled in [31]. This re-
quirement is made to keep the theory simple and to reflect the standard practice in
databases. It has the theoretical advantage of simplifying the establishment of log-
ical entailments in the initial database; moreover, it has the practical advantage of
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facilitating rapid prototyping of the ATMs using Prolog which embodies negation
by failure, a notion close to the completion axioms used here.

One striking feature of our axioms is the use of the predicate @ on the right
hand side of action precondition axioms and successor state axioms. That is, they
are capturing the notion of a situation being located in the past relative to the cur-
rent situation which we express with the predicate @ in the situation calculus. Thus
they are capturing non-Markovian control. We call these axioms a basic relational
theory, and introduce the following:

Definition 3 (Basic Relational Theory) Suppose R is a basic relational language
with alphabet A. Then a theoryD ⊆ W is a non-Markovian basic relational theory
iff it is of the form

D = Df ∪ DIC ∪ Dap ∪ Dss ∪ DFT ∪ Ddep ∪ Duna ∪ DS0

where

1. A comprises, in addition to the internal actions, the external actionsBegin(t),
End(t), Commit(t), and Rollback(t).

2. Df is the set of foundational axioms.
3. DIC is a set of integrity constraints IC(s). More specifically, we have built-

in ICs (DICe ) and generic ICs (DICv ). Built-in ICs are: not null attributes,
primary keys, and uniqueness ICs.

4. Dap is a set of non-Markovian action precondition axioms of the form (5), one
for each primitive internal action of R.

5. Dss is a set of non-Markovian successor state axioms of the form (7), one for
each database fluent of R. Also, Dss includes successor state axioms for all
the system fluents of the flat transaction model.

6. DFT is a set of action precondition axioms for the primitive external actions
of R.

7. Ddep is a set of dependency axioms.
8. Duna consists of unique names axioms for objects and for actions.
9. DS0 is an initial relational theory, i.e. a set of completion axioms of the form

(∀x).F (x, S0) ≡ x = C(1) ∨ . . . ∨ x = C(r),

one for each fluent F whose interpretation contains r n-tuples, together with
completion axioms of the form (∀x)¬F (x, S0), one for each fluent F whose
interpretation is empty. Also, DS0 includes unique name axioms for constants
of the database.

Definition 4 (Relational Database) A relational database is a pair (R,D), where
R is a relational language and D is a basic relational theory.
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3.2 Legal Flat Transactions

A fundamental property ofRollback(t) andCommit(t) actions is that, the database
system must execute them in any database state in which they are possible. In this
sense, they are coercive actions, and we call them system actions:3

Abbreviation 8

systemAct(a, t)=df a=Commit(t) ∨ a=Rollback(t).

We constrain legal logs to include these mandatory system actions, as well as
the requirement that all actions in the log be possible:

Abbreviation 9

legal(s) =df (∀a, s∗)[do(a, s∗) v s ⊃ Poss(a, s∗)]∧
(∀a′, a′′, s′, t)[systemAct(a′, t) ∧ responsible(t, a′, s′)∧
responsible(t, a′′, s′) ∧ Poss(a′, s′) ∧ do(a′′, s′) @ s ⊃ a′ = a′′].

3.3 Properties

Simple properties such as well-formedness of atomic transactions [23] can be for-
mulated in the situation calculus and proved as logical consequences of basic rela-
tional theories. We first introduce the following abbreviation:

Abbreviation 10

externalAct(a, t) =df

a = Begin(t) ∨ a = End(t) ∨ a = Commit(t) ∨ a = Rollback(t).

Theorem 1 (Well-Formedness of Flat Transactions) Suppose D is a basic rela-
tional theory. Then

1. No external action may occur twice in a legal log; i.e.,

D |= legal(s) ⊃
{do(a, s′) @ s ∧ do(a, s′′) @ s ∧ externalAct(a, t) ⊃ s′ = s′′}.

2. There are no dangling Commit or Rollback actions; i.e.,

D |= legal(s) ⊃
{[do(Commit(t), s′) @ s ⊃ (∃s′′)do(Begin(t), s′′) @ do(Commit(t), s′)]∧

[do(Rollback(t), s′) @ s ⊃ (∃s′′)do(Begin(t), s′′) @ do(Rollback(t), s′)]}.
3 It must be noted that, in reality, a part of rolling back and committing lies with

the user and another part lies with the system. So, we could in fact have something
like Rollbacksys(t) and Commitsys(t) on the one hand, and Rollbackusr(t) and
Commitusr(t) on the other hand. However, the discussion is simplified by considering
only the system’s role in executing these actions.



Synthesizing Advanced Transaction Models Using the Situation Calculus?? 15

3. No transaction may commit and then roll back, and conversely; i.e.,

D |= legal(s) ⊃
{[do(Commit(t), s′) @ s ⊃ ¬(∃s′′)do(Rollback(t), s′′) @ s] ∧
[do(Rollback(t), s′) @ s ⊃ ¬(∃s′′)do(Commit(t), s′′) @ s]}.

These properties are similar to the fundamental axioms, applicable to all trans-
actions, of [9]. They are well-formedness properties since they rule out all the
ill-formed transactions such as

[Begin(t), a ins(A1, B1, 1000, T1), Begin(t), a del(A1, B1, 1000, T1), Commit(t)],

[Begin(t), a ins(A1, B1, 1000, T1), Commit(t), a del(A1, B1, 1000, T1), Commit(t)],

[Begin(t), a ins(A1, B1,−1000, T1), Commit(t), a del(A1, B1,−1000, T1), Rollback(t)],
etc.

Theorem 2 SupposeD is a basic relational theory. Then any legal log satisfies the
strong commit and rollback dependency properties; i.e.,

D |= legal(s) ⊃
(∀t, t′).{sc dep(t, t′, s) ⊃

[(∃s′)do(Commit(t′), s′) @ s ⊃ (∃s∗)do(Commit(t), s∗) v s]} ∧
{c dep(t, t′, s) ⊃

[(∃s′)do(Rollback(t′), s′) @ s ⊃ (∃s∗)do(Rollback(t), s∗) @ s]}.

Now we turn to the ACID properties, which are the most important properties
of flat transactions.

Theorem 3 (Atomicity) SupposeD is a relational theory. Then for every database
fluent F

D |=legal(s) ⊃
(∀t, s1, s2){do(Begin(t), s1) @ do(a, s2) @ s∧
(∃a∗, s∗)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F, t)] ⊃

[(a = Rollback(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s1)))∧
(a = Commit(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s2)))]}.

This says that rolling back restores any modified database fluent to the value it had
just before the last Begin(t) action, and committing endorses the value it had in
the situation just before the Commit(t) action.

Theorem 4 (Consistency) Suppose D is a relational theory. Then All integrity
constraints are satisfied at committed logs; i.e.,

D |= legal(s) ⊃ {do(Commit(t), s′) v s ⊃
∧

IC∈ICv∪ICe
IC(do(Commit(t), s′))}.

Theorem 5 D is satisfiable iffDS0∪Duna∪DIC [S0] is.4 In other words, provided
the constraints are consistent with the initial database state and unique names for
actions, then the entire relational theory is satisfiable, and conversely.

4 Here, DIC [S0] is the set DIC relativized to the situation S0.
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Some properties of transactions need the notions of committed and rolled back
updates. With the predicates committed(a, s) and rolledBack(a, s), we express
these notions in the situation calculus using the following definitions:

committed(a, s) =df

(∃t, s′).responsible(t, a, s) ∧ do(Commit(t), s′) v s,
(18)

rolledBack(a, s) =df

(∃t, s′).responsible(t, a, s) ∧ do(Rollback(t), s′) v s.
(19)

Theorem 6 (Durability) Suppose D is a relational theory. Then whenever an up-
date is committed or rolled back by a transaction, another transaction can not
change this fact:

D |=legal(s) ⊃ {do(Rollback(t), s′) v s ∧ ¬responsible(t, a, s) ⊃
[Committed(a, s′) ≡ Committed(a, do(Rollback(t), s′))]∧
[rolledBack(a, s′) ≡ rolledBack(a, do(Rollback(t), s′))].

Definition 5 (Serializability)

transConflict∗(t, t′, s) =df (∀C)[(∀t)C(t, t, s)∧
(∀s, t, t′, t′′)[C(t, t′′, s) ∧ transConflict(t′′, t′, s) ⊃ C(t, t′, s)] ⊃ C(t, t′, s)],

serializable(s) =df (∀t).do(Commit(t), s′) @ s ⊃ ¬transConflict∗(t, t, s).

Theorem 7 (Isolation) Suppose D is a relational theory. Then

D |= legal(s) ⊃ serializable(s).

3.4 Flat Transactions with Savepoints

Flat transactions with savepoints are a variation of flat transactions which pro-
vides the user with a new external action Save(t) to establish savepoints in the
database log ([14]). The user program can roll back to those savepoints from later
database logs. A flat transaction with savepoints is a sequence [a1, . . . , an] of prim-
itive actions, where a1 must be Begin(t), and an must be either Commit(t), or
Rollback(t); ai, i = 2, · · · , n − 1, may be any of the primitive actions includ-
ing Save(t) and Rollback(t, n), except Begin(t), Commit(t), and Rollback(t);
an−2 may be End(t).

The external action Rollback(t, n), where t is a transaction, and n is a mono-
tonically increasing number – the savepoint –, brings the database back to the
database state corresponding to that savepoint. With this action, we now can roll
back with respect to savepoints; thus the precondition axiom for Rollback(t, n),
which now has a savepoint as argument, must be specified accordingly. If aRollback(t, n)
action is executed in situation s, its effect is that we ignore any situation between
some s′ and s, where s′ is the database log corresponding to the savepoint n. One
way of doing this is to maintain a predicate Ignore(t, s′, s) in order to know which
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parts of the log to skip over. The following action precondition axioms and def-
inition reflect these changes to the corresponding axioms for flat transactions of
Section 3.1:

Poss(Save(t), s) ≡ running(t, s), (20)

Poss(Rollback(t), s) ≡

(∃s′)[s = do(End(t), s′) ∧ ¬
∧

IC∈ICv

IC(s)]∨

(∃t′, s′′)[r dep(t, t′, s) ∧ do(Rollback(t′), s′′) v s]∨
(∃t′, n, s′, s∗, s∗∗)[s′ v s∗ v s∗∗ ∧ r dep(t, t′, s∗)∧

s′ = sitAtSavePoint(t′, n) ∧ do(Rollback(t′, n), s∗∗) v s],

(21)

Poss(Rollback(t, n), s) ≡
running(t, s) ∧ (∃s′).s′ = sitAtSavePoint(t, n)∧
s′ @ s ∧ numOfSavePoints(t, s) ≥ n ∧ ¬(∃s∗, s∗∗).s∗ v s′ v s∗∗∧
Ignore(t, s∗, s∗∗),

(22)

Ignore(t, s′, do(a, s)) ≡ s′ v do(a, s)∧
(∃n).sitAtSavePoint(t, n) = s′ ∧ a = Rollback(t, n),

(23)

numOfSavePoints(t, do(a, s)) = n ≡ a = Begin(t) ∧ n = 1∨
a = Save(t) ∧ n = numOfSavePoints(t, s) + 1∨
numOfSavePoints(t, s) = n ∧ a 6= Begin(t) ∧ a 6= Save(t),

(24)

sitAtSavePoint(t, n) = s =df (∃a, s′).numOfSavePoints(t, s) = n∧
s = do(a, s′) ∧ (a = Begin(t) ∨ a = Save(t)).

(25)

In flat transactions with save points, successor state axioms for relations have
the following form that reflects changes introduced by the external Rollback(t, n)
action.

F (x, t, do(a, s)) ≡
(∃t′).ΦF (x, a, t′, s) ∧ ¬(∃t′′)a = Rollback(t′′)∧

¬(∃t′′, n)a = Rollback(t′′, n)∨
(∃t′′)a = Rollback(t′′) ∧ restoreBeginPoint(F,x, t′′, s)∨
(∃n, t′′).a = Rollback(t′′, n) ∧ restoreSavePoint(F,x, n, t′′, s),

(26)

one for each relation F , where ΦF (x, a, t′, s) is a formula with free variables
among a, s,x, t′; Abbreviation (7) defines restoreBeginPoint(F,x, t′′, s), and
restoreSavePoint(F,x, n, t′′, s) is defined as follows:

Abbreviation 11

restoreSavePoint(F,x, n, t, s) =df

(∃s′).s′ @ s ∧ sitAtSavePoint(t, n) = s′ ∧ (∃t′)F (x, t′, s′),
(27)
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where sitAtSavePoint(t, n) is a function returning the log relative to the transac-
tion t at the savepoint n, defined by (25); restoreSavePoint(F,x, n, t, s) means
that the value of the fluent F with arguments x is set back to the value it had at the
sublog of s corresponding to the savepoint n established by the transaction t.

The dependency axioms have to be adapted to this new setting where depen-
dencies that held previously may no longer hold as a consequence of the partial
rollback mechanism; these axioms are now of the form

dep(t, t′, do(a, s)) ≡ C(t, t′, s) ∧ a 6= Rollback(t) ∧ a 6= Rollback(t′)∧
¬(∃n, s′)[(a = Rollback(t, n) ∨ a = Rollback(t′, n))∧
sitAtSavePoint(t′, n) = s′ ∧ (∀s′′).s′ v s′′ v s ⊃ ¬dep(t, t′, s′′)],

(28)

where C(t, t′) and dep(t, t′, s) are defined as in (14); we have one such axiom for
each dependency predicate.

A basic relational theory for flat transactions with savepoints is as in Defini-
tion 3, but where the relational language includes Save(t) and Rollback(t, n) as
further actions, the axioms (20) – (25) are added to DFT , the set Dss is a set of
successor state axioms of the form (26), and the set Ddep is a set of dependency
axioms of the form (28). All the other axioms of Definition 3 remain unchanged.

3.4.1 Properties Now we turn to the ACID properties of flat transactions with
savepoints. The introduction of the Rollback(t, n) action modifies some of the
previous theorems.

Lemma 1 Suppose D is a relational theory. Then for every relational fluent F

D |= legal(s) ⊃
{do(Begin(t),s1) @ do(a, s2) @ s∧

(∃a∗, s∗)[do(Begin(t), s1) @ do(a∗, s∗) @ do(a, s2) ∧ writes(a∗, F, t)] ⊃
[(∃n)(a = Rollback(t, n) ∧ sitAtSavePoint(t, n) = s′) ⊃

(((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s′)))]}.
This tells us that Rollback(t, n) does not fall under the all-or-nothing logic that
characterizes flat transactions since the situation at a given savepoint of a transac-
tion is not necessarily the same as the situation at the beginning of that transaction.

Note that Theorem 3 continues to hold for flat transactions with savepoints.
Hence, from Theorem 3 and Lemma 1, we have the following

Corollary 1 (Atomicity of Transactions with Savepoints) Suppose D is a rela-
tional theory. Then for every database fluent F

D |= legal(s) ⊃
{do(Begin(t), s1) @ do(a, s2) @ s∧

(∃a∗, s∗)[do(Begin(t), s1) @ do(a∗, s∗) @ do(a, s2) ∧ writes(a∗, F, t)] ⊃
[[a = Rollback(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s1))]∧
[(∃n)(a = Rollback(t, n) ∧ sitAtSavePoint(t, n) = s′) ⊃

(((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s′)))]
[a = Commit(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s2))]]}.
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Lemma 2 Suppose D is a relational theory. Then for every database fluent F

D |= legal(s) ⊃
{do(Rollback(t, n), s′) @ s ∧ sitAtSavePoint(t, n) @ s′ ⊃

((∃t1)F (x, t1, do(Rollback(t, n), s2)) ≡ (∃t2)F (x, t2, sitAtSavePoint(t, n)))∧
(∀a, s∗)[sitAtSavePoint(t, n) @ do(a, s∗) v s2 ⊃ a 6= Commit(t)]]}.

Theorem 6, which also holds for flat transactions with savepoints, and Lemma
2 characterize the durability of flat transactions with Savepoints.

The consistency Theorem 4 also holds for flat transactions with savepoints, as
do Theorems 5 and 7.

The following theorem establishes a fundamental property of transactions with
savepoints: if a transaction rolls back to a given savepoint, say, n, all the updates
on the way back to the situation corresponding to n are aborted, and no future
rollback to the situations generated by these updates are possible.

Theorem 8 Suppose D is a relational theory. Then

D |= legal(s) ⊃
{do(Rollback(t, n), s′) @ s ⊃

[¬(∃n∗, s∗).do(Rollback(t, n), s′) @ do(Rollback(n∗), s∗) @ s∧
sitAtSavePoint(n) v sitAtSavePoint(n∗) @ do(Rollback(t, n), s′)]}.

3.5 Chained Flat Transactions

A chained flat transaction is a sequence [a1, . . . , an] of primitive actions, where
a1 must be Begin(t), and an must be either Commit(t), or Rollback(t); ai, i =
2, · · · , n − 1, may be any of the primitive actions including Chain(t), except
Begin(t) and Commit(t).

Chained flat transactions are equivalent to the special case of flat transactions
with save points, where only the most recent savepoint is restored. The intuition
behind chained transactions is to allow committing work done so far, thus waiving
any further right to execute a rollback over the committed logs ([14]). The new ex-
ternal action Chain(t) is used by the programmer to commit work done so far and
continue with work yet to be done. For any s, we call the situation do(Chain(t), s)
a chaining situation of transaction t.
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The following action precondition axioms capture the essence of chained flat
transactions:

Poss(Rollback(t), s) ≡ (∃s′)[s = do(End(t), s′) ∧ ¬
∧

IC∈ICv

IC(s)]∨

(∃t′, s∗, s∗∗).do(Chain(t′), s∗) @ do(Rollback(t′), s∗∗) v s∧
[(∀a, s′′).do(Chain(t′), s∗) @ do(a, s′′) @ s∗∗ ⊃ a 6= Chain(t)]∧
[(∃s′′).do(Chain(t′), s∗) @ s′′ @ s∗∗ ∧ r dep(t, t′, s′′)],

(29)

Poss(Chain(t), s) ≡
∧

IC∈ICv

IC(s) ∧ running(t, s)∧

(∀t′).c dep(t, t′, s) ⊃
(∃s′′){do(Commit(t′), s′′) v s ∨ [do(Chain(t′), s′′) v s∧

(∀a∗, s∗)(do(Chain(t′), s′′) @ do(a∗, s∗) @ s ⊃
a∗ 6= Chain(t) ∧ ¬c dep(t, t′, s∗))]}.

(30)

The later axiom is particularly critical: it prevents the user from chaining a trans-
action t that is commit-dependent on another transaction t′ that has not commit-
ted before the last chaining situation of t. Axioms for Begin(t), End(t) and
Commit(t) remain unchanged.

Successor state axioms for fluents of chained flat transactions have the form
(7), but with a different definition for restoreBeginPoint:

Abbreviation 12

restoreBeginPoint(F,x, t, s) =df

(∃a, s′).(a = Begin(t) ∨ a = Chain(t))∧
(∀a∗, s∗)[s′ @ do(a∗, s∗) @ s ⊃ a∗ 6= Chain(t) ∧ a∗ 6= Begin(t)]∧
{[(∃a∗, s∗, t′).do(a, s′)vs∧[do(a, s′)@ do(a∗, s∗)vs∧writes(a∗, F, t)]∧

F (x, t′, s′)]∨
[(∀a∗, s∗).do(a, s′) @ do(a∗, s∗) v s ⊃ ¬writes(a∗, F, t)] ∧ (existst′)F (x, t′, s)}.

The dependency axioms must now be adapted to this setting where dependen-
cies that held previously may no longer hold as a consequence of the system rolling
back to the last chaining situation; these axioms are now of the form

dep(t, t′, do(a, s)) ≡
C(t, t′, s) ∧ a 6= Rollback(t) ∧ a 6= Rollback(t′) ∧ a 6= Chain(t′),

(31)

one for each dependency predicate; C(t, t′) and dep(t, t′, s) are defined as in (14).
A basic relational theory for chained flat transactions is as in Definition 3,

where A comprises Chain(t) as a further action, the set DFT is modified ac-
cordingly to accommodate the new axioms (29)–(30), the set Dss is now a set of
successor state axioms that reflects the changes brought by Abbreviation 12, and
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the set Ddep is a set of dependency axioms of the form (31). All the other axioms
of Definition 3 remain unchanged.

The following is a property specific to chained transactions. It captures the
intuition behind chained transactions which is that whenever chained, a database
transaction can never roll back over the last chaining situation.

Theorem 9 (Durability of Chaining Situations) SupposeD is a relational theory
for chained flat transactions. Then, for all database fluents F

D |=legal(s) ⊃
{do(Chain(t), s′) @ do(Rollback(t), s′′) v s∧
¬(∃s∗)do(Chain(t), s′) @ do(Chain(t), s∗) @ do(Rollback(t), s′′) ⊃

((∃t′)F (x, t′, do(Rollback(t), s′′)) ≡ (∃t′′)F (x, t′′, do(Chain(t), s′)))]}.

4 Modeling Advanced Transaction Models

4.1 Closed Nested Transactions

The main idea conveyed by the notion of nested transactions is that of levels of
abstractions: each nesting in the hierarchy of nested transactions corresponds to a
level of abstraction from the details of the action execution.

Nested transactions ([28]) are the best known example of ATMs. A nested
transaction is a set of transactions (called subtransactions) forming a tree struc-
ture, meaning that any given transaction, the parent, may spawn a subtransaction,
the child, nested in it. A child commits only if its parent has committed. If a par-
ent transaction rolls back, all its children are rolled back. However, if a child rolls
back, the parent may execute a recovery procedure of its own. Each subtransac-
tion, except the root, fulfills the A, C, and I among the ACID properties. The root
(level 1) of the tree structure is the only transaction to satisfy all of the ACID
properties. This version of nested transactions is called closed because of this in-
ability of subtransactions to durably commit independently of the outcome of the
root transaction ([38]). This section deals with closed nested transactions (CNTs),
open nested transactions will be the topic of the next section.

A root transaction t is a sequence [a1, . . . , an] of primitive actions, where a1

must be Begin(t), and an must be either Commit(t), or Rollback(t); ai, i =
2, · · · , n− 1, may be any of the primitive actions, except Begin(t), Commit(t),
andRollback(t), but including Spawn(t, t′),Rollback(t′), andCommit(t′), with
t 6= t′. A child transaction t is a sequence [a1, . . . , an] of primitive actions, where
a1 must be Spawn(t′, t), and an must be either Commit(t), or Rollback(t);
ai, i = 2, · · · , n − 1, may be any of the primitive actions, except Spawn(t, t′),
Commit(t), and Rollback(t), but including Spawn(t∗, t∗∗), Rollback(t∗∗), and
Commit(t∗∗), with t 6= t∗∗. We capture the typical relationships that hold be-
tween transactions in the hierarchy of a nested transaction with the system fluents
transOf(t, a, s), parent(t, t′, s) and ancestor(t, t′, s), which are introduced in
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the following successor state axiom and abbreviation, respectively:

transOf(t, a, s) ≡ (∃a′).a = a′(x, t), (32)

parent(t, t′, do(a, s)) ≡ a = Spawn(t, t′)∨
parent(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′),

(33)

ancestor(t, t′, s) =df (∀A)[(∀t)A(t, t, s)∧
(∀s, t, t′, t′′)[A(t, t′′, s) ∧ parent(t′′, t′, s) ⊃ A(t, t′, s)] ⊃ A(t, t′, s)].

(34)

Responsibility over actions that are executed and conflicts between transac-
tions are specified with the following axioms:

responsible(t, a′, do(a, s)) ≡
transOf(t, a′, s) ∧ ¬(∃t∗)parent(t, t∗, s)∨
(∃t∗)[parent(t, t∗, s) ∧ a = Commit(t∗) ∧ responsible(t∗, a′)]∨
responsible(t, a′, s) ∧ ¬termAct(a, t),

(35)

transConflictNT (t, t′, do(a, s)) ≡
t 6= t′ ∧ responsible(t′, a, s)∧
(∃a′, s′)[responsible(t, a′, s)∧updConflict(a′, a, s)∧do(a′, s′)@ s]∧
¬responsible(t, a, s) ∧ running(t′, s)∧

((∃t′′)parent(t, t′′, s) ⊃ ¬ancestor(t, t′, s))∨
transConflictNT (t, t′, s) ∧ ¬termAct(a, t).

(36)

Intuitively, (36) means that transaction t conflicts with transaction t′ in the log s
iff t and t′ are not equal, internal actions they are responsible for are conflicting
in s, t is not responsible for the action of t′ it is conflicting with, t′ is running;
moreover, a transaction cannot conflict with actions his ancestors are responsible
for. Due to the presence of the new external action Spawn, we need to redefine
running(t, s) as follows:

Abbreviation 13

running(t, s) =df (∃s′).{do(Begin(t), s′) v s∧
(∀a, s′′)[do(Begin(t), s′) @ do(a, s′′) @ s ⊃ a 6= Rollback(t) ∧ a 6= End(t)]∨
(∃t′).do(Spawn(t′, t), s′) v s∧
(∀a, s′′)[do(Spawn(t′, t), s′) @ do(a, s′′) @ s ⊃ a 6= Rollback(t) ∧ a 6= End(t)]}.
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Now the external actions of closed nested transactions have the following precon-
dition axioms:

Poss(Begin(t), s) ≡ ¬(∃t′)parent(t′, t, s)∧
[s = S0 ∨ (∃s′, t′).t 6= t′ ∧ do(Begin(t′), s′) @ s],

(37)

Poss(Spawn(t, t′), s) ≡ t 6= t′∧
(∃s′, t′′)[do(Begin(t), s′) @ s ∨ do(Spawn(t′′, t), s′) @ s],

(38)

Poss(End(t), s) ≡ running(t, s), (39)

Poss(Commit(t), s) ≡ (∃s′).s = do(End(t), s′) ∧
∧

IC∈ICv

IC(s)∧

(∀t′)[sc dep(t, t′, s) ⊃ (∃s′′)do(Commit(t′), s′′) v s]∧
(∀t′)[c dep(t, t′, s) ∧ ¬(∃s∗)do(Rollback(t′), s∗) v s ⊃

(∃s′)do(Commit(t′), s′) @ s)],

(40)

Poss(Rollback(t), s) ≡ (∃s′).s = do(End(t), s′) ∧
∧

IC∈ICv

IC(s)∨

(∃t′, s′′).r dep(t, t′, s) ∧ do(Rollback(t′), s′′) @ s′∨
(∃t′, s∗).wr dep(t, t′, s) ∧ do(Rollback(t′), s∗) @ s∧

¬(∃s∗∗)do(Commit(t), s∗∗) @ do(Rollback(t′), s∗).

(41)

Dependency axioms characterizing the system fluents r dep(t, t′, s), c dep(t, t′, s),
sc dep(t, t′, s), and wr dep(t, t′, s) are:

r dep(t, t′, s) ≡ transConflictNT (t, t′, s), (42)
sc dep(t, t′, s) ≡ readsFrom(t, t′, s), (43)

c dep(t, t′, do(a, s)) ≡ a = Spawn(t, t′)∨
c dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′),

(44)

wr dep(t, t′, do(a, s)) ≡ a = Spawn(t′, t)∨
wr dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′).

(45)

As an example of what they mean, the last axiom says that a transaction spawning
another transaction generates a weak rollback dependency of the later one on the
first one, and this dependency ends when either transactions execute a terminating
action.

The successor state axioms for nested transactions are of the form:

F (x, t, do(a, s)) ≡ (∃t′)ΦF (x, a, t′, s) ∧ ¬(∃t′′)a = Rollback(t′′)∨
[(∃t′′).a = Rollback(t′′) ∧ ¬(∃t∗)parent(t∗, t′′, s)∧

restoreBeginPoint(F,x, t′′, s)]∨
[(∃t′′).a = Rollback(t′′)∧(∃t∗)parent(t∗, t′′, s)∧

restoreSpawnPoint(F,x, t′′, s)],

(46)
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one for each database fluent of the relational language. Here ΦF (x, a, t, s) is a
formula with free variables among x, a, t, and s; restoreBeginPoint(F,x, t, s)
is defined in (7), and restoreSpawnPoint(F,x, t, s) is the following

Abbreviation 14

restoreSpawnPoint(F,x, t, s) =df

[(∃a∗, s′, s∗, t′, t∗).do(Spawn(t′, t), s′) @ do(a∗, s∗) v s

∧ writes(a∗, F, t) ∧ F (x, t∗, s′)]∨
[(∀a∗, s∗, s′, t′).do(Spawn(t′, t), s′) @ do(a∗, s∗) v s ⊃

¬writes(a∗, F, t)] ∧ (∃t∗)F (x, t∗, s).

A basic relational theory for nested transactions is defined as in Section 3, but
where the relational language includes Spawn(t, t′) as a further action, and the
axioms (37) – (38) replace axioms (10) – (13), the axioms (42) – (45) replace the
axioms (15) – (16), and the set Dss is a set of successor state axioms of the form
(46). All the other axioms of Section 3 remain unchanged.

Now we state some of the properties of nested transactions as an illustration
of how such properties are formulated in the situation calculus. Similarly to Theo-
rem 2, we can show that a basic relational theory for nested transactions logically
implies the commit and weak rollback dependency properties.

Theorem 10 (Atomicity of Nested Transactions) Suppose D is a relational the-
ory for nested transactions. Then for every database fluent F

D |=legal(s) ⊃
(∀t, s1, s2){[s′ = do(Begin(t), s1) ∨ s′ = do(Spawn(t), s1)]∧
s′ @ do(a, s2) @ s∧
(∃a∗, s∗)[s′ @ do(a∗, s∗) @ do(a, s2) ∧ writes(a∗, F, t)] ⊃

[(a = Rollback(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s1)))∧
(a = Commit(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s2)))]}.

Theorem 11 (No-Orphan-Commit: [9]) Suppose D is a relational theory. Then,
whenever a child’s parent terminates before the parent does, the child is rolled
back;i.e.,

D |= legal(s) ⊃
{parent(t, t′, s) ∧ termAct(a, t) ∧
do(Commit(t′), s′) 6v do(a, s′′)@s ⊃ (∃s∗)do(Rollback(t′), s∗) @ s}.

This property, combined with the atomicity of all subtransactions of the nested
transaction tree (i.e. Theorem 10), leads to the fact that, should a root transaction
roll back, then so must all its subtransactions, also the committed ones. This is
where the D in the ACID acronym is relaxed for subtransactions.
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Definition 6 (Serializability of Nested Transactions)

transConflictNT ∗(t, t′, s) =df (∀C)[(∀t)C(t, t, s) ∧ (∀s, t, t′, t′′)[C(t, t′′, s)∧
transConflictNT (t′′, t′, s) ⊃ C(t, t′, s)] ⊃ C(t, t′, s)],

serializableNT (s) =df

(∀t).do(Commit(t), s′) @ s ⊃ ¬transConflictNT ∗(t, t, s).

Theorem 12 (Isolation of Nested Transactions) SupposeD is a relational theory
for nested transactions. Then

D |= legal(s) ⊃ serializableNT (s).

4.2 Cooperative Transaction Hierarchy

The cooperative transaction hierarchy (CTH: [29]) model has been proposed for
supporting cooperative applications in the context of CAD. A cooperative nesting
of transactions is a nesting, where sibling subtransactions are allowed to interact.
A cooperative transaction hierarchy is structured as a rooted tree whose leaf nodes,
the cooperative transactions (CTs), represent the transactions at the level of indi-
vidual designers,and whose internal nodes, the transaction groups (TGs), are each
a set of children (CTs or CGs) that cooperate to perform a single task. There is no
central correctness criterion in a CTH; instead, each TG has its own, user-defined
correctness criteria. A CG is not atomic; it performs specific tasks via its members,
enforces its own correctness criterion, and organizes cooperation among its mem-
bers; moreover, it keeps private copies of the objects that its members acquire at
creation time, and is a unit of recovery by managing its own recoverability. A TG
correctness is expressed in terms of patterns and conflicts. Patterns specify inter-
leavings of actions that must occur, and conflicts specify those interleavings that
must not occur. A TG’s log is correct iff it satisfies all its pattern specifications and
satisfies none of its conflict specifications. A child passes its copy to the parent
upon committing, at which time that copy subsumes the parent’s copy. Ultimately,
the copy of the root TG will be subsumed when the entire design commits. We
now give a situation calculus characterization of CTHs.

We have two new external actions: Join(t, t′, n), and Leave(t, t′), where t
and t′ are transactions, and n indicates whether the joining node is CT or TG.
A root transaction t is a sequence [a1, . . . , an] of primitive actions, where a1

must be Begin(t), and an must be either Commit(t), or Rollback(t); ai, i =
2, · · · , n− 1, may be any of the primitive actions, except Begin(t), Commit(t),
and Rollback(t), but including Join(t′, t, n), Rollback(t′), and Commit(t′),
with t 6= t′. A CT or a TG t is a sequence [a1, . . . , an] of primitive actions, where
a1 must be Join(t, t′), and an must be either Commit(t), orRollback(t); ai, i =
2, · · · , n−1, may be any of the primitive actions, except Join(t, t′), Commit(t),
and Rollback(t), but including Join(t∗, t∗∗), Rollback(t∗), and Commit(t∗),
with t 6= t′, t∗ 6= t∗∗, and t∗ 6= t.

The external actions of roots, and CTs and TGs, are enumerated as follows,
respectively.



26 Iluju Kiringa, Alfredo Gabaldon

Abbreviation 15

externalActR(a, t) =df

a = Begin(t) ∨ a = End(t) ∨ a = Commit(t) ∨ a = Rollback(t).

Abbreviation 16

externalActC(a, t) =df

(∃t′, n)a = Join(t, t′, n) ∨ (∃t′)a = Leave(t, t′) ∨ a = End(t)∨
a = Commit(t) ∨ a = Rollback(t).

We continue to capture the typical relationships that hold between transactions
in the CTH model with the same fluents parent(t, t′, s) and ancestor(t, t′, s) as
in nested transactions, but now with a slightly different successor state axiom for
parent(t, t′, s).

parent(t, t′, do(a, s))≡
(∃n)a=Join(t′, t, n)∨parent(t, t′, s)∧¬a 6=Leave(t′, t).

(47)

Furthermore, we need the fluents transGroup(t, s) and coopTrans(t, s) which
intuitively tell whether a transaction is a TG or a CT; these have the following
successor state axioms:

transGroup(t, do(a, s)) ≡ (∃t′)a = Join(t, t′, TG)∨
transGroup(t, s) ∧ ¬(∃t′)a = Leave(t, t′),

(48)

coopTrans(t, do(a, s)) ≡ (∃t′)a = Join(t, t′, CT )∨
coopTrans(t, s) ∧ ¬(∃t′)a = Leave(t, t′).

(49)

A user-defined predicate transConflictCTH(t, t′, s) must be provided, where
t and t′ are transactions; intuitively, transConflictCTH(t, t′, s) means that trans-
actions t and t′ conflict in the log s. As an example of such a definition of this
predicate, the following axiom captures the cooperative serializability property of
[25]:

transConflictCTH(t, t′, s) ≡ (∃t′′).t 6= t′ ∧ transGroup(t′′, s)∧
{¬parent(t′′, t) ∧ ¬parent(t′′, t′) ∧ transConflictNT (t, t′, s)∨
(∃t∗)[¬parent(t′′, t) ∧ parent(t′′, t′) ∧ parent(t′′, t∗)∧

transConflictNT (t, t∗, s)]∨
(∃t∗)[parent(t′′, t) ∧ ¬parent(t′′, t′) ∧ parent(t′′, t∗)∧

transConflictNT (t∗, t′, s)]}.

(50)

Intuitively, (50) means that transaction t conflicts with transaction t′ in the log s iff
t and t′ are not equal and there is a transaction group t∗ such that: (1) either t and
t′ do not have t′′ as parent, in which case they conflict in the usual way of closed
nested transactions; or (2) t′ has t′′ as parent and t does not, but t′ has a cousin t∗

with which t is conflicting in the usual way of nested transactions; or else (3) t has
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t′′ as parent and t′ does not, but t has a cousin t∗ which is conflicting with t′ in the
usual way of nested transactions.

The pattern specifications that must be verified and the conflict specifications
that must be avoided are captured in action precondition axioms. Suppose P(t, s)
and C(t, s) denote the pattern and conflict specifications for a TG t, respectively.
Then precondition axioms for internal actions are of the form

Poss(A(x, t), s) ≡ ΠA(x, t, s) ∧ ICe(do(A(x, t), s))∧
{[(∃t∗).parent(t∗, t, s) ∧ P(t∗, do(A(x, t), s))∧

¬C(t∗, do(A(x, t), s)) ∧ running(t, s)]∨
[¬(∃t∗).parent(t∗, t, s) ∧ P(t, do(A(x, t), s))∧

¬C(t, do(A(x, t), s)) ∧ running(t, s)]}.

(51)

In CTHs, the following dependencies must be maintained among transactions:
a rollback dependency of a child on its parent, and a weak commit dependency of a
parent on all its children. A Weak Commit Dependency of t on t′ is characterized
as follows:

do(Commit(t), s) @ s∗ ⊃
[do(Rollback(t′), s′) 6v s∗ ⊃ do(Commit(t′), s′) @ do(Commit(t), s)];

i.e., If t commits in a log s∗, then, whenever t′ does not roll back in s∗, t′ commits
before t.

Now the external actions of a CTH have the following precondition axioms:

Poss(Begin(t), s) ≡ ¬(∃t′)parent(t′, t, s)∧
[s=S0 ∨ (∃s′, t′).t 6= t′ ∧ do(Begin(t′), s′) @ s],

(52)

Poss(End(t), s) ≡
(∃s′){do(Begin(t), s′) v s ∧ ¬(∃s′′)do(End(t), s′′) v s′∧
(∀a, s∗)[do(Begin(t), s′) @ do(a, s∗) @ s ⊃

¬externalActR(a, t)]}∨
(∃s′, t′, n){do(Join(t′, t, n), s′)vs ∧¬(∃s′′)do(End(t), s′′)vs′∧
(∀a, s∗)[(do(Join(t′, t, n), s′) @ do(a, s∗) @ s) ⊃

¬externalActC(a, t)]},

(53)

Poss(Commit(t), s) ≡ (∃s′).s = do(End(t), s′) ∧
∧

IC∈ICv

IC(s)∧

(∀t′).wc dep(t, t′, s) ∧ ¬(∃s∗)do(Rollback(t′), s∗) v s′ ⊃
(∃s′′)do(Commit(t′), s′′) v s′,

(54)
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Poss(Rollback(t), s) ≡

(∃s′).s = do(End(t), s′) ∧ ¬
∧

IC∈ICv

IC(s)∨

(∃t′, s′′).r dep(t, t′, s) ∧ do(Rollback(t′), s′′) @ s′,

(55)

Poss(Join(t, t′, n), s) ≡ t 6= t′∧
(∃s′, t′′, n′)[do(Begin(t′), s′) @ s∨
do(Join(t′, t′′, n′), s′) @ s ∧ n′ 6= CT ].

(56)

Dependency axioms characterizing the fluents r dep and wc dep are:

r dep(t, t′, do(a, s)) ≡ (∃n).a = Join(t, t′, n)∨
transConflictCTH(t, t′, do(a, s))∨r dep(t, t′, s)∧a 6= Leave(t, t′),

(57)

wc dep(t, t′, do(a, s)) ≡
a = Join(t′, t) ∨ wc dep(t, t′, s) ∧ a 6= Leave(t, t′).

(58)

The successor state axioms for CTHs are of the form:

F (x,t, do(a, s)) ≡ ΦF (x, a, t, s) ∧ ¬(∃t′′)a = Rollback(t′′)∨
(∃t′)[a = Commit(t′) ∧ parent(t, t′, s) ∧ F (x, t′, s)]∨
(∃t′, n)[a = Join(t, t′, n) ∧ F (x, t′, s)]∨
(∃t′′)a = Rollback(t′′) ∧ ¬(∃t′)parent(t′, t′′, s)∧

restoreBeginPoint(F,x, t′′, s)∨
(∃t′′)a = Rollback(t′′) ∧ (∃t′)parent(t′, t′′, s)∧

restoreJoinPoint(F,x, t′′, s),

(59)

one for each relation of the relational language, where ΦF (x, a, s) is a formula
with free variables among a, s,x; restoreBeginPoint(F,x, t, s) is defined in
Abbreviation 7, and restoreJoinPoint(F,x, t, s) is the following:

Abbreviation 17

restoreJoinPoint(F,x, t, s) =df (∃s′, t′, n).do(Join(t, t′, n), s′) v s ∧ F (x, s′)∧
[(∃a∗, s∗).do(Join(t, t′, n), s′) @ do(a∗, s∗) v s ∧ writes(a∗, F, t)]∨
[(∀a∗, s∗).do(Join(t, t′, n), s′) @ do(a∗, s∗) v s ⊃ ¬writes(a∗, F, t)] ∧ F (x, s).

A basic relational theory for CTHs is as in Definition 3, but where the relational
language includes Join(t, t′, n) as a further external action, and the axioms (52)
– (56) replace axioms (10) – (13), the axioms (57) – (58) replace the axiom (14),
and the successor state axioms in Dss are of the form (59). All the other axioms of
Definition 3 remain unchanged.
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4.3 Open Nested Transactions

Open nested transactions [38] are a generalized version of nested transactions. An
open nested transaction is a system of component transactions forming an unbal-
anced tree whose nodes represent specific tasks that are performed by executing
their children. All the other components with exception of the root of the system
are called subtransactions. The leaves of such a tree are constituted by primitive
actions. Given a node t of an open nested transaction with n children t1, · · · , tn,
these are classified into the following types:

– Open Subtransactions. These allow for unilateral commit and rollback in-
dependently of the parent transaction t. In other words, they are a collection
of top-level transactions that may act independently from each other; but, if t
rolls back, they also must rollback. So they are allowed to make their updates
visible to other subtransactions before committing.

– Closed Subtransactions. These are structured like in Moss nested transactions
[28] (See Section 3). They do not allow for unilateral commit independently
of the parent transaction t. For this reason, they are not allowed to make their
updates visible to any other subtransactions before committing, at which point
they only make their results available to their parent t. Any time, if t rolls back,
they also must rollback.

– Compensatable Subtransactions. These are associated with compensating
subtransactions; that is, rather than simply vanishing when its parent t rolls
back, a compensatable ti that has already committed triggers a compensating
transaction compi whose semantics is described below. Since their actions can
always be undone, they can in general be allowed to be open.

– Compensating Subtransactions. These undo any changes done by the com-
mitted compensatable subtransactions. So a compensating transaction compi

undoes any changes done by the corresponding compensatable subtransaction
ti. A compensating transaction can again be another open nested transaction.
The order of compensating subtransactions must be compatible with the order
of their corresponding compensatable transactions; that is, if ti commits before
tj then whenever compi begins, it does so only after compj has committed.

– Non-Compensatable Subtransactions. These are subtransaction that cannot
be compensated for whenever they have already committed. For this reason,
they can in general not be allowed to be open.

We now give a situation calculus characterization of open nested transactions.
The external actions are:Begin(t, t′,m, c),End(t),Commit(t), andRollback(t).

Among these,Begin(t, t′,mode, class) is new; intuitively, it means that the (sub)-
transaction t begins as a component of the (sub)transaction t′ in mode m and class
c, where the mode argument can be one ofOPEN , CLOSED and INV , and the
class argument can be one of COMP , NONCOMP and INV . We introduce a
predicate compensates(t, compt), meaning that compt compensates the actions
of t.

A root transaction t is a sequence [a1, . . . , an] of primitive actions, where the
action a1 must beBegin(t,NIL, INV, INV ), and an must be eitherCommit(t),
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or Rollback(t); ai, i = 2, · · · , n − 1, may be any of the primitive actions, except
Begin(t, t′,m, c),Commit(t), andRollback(t). A subtransaction t is a sequence
[a1, . . . , an] of primitive actions, where a1 must beBegin(t, t′,m, c), and an must
be either Commit(t), or Rollback(t); ai, i = 2, · · · , n − 1, may be any of the
primitive actions, exceptBegin(t∗, t∗∗,m∗, c∗), Commit(t∗), andRollback(t∗).

The external actions of (sub)transactions are enumerated as follows.

Abbreviation 18

externalAct(a, t) =df (∃t′,m, c)a = Begin(t, t′,m, c) ∨ a = End(t)∨
a = Commit(t) ∨ a = Rollback(t).

We have to slightly reconsider the axiom for the fluent parent(t, t′, s), and the
abbreviation running(t, s):

parent(t, t′, do(a, s)) ≡ (∃m, c)a=Begin(t, t′,m, c)∨
parent(t, t′, s) ∧ a 6= Rollback(t) ∧ a 6= Rollback(t′)∧

a 6=Commit(t)∧ a 6= Commit(t′);
(60)

running(t, s) =df (∃s′, t′,m, c){[s∗ = do(Begin(t, t′,m, c), s′)∨
s∗ = do(Begin(t′, t,m, c), s′)]∧

s∗vs∧(∀a, s′′)[s∗@do(a, s′′)@s ⊃ a 6=Rollback(t)∧a 6=End(t)]}.
(61)

We also add a predicate compensatable(t) with the characterization

compensatable(t) =df (∃t′)compensates(t′, t).

Furthermore, we need the fluents closed(t, s), and comp(t, s), which intuitively
tell whether a transaction is closed or compensatable, respectively. These fluents
have the following successor state axioms:

closed(t, do(a, s)) ≡
(∃t′,m, c)a=Begin(t, t′,m, c) ∧ t 6= NIL∧

m = CLOSED ∧ c 6= INV ∨
closed(t, s) ∧ a 6= Commit(t) ∧ a 6= Rollback(t),

(62)

comp(t, do(a, s)) ≡
(∃t′,m, c)a=Begin(t, t′,m, c) ∧ t 6= NIL∧

m 6= INV ∧ c = COMP∨
closed(t, s) ∧ a 6= Commit(t) ∧ a 6= Rollback(t).

(63)

The conflict predicate transConflictNT (t, t′, s) defined in (36) still captures
the nature of conflict that may arise in the open nested transaction context.

In open nested transactions, the following dependencies must be maintained
among transactions: a weak rollback dependency of a child on its parent, a com-
mit dependency of a parent on all its children, a strong commit dependency of
compensating transactions on their corresponding compensatable transactions, and
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dependency of the order of the beginnings of compensating transactions on the
commitments of their corresponding compensatable transactions.

Now the external actions of an open nested transaction have the following pre-
condition axioms:

Poss(Begin(t, t′,m, c), s) ≡
¬(m = OPEN ∧ c = NONCOMP ) ∧ t 6= t′∧
{s = S0∨
(∃s′, t∗, t′′,m∗, c∗)[t∗ 6= t ∧ do(Begin(t∗, t′′,m∗, c∗), s′) @ s]∧
[(∀t′′).bc dep(t, t′′, s) ⊃ (∃s′′)do(Commit(t′′), s′′) v s]},

(64)

Poss(End(t), s) ≡ running(t, s), (65)

Poss(Commit(t), s) ≡ (∃s′).s = do(End(t), s′) ∧
∧

IC∈ICv

IC(s)∧

(∀t′, s′)[c dep(t, t′, s)⊃(do(Commit(t′), s′) v s∗⊃
do(Commit(t′), s′)@s)]∧

(∀t′, s′).sc dep(t, t′, s) ⊃ (∃s′′)do(Commit(t′), s′′) v s,

(66)

Poss(Rollback(t), s) ≡ (∃s′)[s = do(End(t), s′) ∧ ¬
∧

IC∈ICv

IC(s)]∨

(∃t′, s′′)[r dep(t, t′, s) ∧ do(Rollback(t′), s′′) v s]∨
(∃t′, s′)[wr dep(t, t′, s) ∧ do(Rollback(t′), s′) v s∧

(∀s′′)(do(Commit(t), s′′) 6v do(Rollback(t′), s′))],

(67)

Now we give dependency axioms characterizing the fluents r dep(t, t′, s),wr dep(t, t′, s),
sc dep(t, t′, s), c dep(t, t′, s), and bc dep(t, t′, s):

r dep(t, t′, s) ≡ transConflictNT (t, t′, s), (68)

wr dep(t, t′, do(a, s)) ≡
(∃m, c)a = Begin(t, t′,m, c) ∧ t′ 6= NIL ∧ c = CLOSED∨
wr dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′),

(69)

sc dep(t, t′, do(a, s)) ≡ readsFrom(t, t′)∨
(∃t′′).parent(t′′, t′, s) ∧ compensates(t, t′) ∧ a = Rollback(t′′)∨
sc dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′),

(70)

c dep(t, t′, do(a, s)) ≡
(∃m, c)a = Begin(t′, t,m, c) ∧m = CLOSED∨
transConflictNT (t, t′, do(a, s))∨
c dep(t, t′, s) ∧ ¬termAct(a, t) ∧ ¬termAct(a, t′),

(71)

bc dep(t, t′, do(a, s)) ≡ (∃s′, s′′, t∗, t∗∗).compensates(t, t∗)∧
compensates(t′, t∗∗)∧do(Commit(t∗), s′)v s∧a = Commit(t∗∗)∨
bc dep(t, t′, s) ∧ a 6= Commit(t) ∧ a 6= Commit(t′).

(72)
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The successor state axioms for open nested transactions are of the form:

F (x, t, do(a, s)) ≡ ΦF (x, a, t, s) ∧ ¬(∃t′′)a = Rollback(t′′)∨
(∃t′)[a = Commit(t′) ∧ parent(t, t′, s) ∧ closed(t, s) ∧ F (x, t′, s)]∨
(∃t′′)a = Rollback(t′′) ∧ restoreBeginPoint(F,x, t′′, s).

(73)

one for each fluent F of the relational language, where ΦF (x, a, t, s) is a formula
with free variables among a, t, s,x; restoreBeginPoint(F,x, t, s) is slightly dif-
ferent than in Abbreviation 7 and introduced now as follows:

Abbreviation 19

restoreBeginPoint(F,x, t, s) =df

[(∃a∗, s′, s∗, t′, t′′,m, c).do(Begin(t, t′′,m, c), s′) @ do(a∗, s∗) v s∧
writes(a∗, F, t) ∧ F (x, t′, s′)]∨

[(∀a∗, s∗, s′, t′′,m, c).do(Begin(t, t′′,m, c), s′) @ do(a∗, s∗) v s ⊃
¬writes(a∗, F, t)] ∧ (∃t′)F (x, t′, s).

A basic relational theory for open nested transactions is as in Definition 3, but
where the relational language includes Begin(t, t′,m, c) as a further action, and
the axioms (64) – (67) replace axioms (10) – (13), the axioms (68) – (72) replace
the axiom (14), and the successor state axioms in Dss are of the form (73). All the
other axioms of Definition 3 remain unchanged.

It is important to note that open nested transactions have one more system ac-
tion which is Begin(t, t′,m, c) in the special case where t′ compensates some
other transaction. Thus our definition for systemAct(a, t) must capture this nov-
elty:

Abbreviation 20

systemAct(a, t)=df a=Commit(t) ∨ a=Rollback(t)∨
(∃s, t′, t′′)bc dep(t, t′, s)∧parent(t′′, t′, s) ⊃ a = Begin(t′′, t, OPEN, INV ).

5 Example

We consider a Debit/Credit example which illustrates how to formulate a relational
theory for closed nested transactions.

The database involves a relational language with:

Fluents: served(aid, s), branches(bid, bbal, bname, t, s), tellers(tid, tbal, t, s),
accounts(aid, bid, abal, t, s).
Situation Independent Predicate: requested(aid, req).
Action Functions: b insert(bid, bbal, bname, t), b delete(bid, bbal, bname, t),
t insert(tid, tbal, t),
t delete(tid, tbal, t), a insert(aid, bid, abal, tid, t), a delete(aid, bid, abal, tid, t),
report(aid).
Constants: Ray, Iluju, Misha, Ho, etc.



Synthesizing Advanced Transaction Models Using the Situation Calculus?? 33

The meaning of the arguments of fluents are self explanatory; and the relational
language also includes the external actions of nested transactions. Among the flu-
ents above, served(aid, s) is a system fluent, and the remaining ones are database
fluents.

To be brief, we skip unique name axioms and concentrate ourself on the re-
maining axioms of the basic relational theory. We enforce the following ICs (ICe):

accounts(aid, bid, abal, tid, t, s) ∧ accounts(aid, bid′, abal′, tid′, t′, s) ⊃
bid = bid′, abal = abal′, tid = tid′,

branches(bid, bbal, bname, t, s) ∧ branches(bid, bbal′, bname′, t′, s) ⊃
bbal = bbal′, bname = bname′,

tellers(tid, tbal, t, s) ∧ tellers(tid, tbal′, t′, s) ⊃ tbal = tbal′;

and we have to verify the IC (ICv)

accounts(aid, bid, abal, tid, t, s) ⊃ abal ≥ 0

at transaction’s end. The following are the update precondition axioms:

Poss(a insert(aid, bid, abal, tid, t), s) ≡
¬(∃t′)accounts(aid, bid, abal, tid, t′, s)∧
ICe(do(a insert(aid, bid, abal, tid, t), s)) ∧ running(t, s),

Poss(a delete(aid, bid, abal, tid, t), s) ≡
(∃t′)accounts(aid, bid, abal, tid, t′, s)∧
ICe(do(a delete(aid, bid, abal, tid, t), s)) ∧ running(t, s),

Poss(b insert(bid, bbal, bname, t), s) ≡
¬(∃t′)branches(bid, bbal, bname, t′, s)∧
ICe(do(b insert(bid, bbal, bname, t), s)) ∧ running(t, s),

Poss(b delete(bid, bbal, bname, t), s) ≡
(∃t′)branches(bid, bbal, bname, t′, s)∧
ICe(do(b delete(bid, bbal, bname, t), s)) ∧ running(t, s),

Poss(t insert(tid, tbal, t), s) ≡ ¬(∃t′)tellers(tid, tbal, t′, s)∧
ICe(do(t insert(tid, tbal, t), s)) ∧ running(t, s),

Poss(t delete(tid, tbal, t), s) ≡ (∃t′)tellers(tid, tbal, t′, s)∧
ICe(do(t delete(tid, tbal, t), s)) ∧ running(t, s),
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The successor state axioms (Dss) are:

accounts(aid, bid, abal, tid, t, do(a, s)) ≡
((∃t1)a = a insert(aid, bid, abal, tid, t1)∨

(∃t2)accounts(aid, bid, abal, tid, t2, s)∧
¬(∃t3)a = a delete(aid, bid, abal, tid, t3)) ∧ ¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′) ∧ ¬(∃t′′)parent(t′′, t′, s)∧
restoreBeginPoint(accounts, (aid, bid, abal, tid), t′, s)∨

a = Rollback(t′) ∧ (∃t′′)parent(t′′, t′, s)∧
restoreSpawnPoint(accounts(aid, bid, abal, tid), t′, s),

branches(bid, bbal, bname, t, do(a, s)) ≡
((∃t1)a = b insert(bid, bbal, bname, t1)∨

(∃t2)branches(bid, bbal, bname, t2, s)∧
¬(∃t3)a = b delete(bid, bbal, bname, t3)) ∧ ¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′) ∧ ¬(∃t′′)parent(t′′, t′, s)∧
restoreBeginPoint(branches, (bid, bbal, bname), t′, s)∨

a = Rollback(t′) ∧ (∃t′′)parent(t′′, t′, s)∧
restoreSpawnPoint(branches, (bid, bbal, bname), t′, s),

tellers(tid, tbal, do(a, s)) ≡
((∃t1)a = t insert(tid, tbal, t1)∨

(∃t2)tellers(tid, tbal, t2, s)∧
¬(∃t3)a = t delete(tid, tbal, t3)) ∧ ¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′) ∧ ¬(∃t′′)parent(t′′, t′, s)∧
restoreBeginPoint(tellers, (tid, tbal), t′, s)∨

a = Rollback(t′) ∧ (∃t′′)parent(t′′, t′, s)∧
restoreSpawnPoint(tellers, (tid, tbal), t′, s).

6 Related Work

ACTA [9] is a framework similar to ours. It allows to specify effects of transactions
on objects and on other transactions. In fact, we use the same building blocks for
ATMs as those used in ACTA. However, the reasoning capability of the situation
calculus exceeds that of ACTA for the following reasons: (1) the database log is
a first class citizen of the situation calculus, and the semantics of all transaction
operations – Commit, Rollback, etc. – are defined with respect to constraints on
this log. Nowhere have we seen a quantification over histories in ACTA, so that
there is no straightforward way of expressing closed form formulas involving his-
tories in ACTA. (2) Our approach goes far beyond ACTA as it is an implementable
specification, thus allowing one to automatically check many properties of the
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specification using an interpreter. To that end, the main implementation theorems
needed are formulated in [34]. Finally, (3) although ACTA deals with the dynamics
of database objects, it is never explicitly formulated as a logic for actions.

In [5], Bertossi et al. propose a situation calculus-based formalization of database
transactions. They extend Reiter’s specification of database updates to transac-
tions. Our approach, however, is based on a situation calculus that is explicitly
non-Markovian. Moreover, our work goes beyond pure flat transactions to deal
with ATMs which are more complex.

Bonner and Kiefer present a transaction logic (T R) that includes a model the-
ory, and a sound and complete SLD-like proof theory [6,7]. The execution of a
transaction ψ is described by an executional entailment which intuitively means
that, given transaction axioms gathered in P, the execution of the transaction ψ
leads the initial database D0 to the final database Dn through a sequence of inter-
mediate states D1, · · · ,Dn−1.

Like our situation calculus based transaction language, T R allows the formu-
lation of complex transactions and bulk updates; and its notion of executional en-
tailment corresponds to the logical entailment in the situation calculus. However,
T R differs from our language. First, T R is both update- and sentence-centered;
it allows not only elementary updates, but also additions and removals of rules.
By contrast, our approach is solely update-centered.5 By restricting our concern
to updates, we avoid invoking a revision theory. Second, unlike T R, elementary
updates in the situation calculus are not predicates, but first order terms instead.
Third, unlike in T R that deals with updates at the physical level, the situation cal-
culus deals with updates at the virtual level. In fact, this limitation can be overcome
in the situation calculus by progressing the initial database after each elementary
update execution [34]. Fourth, T R does not deal with ATMs. Finally, ours is a
classical predicate calculus logic.

To do full justice to T R , one should distinguish between the full logic and
its Horn fragment. Many of the limitations mentioned above concern the Horn
fragment, not the full logic. For example, Santos [36] shows how the full logic is
used for reasoning about arbitrary elementary and complex actions (not just tuple
insertions and deletions).

Statelog [22] is a logic of database state change that includes a model theory.
Like ours, this logic allows the formulation of complex transactions, is update-
centered, and considers invariance in state changes. However, Statelog differs from
our approach in the following way. First, while we allow only primitive updates
that are first-order terms, Statelog expresses actions corresponding to ourBegin(t),
End(t), Commit(t), Rollbacksys(t), etc, as relations. In this respect, Statelog is
similar to T R. Second, unlike Statelog, we appeal solely to the classical seman-
tics of predicate logic; we have no need of a special-purpose semantics to account
for models of database transactions. Third, unlike Statelog, we do not deal with
updates at the physical level.

5 Update-centered approaches specify explicit update operations in the update language;
and sentence-centered approaches allow for updates with arbitrary sentences [32].
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An early work by Lynch et al. reported in [23] and [24] describes an automaton-
based theoretical framework for reasoning about atomic transactions. This ap-
proach is in spirit close to our general philosophy of providing a framework for
reasoning about transactions. It shares with our situation calculus based model
a common ground. First, both approaches view the execution of a transactional
behavior as a sequence of actions. Second, both include the idea of building a
complex transactional behavior from existing, simpler ones by using well defined
combination constructs. However, our approach models a transaction in a very dif-
ferent way: while we model these as logical theories, the approach by Lynch et al.
models them as automata. We believe that automata used in this approach do not
offer the same flexibility that the situation calculus logic does. The situation cal-
culus does in fact have connections with automata in a different way than the one
developed by Lynch et al.: the decision problem for fragments of the language can
be related to automata on infinite trees as done in [37]. Here, automata are used
to provide a semantics for (fragments of) the modeling language (i.e. the situation
calculus) and not as the modeling language itself.

7 Conclusion

7.1 Summary

We have noticed that ATMs found in the literature are proposed in an ad hoc way
for dealing with applications involving long-lived, endless, and cooperative activi-
ties. Therefore, it is not obvious to compare ATMs to each other. Also it is difficult
to exactly say how an ATM extends the traditional flat model of transaction, and to
formulate its properties in a way that one clearly differentiates functionalities that
have been added or subtracted. To address these questions, we have introduced
a general and common framework within which to specify ATMs, specify their
properties, and reason about these properties. Thus far, ACTA [9,8] seems to our
knowledge the only framework addressing these questions at a high level of gen-
erality. In ACTA, a first order logic-like language is used to capture the semantics
of any ATM.

We have given logical foundations for ATMs by capturing the latter as non-
Markovian action theories formulated in the situation calculus. The main contri-
butions of this paper with respect to the specification of ATMs can be summarized
as follows:

– We constructed logical theories called basic relational theories to formalize
ATMs along the tradition set by the ACTA framework; basic relational theories
are non-Markovian theories in which one may explicitly refer to all past states,
and not only to the previous one. They provide the formal semantics of the
corresponding ATMs. They are an extension of the classical relational theories
of [31] to the database transaction setting.

– We extended the notion of legal database logs introduced in [32] to accommo-
date transactional actions such as Begin, Commit, etc. These logs are first
class citizen of the logic, and properties of the ATM are expressed as formulas
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of the situation calculus that logically follow from the basic relational theory
representing that ATM. It turns out that ATM properties basically are proper-
ties of legal logs.

– We have accounted for several variations of the classical transactions with
ACID properties, as well as for several sample ATMs. The resulting theories of
ATMs are modular and mostly incremental with respect to theories that capture
the classical models. This means that, to capture ATMS, the changes made to
the theories capturing classical models usually consists in adding new axioms
and minimally modifying existing ones.

Fig. 1 Relational theories as conceptual models of ATMs

. . . ⇒
requirements

⇒
�� ��analysis ⇒

conceptual model
⇒

�� ��design ⇒
prototype

⇒
�� ��implementation ⇒ . . .

7.2 Future Work

Ideas expressed and developed in this paper may be extended in various ways. we
mention a few of them.

– Running the specifications. We have used one single logic – the situation
calculus — to accounts for all features of ATMs. By combining our theories
with the simulation method developed in [18], we also obtain an account of
execution models for ATMs. The output of this account is a conceptual model
for ATMs in the form of relational theories. Thus, considering the software
development cycle as depicted in Figure 1, a relational theory corresponding to
an ATM constitutes a conceptual model for that ATM. Since active relational
theories are implementable specifications [18], implementing the conceptual
model provides one with a rapid prototype of the specified ATM.

– Progressing Databases. One must distinguish between our approach which
is a purely logical, abstract specification in which all system properties are
formulated relative to the database log, and an implementation which normally
materializes the database using progression ([34]). This is the distinguishing
feature of our approach. The database log is a first class citizen of the logic,
and the semantics of all transaction operations – Commit, Rollback, etc. –,
primitive updates, and queries are defined with respect to this log. The main
mechanism used in this respect is regression. However, in order to materialize
the database after each update, progressing the database is the way to go. How
progression can be defined for basic and active relational theories is completely
open.

– Comparing to other Approaches. Database transaction processing is now a
mature area of research and practice. However, one needs to formally know



38 Iluju Kiringa, Alfredo Gabaldon

how our formalization indeed captures any existing theory, such as ACTA, at
the same level of generality. Doing so, one proves some form of correctness
of our formalization, assuming that ACTA is correct. For example, we need an
effective translation of our basic relational theories into ACTA axioms for a
relational database and then show that the legal logs for the situation calculus
basic relational theory are precisely the correct histories for its translation into
a relational ACTA system.

– Non-relational Data Models. Thus far, we have given axioms that accommo-
date a complete initial database state. This, however, is not a requirement of the
theory we are presenting. Therefore our account could, for example, accom-
modate initial databases with null values, open initial database states, initial
databases accounting for object orientation, or initial semistructured databases.
These are just examples of some of the generalizations that our initial databases
could admit.

– Second Order Features. It is important to notice that the only place where the
second order nature of our framework is needed is in the proof of the properties
of the transaction models that rely on a second order induction principle con-
tained in the foundational axioms of the situation calculus (See the Appendix).
For the Markovian action theories of the situation calculus, it is shown in [30]
that the second order nature of this language is not at all needed in simulat-
ing basic action theories. It remains to show that this is also the case for the
non-Markovian setting.

– Accounting for Further ATMs. We would like to accounting for some of the
recent ATMs, for example those reported in [16] and open nested transactions
proposed in the context of mobile computing, and reason about the specifica-
tions obtained.

– Systematic Implementation of some of the Semantics. Being foundational,
this work has been theoretical by its nature. We need to show how to implement
the theories of this paper, and indeed implement some short programs as an
illustration.
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A Proofs

In proving the different (relaxed) ACID properties, the following three lemmas exhibiting
simple properties of legal logs will be useful.

Lemma 3 Let D be a basic relational theory. Then

Df ∪ {(9)} |= (∀s, a){legal(S0)∧
[legal(do(a, s)) ≡ legal(s) ∧ Poss(a, s)∧
(∀a′, t).systemAct(a′, t) ∧ responsible(t, a′, s) ∧ Poss(a′, s) ⊃ a = a′]}.

Proof: We must prove two goals:

Df ∪ {(9)} |= legal(S0), (74)

and

Df ∪ {(9)} |=(∀s, a)[legal(do(a, s)) ≡ legal(s) ∧ Poss(a, s)∧
(∀a′, t)[systemAct(a′, t) ∧ responsible(t, a′, s)∧

Poss(a′, s) ⊃ a = a′]].

(75)

Goal (74): By Abbreviation (9), we must pursue two subgoals:

Df ∪ {(9)} |= (∀a, s∗)[do(a, s∗) v S0 ⊃ Poss(a, s∗)]

and

Df ∪ {(9)} |= (∀a′,a′′, s′, t)[systemAct(a′, t) ∧ responsible(t, a′, s′)∧
responsible(t, a′′, s′) ∧ Poss(a′, s′) ∧ do(a′′, s′) @ S0 ⊃ a′ = a′′].

For the first subgoal, we are lead ultimately to a success in the proof of its consequent by
using the foundational axiom (3) and the sentence S0 6= do(a, s), a consequence of Df ;
and the second subgoal is obviously true by virtue of the fact that S0 6= do(a, s).

Goal (75): The proof is by induction on s, using the induction axiom (2). The case s = S0

is intuitive enough:

Df ∪ {(9)} |= (∀a)[legal(do(a, S0)) ≡ legal(S0) ∧ Poss(a, S0)∧
(∀a′, t)[systemAct(a′, t) ∧ responsible(t, a′, S0)∧

Poss(a′, S0) ⊃ a = a′]];

its proof, though tedious, is straightforward. Now, assume the formula in (75) proven for
do(a, s). We must prove it for do(a∗, do(a, s)); i.e. we must prove

Df ∪ {(9)} |= (∀s, a, a∗)[legal(do(a∗, do(a, s))) ≡ legal(do(a, s))∧
Poss(a∗, do(a, s)) ∧ (∀a′, t)[systemAct(a′, t)∧
responsible(t, a′, do(a, s)) ∧ Poss(a′, do(a, s)) ⊃ a∗ = a′]].

(76)

⇐= :
Assume for fixed a, a∗, and s legal(do(a, s)), Poss(a∗, do(a, s))), and

(∀a′, t).systemAct(a′, t) ∧ responsible(t, a′, do(a, s)) ∧
Poss(a′, do(a, s))⊃a∗ = a′. †
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By induction hypothesis, legal(do(a, s)) can be replaced by legal(s), Poss(a, s), and

(∀a′, t).systemAct(a′, t)∧responsible(t, a′, s)∧
Poss(a′, s) ⊃ a = a′. ‡

From legal(s), Poss(a, s), and Poss(a∗, do(a, s)) we obtain

(∀s∗∗).do(a, s∗∗) v do(a∗, do(a, s))) ⊃ Poss(a, s∗∗). ($)

From legal(s), (†), and (‡) we have

(∀a1, a2, s
′, t)[systemAct(a1, t) ∧ responsible(t, a1, do(a, s)) ∧ Poss(a1, s

′)∧
do(a2, s

′) @ do(a∗, do(a, s)) ⊃ a1 = a2]. ($$)

Now, from ($) and ($$) follows legal(do(a∗, do(a, s))).

=⇒ :
Assume for fixed a, a∗, and s legal(do(a, do(a∗, s))). Then, by Definition (9),

(∀a1,s1)[do(a1, s1) v do(a∗, do(a, s)) ⊃ Poss(a1, s1)]∧
(∀a2, a3, s2, t)[systemAct(a2, t) ∧ responsible(t, a2, s2) ∧ Poss(a2, s2)∧

do(a3, s2) @ do(a∗, do(a, s)) ⊃ a2 = a3].

(77)

Thus we must show that (77) implies legal(do(a, s)), Poss(a∗, do(a, s)), and

(∀a′, t).systemAct(a′, t) ∧ responsible(t, a′, do(a, s))∧
Poss(a′, do(a, s)) ⊃ a∗ = a′.

(78)

Subgoal Poss(a∗, do(a, s)) follows from the first conjunct of (77) alone; subgoal (78)
follows from the second conjunct of (77), and subgoal legal(do(a, s)) follows from both
conjuncts of (77). Foundational axioms and the induction hypothesis are involved in this
proof whose details are omitted here. 2

Lemma 4 Suppose D is a basic relational theory. Then

D ∪ {(9)} |= legal(s) ⊃ (∀s′)[s′ v s ⊃ legal(s′)].

Proof:

We conduct an induction on s.

For the case s = S0, we must prove legal(S0) ⊃ (∀s′)[s′ v S0 ⊃ legal(s′)]. By
Lemma 3, legal(S0). Therefore, (∀s′)[s′ v S0 ⊃ legal(s′)] which is clearly true by
the foundational axiom (3).

Now assume the result for s and suppose for fixed a and s that legal(do(a, s)) holds.
Then we must prove (∀s′)[s′ v do(a, s) ⊃ legal(s′)]. Since legal(do(a, s)), then, by
Lemma 3, Poss(a, s) and legal(s). Assume, for fixed s′, s′ v do(a, s). Henceforth we
must show that legal(s′). For the assumption s′ = do(a, s), since legal(do(a, s)), we have
immediately legal(s′). For the assumption s′ @ do(a, s), by the foundational axiom (4),
we get s′ @ s; and since legal(s), we obtain, by induction hypothesis, (∀s∗)[s∗ v s ⊃
legal(s∗)]. Henceforth legal(s′). 2
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Lemma 5 Suppose a1, · · · , an is a sequence of ground action terms. Then

Df ∪ {(9)} |=
legal(do([a1, · · · , an], s)) ≡

n̂

i=1

{Poss(ai, do([a1, · · · , ai−1], s))∧

(∀a, t)[systemAct(a, t) ∧ responsible(t, a, do([a1, · · · , ai−1], s))∧
Poss(a, do([a1, · · · , ai−1], s)) ⊃ ai = a]}.

Proof: by induction on the length of the sequence of actions.
For the case n = 1, we must prove

Df |=legal(do(a, s)) ≡ Poss(a, s) ∧ (∀a′, t)[systemAct(a′, t)∧
responsible(t, a′, s) ∧ Poss(a′, s) ⊃ a = a′].

The proof is immediate by Lemma 3.

Assume the result for n. We must prove that Df and (9) entail

legal(do([a1, · · · , an+1], s)) ≡
n+1̂

i=1

{Poss(a, do([a1, · · · , ai−1], s))∧

(∀a′, t)[systemAct(a′, t) ∧ responsible(t, a′, do([a1, · · · , ai−1], s))∧
Poss(a′, do([a1, · · · , ai−1], s)) ⊃ ai = a′]}.

=⇒ :
Assume for fixed s legal(do([a1, · · · , an+1], s)). By Lemma 4 and the fact, provable by
induction, that s @ do(a, s), we have legal(do([a1, · · · , an], s)). Henceforth, by induction
hypothesis,
n̂

i=1

{Poss(a, do([a1, · · · , ai−1], s))∧

(∀a′, t)[systemAct(a′, t) ∧ responsible(t, a′, do([a1, · · · , ai−1], s))∧
Poss(a′, do([a1, · · · , ai−1], s)) ⊃ ai = a′]}.

Thus, we must now only show that Poss(an+1, do([a1, · · · , an], s)) and

(∀a′, t)[systemAct(a′, t)∧responsible(t, a′, do([a1, · · · , an], s))∧
Poss(a′, do([a1, · · · , an], s)) ⊃ an+1 = a′].

Both of these claims follow from Lemma 3.

⇐= :
This part of the proof is symmetric to the previous case.

This completes the proof of the inductive case. 2

Theorem 1

1. Assume, for fixed s, legal(s) and let s = do([B1, · · · , Bm], S0). Then, by Lemma 5,
m̂

i=1

Poss(ai, do([B1, · · · , Bi−1], S0)). (79)
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Now assume, for fixed a, s′, s′′, and t, do(a, s′) @ s, do(a, s′′) @ s, and externalAct(a, t).
Therefore we must prove s′ = s′′. From the assumption externalAct(a, t) and Abbrevia-
tion 10, we must consider four cases.

Case a = Begin(t). Assume, contrary to our goal, that s′ 6= s′′. Henceforth, either s′ @ s′′

or s′′ @ s′. Suppose s′ @ s′′. Then, by the foundational axioms (1), (4), and the assump-
tions do(Begin(t), s′) @ s and do(Begin(t), s′′) @ s, we have s′ @ do(Begin(t), s′) @
do(Begin(t), s′′). By (79), we have Poss(Begin(t), s′′); henceforth, by the precondition
axiom (10) for the action Begin(t), we have ¬(∃s∗)do(Begin(t), s∗) v s′′. Now, this
contradicts the fact that do(Begin(t), s′) @ do(Begin(t), s′′). The subcase s′ @ s′′ is
proven in an analog way.

Case a = End(t). Assume that s′ 6= s′′. Henceforth, either s′ @ s′′ or s′′ @ s′.
Suppose s′ @ s′′. Then, similarly to the previous case, we get s′ @ do(End(t), s′) @
do(End(t), s′′). By (79), we have Poss(End(t), s′′); henceforth, by the precondition ax-
iom (11) for the action End(t), we have running(t, s′′), and, by Abbreviation 6, we have

(∃s∗).do(Begin(t), s∗) v s′′∧
(∀a, s∗∗)[do(Begin(t), s∗) @ do(a, s∗∗) @ s′′ ⊃ a 6= Rollback(t) ∧ a 6= End(t)].

(80)

Since by the previous case, the log do(Begin(t), s∗) that exists must be the same for both
do(End(t), s′) and do(End(t), s′′), we clearly get a contradiction between the fact that
s′ @ do(End(t), s′) @ do(End(t), s′′) and (80). The subcase s′ @ s′′ is proven in an
analog way.

Cases a = Commit(t) and a = Rollback(t) . Both cases follow immediately from the
case a = End(t), as both Commit(t) and Rollback are possible only in logs following
the execution of End(t). 2

Theorem 2

Assume, for fixed s, legal(s). Suppose, for fixed t,t′, and s′, that sc dep(t, t′), and that
do(Commit(t′), s′) @ s. Then we must show that (∃s∗)do(Commit(t), s∗) v s. Since
legal(s) and do(Commit(t′), s′) @ s, we have, by Lemma 4, legal(do(Commit(t′), s′))
and, by Lemma 3, Poss(Commit(t′), s′). By the action precondition axiom for Commit(t′),
we have

(∀t∗)[sc dep(t, t∗, s) ⊃ (∃s′′)do(Commit(t∗), s′′) v s].

Since sc dep(t, t′), this leads easily to what we had to prove.
The second conjunct involving r dep(t, t′, s) and Rollback(t) is proven in a similar

way and we omit it. �

Theorem 3

Assume, for fixed s, legal(s). Moreover, assume, for fixed t, a, s1, and s2, that

do(Begin(t), s1) @ do(a, s2) @ s, (†)

and

(∃a∗, s∗,x)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F,x, t)]. (‡)

We must prove that

a = Rollback(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s1)), ($)
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and

a = Commit(t) ⊃ ((∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s2)). ($$)

1. We first prove ($). Assume a = Rollback(t); then we must show that

(∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s1).

=⇒ :
Suppose, after eliminating existentials in the conclusion, for fixed x, that F (x, t1, do(a, s2)).
Then, by the assumption that a = Rollback(t) and that legal(s) holds, Theorem 1 assures
us that there is no other Rollback(t) neither a Commit(t) between do(Begin(t), s1) and
do(a, s2). Furthermore, from (†), the assumption that a = Rollback(t), and the axiom (7),
we get, for fixed F ,

a = Rollback(t)∧
[(∃a∗, s∗,x).do(Begin(t), s1) @ do(a∗, s∗) v s∧writes(a∗, F,x, t)]∧

(∃t′)F (x, t′, s1)∨ (∗)

[(∀a∗, s∗,x).do(Begin(t), s1)@do(a∗, s∗) v s ⊃ ¬writes(a∗, F,x, t)]∧
(∃t′)F (x, t′, s).

Therefore, by assumption (‡), we have to pursue the following case:

a = Rollback(t)∧
[(∃a∗, s∗,x).do(Begin(t), s′) @ do(a∗, s∗) v s ∧ writes(a∗, F,x, t)] ∧ (∃t′)F (x, t′, s′).

From this case, we get the following formulas in a straightforward way (by performing some
variable renaming): (∃t2)F (x, t2, s1), a = Rollback(t), (∃a∗, s∗,x).do(Begin(t), s1) @
do(a∗, s∗) v s ∧ writes(a∗, F,x, t). Henceforth we conclude that (∃t2)F (x, t2, s1).

⇐= :
Assume, for fixed x, that (∃t2)F (x, t2, s1). Then, by (‡) and the assumption that a =
Rollback(t), we get

a = Rollback(t) ∧ (∃t2)F (x, t2, s1)∧ (∗∗)

(∃a∗,s∗,x)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F,x, t)].

From (∗∗), we get, by assumption (†), the following:

a = Rollback(t) ∧ (∃t2)F (x, t2, s1) ∧ do(Begin(t), s1) @ do(a, s2)∧
(∃a∗, s∗,x)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F,x, t)].

We therefore conclude, by axiom (7), that (∃t1)F (x, t1, do(a, s2)).

2. Now we prove ($$). Assume that a = Commit(t); then we must prove that

(∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s2)).

=⇒ :
Suppose, after removing all the existentials in the conclusion, for fixed x, that F (x, t1, do(a, s2)).
Since a = Commit(t), by axiom (7), we have

(γ
+

F
(x, Commit(t), t1, s) ∨ (∃t1)F (x, t1, s2)∧¬γ

−
F

(x, Commit(t), t1, s)). (††)
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We set γ+
F

(x, Commit(t), t1, s) ≡ false and ¬γ−
F

(x, Commit(t), t1, s) ≡ false.6

Thus (††) is equivalent to F (x, t2, t1, s2), for some t2.

⇐= : This case is symmetric to the first one.
Suppose, for fixed x, that (∃t2)F (x, t2, t1, s2). Since a = Commit(t), with the setting of
the if-part, F (x, t2, t1, s2) is equivalent to

(γ
+

F
(x, Commit(t), t1, s) ∨ (∃t2)F (x, t2, s2)∧¬γ

−
F

(x, Commit(t), s)),

which, by axiom (7), is equivalent to F (x, t1, do(a, s2)), for some t1. �

Theorem 4

By assuming, for fixed s, s′, and t legal(s) and do(Commit(t), s′) v s, we must prove
the claim ^

IC∈DICe

IC(do(Commit(t), s′)) ∧
^

IC∈DICv

IC(do(Commit(t), s′)).

A. Assume that legal(s) and do(Commit(t), s′) v s. Then, by Lemma 4, we have
legal(do(Commit(t), s′)). Henceforth, by Lemma 3, Poss(Commit(t), s′). Now,
by the action precondition axiom for Commit(t),

V
IC∈DICv

IC(s′) holds. Since
γ+

F
(x, Commit, t1, s) ≡ false and γ−

F
(x, Commit, t1, s) ≡ false, then, by ax-

iom (7), we have F (x, t∗, s′) ≡ F (x, t, do(Commit(t), s′)), for any t∗. Therefore,V
IC∈DICv

IC(do(Commit, s′)).
B. Suppose s = do(T, s∗), where T is a ground transaction. Since legal(do(T, s∗)) and

suppose T is the sequence [A1, · · · , Am], then, by Lemma 5, we have

m̂

i=1

Poss(Ai, do([A1, · · · , Ai−1], s
∗)).

Since do(Commit, s′) v do(T, s∗), by repeatedly applying axiom (4), we find out
that s∗ v do(Commit, s′) v do(T, s∗).
Suppose there are n actions before Commit(t) in T . Thus, by the action precondition
axioms for updates,

n̂

i=1

^
IC∈DICe

IC(do([A1, · · · , Ai−1], s
∗)).

Henceforth,
V

IC∈DICe
IC(s′). From this point, we obtain

V
IC∈DICe

IC(do(Commit, s′))

by a reasoning similar to part A.

By combining A and B, we conclude that the claim holds. �

Theorem 5

We use the relative satisfiability theorem for non-Markovian basic action theories ([12])
stating that a basic action theory D is satisfiable iff Duna ∪ DS0 is satisfiable. Since the
relative satisfiability theorem deals with the general case of first order initial databases, take

6 In general, whenever an update a does not have any influence on the truth value of a
fluent F , we set γ+

F
(x, a, t1, s) ≡ false and ¬γ−

F
(x, a, t1, s) ≡ false.
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the initial database as being DS0 ∪ Duna ∪ DIC [S0]. Therefore, we obtain as immediate
consequence that D is satisfiable. �

Theorem 6

Suppose we fix s, s′, t, and a′, and assume legal(s) and do(Rollback(t), s′) v s. Thus
we must prove

committed(a, s′) ≡ committed(a, do(Rollback(t), s′)), (∗)

and
rolledBack(a, s′) ≡ rolledBack(a, do(Rollback(t), s′)). (∗∗)

1. First prove (∗).

=⇒:
Assume that committed(a, s′). Then, by Abbreviation (18), we have

(∃t∗, s∗).responsible(t∗, a, s′) ∧ do(Commit(t∗), s∗) v s′.

Since do(Rollback(t), s′) v s, this implies that

(∃t∗, s∗).responsible(t∗, a, s′)∧do(Commit(t∗), s∗) v s′∧do(Rollback(t), s′) v s,

which, by the foundational axioms, and the transitivity of v, implies that

(∃t∗, s∗).responsible(t∗, a, s′)∧do(Commit(t∗), s∗) v s′ v do(Rollback(t), s′) v s.

By (18), the later clearly implies that committed(a, do(Rollback(t), s′)).
⇐=:
Assume that committed(a, do(Rollback(t), s′)). Then, by Abbreviation (18), we have

(∃t∗, s∗).responsible(t∗, a, do(Rollback(t), s′)) ∧
do(Commit(t∗), s∗) v do(Rollback(t), s′).

Since clearly responsible(t∗, a, do(Rollback(t), s′)) implies that responsible(t∗, a, s′),
and, by assumption, do(Rollback(t), s′) v s holds, we conclude that

(∃t∗, s∗).responsible(t∗, a, s′) ∧ do(Commit(t∗), s∗) v do(Rollback(t), s′) v s,

which, by the foundational axioms, implies that

(∃t∗, s∗).responsible(t∗, a, s′)∧do(Commit(t∗), s∗) v s′∧do(Rollback(t), s′) v s.

Again, by (18), the later implies that committed(a, s′).
2. The case (∗∗) is proven in a similar way. �

Theorem 7

Let us assume, for fixed s, s′, and t, that legal(s) and do(Commit(t), s′) @ s. By Defini-
tion 5, we must prove that ¬transConflict∗(t, t, s).

By Lemma 4 and Lemma 5, we get legal(do(Commit(t), s′) @ s) and Poss(Commit(t), s′),
respectively. Therefore, by the action precondition axiom (12) for Commit, we obtain

(∀t′)[sc dep(t, t′, s′) ⊃ (∃s′′)do(Commit(t′), s′′) v s′]. (†)

Now, assume, by contradiction that transConflict∗(t, t, s). By Definition 5, we have two
cases to pursue:
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case transConflict(t, t, s). By Abbreviation 4, the contradiction is immediate since t =
t.
case (∃t′)transConflict(t, t′, s) ∧ transConflict(t′, t, s). Let us skolemize the exis-
tential (∃t′) using the constant T ′. By Abbreviation 4, we will get some actions a, a′ for
which t and T ′ are responsible, respectively, such that, for some situations s∗ and s∗∗,
do(a, s∗) @ do(a′, s∗∗) @ do(a, s∗); moreover, a and a′ are conflicting operations. In the
classical relational databases, this amounts to t reading from itself. Therefore, by (†), we
have (∃s′′)do(Commit(t′), s′′) v s′. This however, violates the wellformedness of flat
transactions (Theorem 1). �

Lemma 1

Assuming, for fixed s, legal(s), and, for fixed t, s1, a, s2, s
′, and F that

do(Begin(t), s1) @ do(a, s2) @ s, (a)

(∃a∗, s∗,x)[do(Begin(t), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F,x, t)], (b)

and

(∃n).a = Rollback(t, n) ∧ sitAtSavePoint(t, n) = s′, (c)

we must prove that

(∃t1)F (x, t1, do(a, s2)) ≡ (∃t2)F (x, t2, s
′).

By skolemizing the existentials in the antecedents and some logical manipulation, we get
the following set of assumptions

do(Begin(t), s1) @ do(Rollback(t, N), s2) @ s, (a’)

do(Begin(t), s1) @ do(a∗, s∗) @ do(Rollback(t, N), s2) ∧ writes(a∗, F,x, t)], (b’)

sitAtSavePoint(t, N) = s′, (c’)

With (a’)-(c’), we must show that

(∃t1)F (x, t1, do(Rollback(t, N), s2)) ≡ (∃t2)F (x, t2, sitAtSavePoint(t, N)).

=⇒ :
Suppose that (∃t1)F (x, t1, do(Rollback(t, N), s2)). Then from (26), we get

restoreSavePoint(F,x, N, t, s),

and, by Abbreviation 27, we have F (x, t, sitAtSavePoint(t, N)); henceforth

(∃t2)F (x, t2, sitAtSavePoint(t, N)).

⇐= :
Suppose that (∃t2)F (x, t2, sitAtSavePoint(t, N)). Then we have

(∃s∗)sitAtSavePoint(t, N) = s∗ ∧ F (x, t2, s
∗).

Since legal(s), by assumption (a’), we have Poss(Rollback(t, N), s2); thus, by Axiom
(22), we obtain sitAtSavePoint(t, N) @ s. Therefore, by Abbreviation 27, we conclude
that

restoreSavePoint(F,x, N, t, s).
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So, with the fact that Poss(Rollback(t, N), s2), we draw the conclusion, by Axiom (26),
that (∃t1)F (x, t1, do(Rollback(t, N), s2)). �

Corollary 1

This follows from Theorem 3, which continues to hold for flat transactions with savepoints,
and Lemma 1, by using the fact that [(P ⊃ Q) ∧ (P ⊃ R ∧ S)] ⊃ [P ⊃ (Q ∧R ∧ S)]. �

Theorem 8

Asume, for fixed s, t, n, and s′, that

legal(s), (a)

do(Rollback(t, n), s′) @ s. (b)

Now assume by contradiction that

(∃n∗, s∗).do(Rollback(t, n), s′) @ do(Rollback(n∗), s∗) @ s∧ ($)

sitAtSavePoint(n) v sitAtSavePoint(n∗) @ do(Rollback(t, n), s′).

By Lemma 4, and assumptions (a), (b), and ($), we have (after skolemizing the existentials
in ($)), legal(Rollback(t, n), s′) and legal(Rollback(t, N∗), S∗). Therefore, by Lemma
5, we conclude that Poss(Rollback(t, n), s′) and Poss(Rollback(t, N∗), S∗). Now, by
the action precondition axiom (22), from the fact that Poss(Rollback(t, N), S∗) we get

(∃s1).s1 =sitAtSavePoint(t, N) ∧ s1 @ S∗∧ (c)

¬(∃s2, s3).s2 v s1 v s3 ∧ Ignore(t, s2, s3),

which is equivalent to

sitAtSavePoint(t, N) @ S∗∧ (d)

¬(∃s2, s3).s2 v sitAtSavePoint(t, N) v s3 ∧ Ignore(t, s2, s3).

Now notice that ($) also implies the following formula:

(∃s4)s4 = sitAtSavePoint(t, n)∧ (e)

sitAtSavePoint(t, n) v do(Rollback(t, n), s′).

Since sitAtSavePoint(t, n) @ do(Rollback(t, n), s′), by Axiom (23) formula (e) is
equivalent to

Ignore(t, sitAtSavePoint(t, n), do(Rollback(t, n), s′)). (f)

However, recall that we have

sitAtSavePoint(t, n) @ sitAtSavePoint(t, N∗) @ do(Rollback(t, n), s′)).

This fact, combined with (f) gives

(∃s7, s8).s7 = sitAtSavePoint(t, N∗)s8 ∧ Ignore(t, s7, s8)), (g)

which by Axiom (22) would make Poss(Rollback(t, N∗), S∗) false, thus leading to a
contradiction. �

Theorem 9
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Assume, for fixed s, s′, s′′, and t that

do(Chain(t), s′) @ do(Rollback(t), s′′) v s, (a)

(∃a∗, s∗,x)[do(Chain(t), s′) @ do(a∗, s∗)@ do(Rollback(t), s′′) ∧ writes(a∗, F,x, t)],
(b)

¬(∃s∗)do(Chain(t), s′) @ do(Chain(t), s∗) @ do(Rollback(t), s′′). (c)

We must prove that

(∃t′)F (x, t′, do(Rollback(t), s′′)) ≡ (∃t′′)F (x, t′′, do(Chain(t), s′)). ($$)

=⇒ :
Suppose, for fixed x, that (∃t′)F (x, t′, do(Rollback(t), s′′)). Then, by the assumption (a),
Axiom 7, and Abbreviation 12 that

(∃s1).(∀a∗, s∗)[s1 @ do(a∗, s∗) @ s′′ ⊃ a∗ 6= Chain(t) ∧ a∗ 6= Begin(t)]∧
{[(∃a∗, s∗, t∗,x).do(Chain(t), s1)@ do(a∗, s∗)vs′′∧

writes(a∗, F,x, t)∧F (x, t∗, s1)]∨
[(∀a∗, s∗,x).do(Chain(t), s1) @ do(a∗, s∗) v s′′ ⊃ ¬writes(a∗, F,x, t)]∧

(existst∗)F (x, t∗, s′′)}.

Therefore, by assumption (b) and (d), we conclude that

(∃s1).(∀a∗, s∗)[s1 @ do(a∗, s∗) @ s′′ ⊃ a∗ 6= Chain(t) ∧ a∗ 6= Begin(t)]∧
[(∃a∗, s∗, t∗,x).do(Chain(t), s1)@ do(a∗, s∗)vs′′∧writes(a∗, F,x, t)∧F (x, t∗, s1)].

This entails

(∃s1, a
∗, s∗, t∗,x).do(Chain(t), s1)@ do(a∗, s∗)vs′′∧writes(a∗, F,x, t)∧F (x, t∗, s1)],

which in turn, by assumption (a) and (b), entails (∃t∗)F (x, t∗, s′).

⇐= :
Suppose for fixed x and F that (∃t′′)F (x, t′′, do(Chain(t), s′)). Then, by conjoining
this with assumptions (b) and (a), we can conclude by Axiom 7 and Abbreviation 12 that
(∃t′)F (x, t′, do(Rollback(t), s′′)). �

Theorem 10

The proof is similar to that of Theorem 3. The major difference lies in the fact that in
addition to the assumptions (†) and (‡) made in the proof of Theorem 3, we must also draw
the consequences of assuming, for fixed s, that legal(s) holds, and, for fixed t, a, s1, and
s2, that

do(Spawn(t, t′), s1) @ do(a, s2) @ s, (†′)

and

(∃a∗, s∗,x)[do(Spawn(t, t′), s1) @ do(a∗, s∗)@ do(a, s2) ∧ writes(a∗, F,x, t)].
(‡′)

The rest of the proof is as for Theorem 3, but with the successor state axiom 46 for closed
nested transactions to be used instead of axiom 7. �
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Lemma 6 Suppose D is a basic relational theory for closed nested transactions. Then any
legal log satisfies the weak rollback and commit dependency properties; i.e.,

D |= legal(s) ⊃
(∀t, t′).{wr dep(t, t′, s) ⊃ [do(Rollback(t′), s′) @ s ⊃

[(∀s∗)[s∗ @ s ∧ do(Commit(t), s∗) 6v do(Rollback(t′), s′)] ⊃
(∃s′′)do(Rollback(t), s′′) v s]]} ∧

{c dep(t, t′, s) ⊃ [do(Commit(t), s∗) @ s ⊃
[do(Commit(t′), s′) v s ⊃ [do(Commit(t′), s′) @ do(Commit(t), s∗)]]]}.

Proof: This is provable in a similar way as for Theorem 2 and we omit the proof here. �

Theorem 11

By Abbreviation 2, we must establish two entailments:

1. D |= legal(s) ⊃
{parent(t, t′, s) ∧ do(Commit(t′), s′) 6v do(Commit(t), s′′) @ s ⊃

(∃s∗)do(Rollback(t′), s∗) @ s}.
and

2. D |= legal(s) ⊃
{parent(t, t′, s) ∧ do(Commit(t′), s′) 6v do(Rollback(t), s′′) @ s ⊃

(∃s∗)do(Rollback(t′), s∗) @ s}.
1. Assume, for fixed s, t, t′, a, s′, and s′′ that

legal(s), (a)

parent(t, t′, s), (b)

do(Commit(t′), s′) 6v do(Commit(t), s′′) @ s. (c)

We must prove that (∃s∗)do(Rollback(t′), s∗) @ s.
By Axiom (33), and the assumptions (b) and (c), we conclude that

(∃s1)do(Spawn(t, t′), s1) @ do(Commit(t), s′′) @ s).

Therefore, by the dependency axiom (44), we have c dep(t, t′, s′′).
Since c dep(t, t′, s′′), by Lemma 6 and assumption (a), we obtain

do(Commit(t), s1) @ s ⊃
[do(Commit(t′), s2) v s ⊃ [do(Commit(t′), s2) @ do(Commit(t), s1)]],

which is logically equivalent to

do(Commit(t), s1) 6@ s ∨ do(Commit(t′), s2) 6v s∨
do(Commit(t′), s2) @ do(Commit(t), s1),

which, in turn, is equivalent to

do(Commit(t), s1) @ s ∧ do(Commit(t′), s2) 6@ do(Commit(t), s1) ⊃ (d)

do(Commit(t′), s2) 6v s.

By assumption (c), appropriate unification, (d), and Modus Ponens, we get

(∀s2)do(Commit(t′), s2) 6v s.
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Finally, by Theorem 1, we conclude that (∃s∗)do(Commit(t′), s∗) v s, which implies
QED.

2. We make the same assumptions as in Part 1 of the proof, except that the following:

do(Commit(t′), s′) 6v do(a, s′′) @ s (c’)

replaces (c). We must prove that (∃s∗)do(Rollback(t′), s∗) @ s.
By Axiom (33), and assumptions (b) and (c’), we get

(∃s1)do(Spawn(t, t′), s1) @ do(Rollback(t), s′′) @ s).

Thus, by the dependency axiom (45), we conclude that wr dep(t′, t, s′′).
Since c dep(t′, t, s′′), by Lemma 6 and assumption (a), we obtain

[do(Rollback(t), s1) @ s ⊃
[(∀s∗)[s∗ @ s ∧ do(Commit(t), s∗) 6v do(Rollback(t), s1)] ⊃

(∃s′′)do(Rollback(t), s′′) v s]],

which is logically implies that

do(Rollback(t), s1) @ s ∧ do(Commit(t′), s∗) 6v do(Rollback(t), s1)] ⊃ (d’)

(∃s′′)do(Rollback(t′), s′′) v s.

By assumption (c), appropriate unification, (d’), and Modus Ponens, we conclude that

(∃s∗)do(Commit(t′), s∗) v s,

which implies QED. �

Theorem 12

The proof is very similar to that of Theorem 7 and needs not be repeated here. �


