
From Functional Speci�cations to
Logic Programs

Michael Gelfond, Alfredo Gabaldon
Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA

fmgelfond,alfredog@cs.utep.edu

Abstract

The paper investigates a methodology for representing knowledge in logic
programming using functional speci�cations. The methodology is illustrated
by an example formalizing several forms of inheritance reasoning. We also
introduce and study a new speci�cation constructor which corresponds to
removal of the closed world assumption from input predicates of functional
speci�cations.

1 Introduction

\The only e�ective way to raise the con�dence level of a program signi�cantly is

to give a proof of its correctness. But one should not �rst make the program and

then prove its correctness, because then the requirement of providing the proof

would only increase the poor programmer's burden. On the contrary: the pro-

grammer should let correctness proof and program grow hand in hand. ...If one

�rst asks oneself what the structure of a convincing proof would be and, having

found this, then construct a program satisfying this proof's requirements, then

these correctness concerns turn out to be a very e�ective heuristic guidance."

E. Dijkstra, The Humble Programmer

This paper continues the mathematical investigation of the process of repre-
senting knowledge in declarative logic programming (DLP). We are looking
for some insights into the ways to specify knowledge, to gradually trans-
fer an initial speci�cation into an executable (and eventually e�cient) logic
program and to insure the correctness of this transformation. We hope that
such insights will help to facilitate the construction of correct and e�cient
knowledge based systems. In this paper we leave out some of the important
aspects of the process of representing knowledge and focus our attention on
speci�c types of representational problems. In particular, we concentrate on
the early stages of program development and almost completely ignore the
question of elaborating executable (but possibly ine�cient) speci�cations
into their e�cient counterparts1. We are primarily interested in what is en-
tailed by our program and not in speci�c algorithms used to compute this

1Our use of the term \speci�cation" follows [Mor90] which eliminates the distinction
between programs and speci�cations.

entailment. In this sense our approach is complementary to the work on pro-
gram development in Prolog (see for instance [Dev90]) which concentrates
on properties of a particular inference engine. We further simplify our task
by limiting attention to a special type of knowledge representation problem
which consists in formalizing (possibly partial) de�nitions of new relations
between objects of the problem domain given in terms of old, known rela-
tions between these objects. We call such problems functional KR problems.
They frequently occur in the development of databases when new relations
(views) are de�ned in terms of basic relations stored in the database tables.
They are also typical in arti�cial intelligence (see [Lif93]), e.g., in formalizing
knowledge about action and change when we need to de�ne the state of the
world at a given moment in terms of its initial (known) state.
The restriction to functional problems allows us to start the programming
process with formalizing a natural language description of a problem in terms
of functional speci�cations (f-speci�cations) [GP96] - functions which map
collections of facts about known relations from the domain into collections
of facts about new, de�ned relations. Such speci�cations can be de�ned by a
speci�er directly in a simple set-theoretic language, or they can be built from
previously de�ned speci�cations with the help of speci�cation constructors -
simple mappings from speci�cations to speci�cations. After the construction
of an f-speci�cation f the designer of the system is confronted with the task
of representing f in a logical language with a precisely described entailment
relation. [GP96] advocates the use of a language L of logic programs with two
types of negations and the answer set semantics. The choice is determined by
the ability of L to represent default assumptions, i.e., statements of the form
\Elements of the class A normally have property P", epistemic statements
\P is unknown", \P is possible", and other types of statements needed for
describing commonsense domains. Other important factors are the simplicity
of the semantics, the existence of a mathematical theory providing a basis for
proving properties of programs in L, and the availability of query answering
systems which can be used for rapid prototyping. The alternative approach
which uses logic programs with well-founded semantics and its extensions
can be found in [AP96].
At the end of the second stage of the program development the implementor
will have a logic program �f which, taken in conjunction with a collection
X of facts about known relations of f , will entail exactly those facts about
the new relations which belong to f(X). Programs of this sort are called lp-
functions. In [GP96] the authors suggest that the construction of �f from f

can be substantially facilitated by so called realization theorems which relate
speci�cation constructors to some operations on logic programs. They can
provide an implementor with a useful heuristic guidance and the means to
establish the correctness of his programs. Several examples of such theorems
and their applications will be given in the paper.
At the last stage of the process, the lp-function �f representing f-speci�cation
f will be transfered into an e�cient logic program �f computing (or approx-

imating) the entailment relation of �f . Unlike �f , the construction of �f

will depend signi�cantly on the choice of the query answering system used
by the implementors.
Space limitations preclude us from giving any serious comparison with other
methodologies of representing knowledge. Moreover, we believe that such
comparison can only be done when all of these methodologies are more fully
developed. Still a short remark is in order. At the moment, the speci�cation
language most frequently used for the �rst formal re�nement of a problem is
probably the language of �rst-order logic (FOL). As others before us we con-
jecture that FOL is not fully adequate for our purpose. Its expressive power
is insu�cient to de�ne even fairly simple f-speci�cations such as transitive
closure of database relations. It also doesn't seem to be the best language
for representing defaults, epistemic statements, and other types of \com-
monsense" knowledge. These observations are well known and led to various
extensions and modi�cations of FOL. One of such modi�cations, DLP, is
used by us at the second stage of the programming process. Why not to use
it directly? There are two reasons for it. The �rst advantage of the language
of f-speci�cations over DLP is its simplicity. The construction of f requires
knowledge of a simple set-theoretic notation together with de�nitions of a
(hopefully small) collection of speci�cation constructors. The speci�er in-
volved at the �rst stage of the process does not need to know anything about
semantics of DLP. Another possible advantage of translating a natural lan-
guage description of a functional KR problem into an f-speci�cation f is the
ability to use the structure of f and the corresponding realization theorems
for reducing the construction of �f to the construction of simpler programs.
Examples of such reductions can be found in [GP96].
The previous discussion shows that the success of our approach depends to a
large extent on our ability to discover a collection of speci�cation construc-
tors which can serve as building blocks for the construction of f-speci�cations.
This paper is a continuation of a search for such constructors. We introduce
and study a new speci�cation constructor, called input opening, which is
de�ned on f-speci�cations of KR problems which assume the closed world
assumption (CWA) [Rei78] on its input predicates. Informally, the input
opening f� of f is the result of the removal of this assumption. The no-
tion of input opening is closely related to the notion of interpolation of a
logic program from [BGK93]. Interpolation can be viewed as a particular
case of input opening de�ned for speci�cations which assume the CWA for
their outputs as well as inputs and whose input relations are independent
from each other. There are many interesting domains which do not satisfy
these assumptions, which led us to the introduction of input opening. We
give a de�nition of the constructor, show how it can be decomposed into
simpler ones, and prove some useful realization theorems. The use of input
opening (in combination with several previously de�ned constructors) is il-
lustrated by the design of a concise, but fairly powerful program representing
a \classical" KR problem associated with inheritance hierarchies. Our solu-

tion generalizes previously suggested solutions to this problem by allowing
information about class membership in hierarchies to be incomplete. The
program development is accompanied by a simultaneous proof of its correct-
ness. We �nd that our con�dence level in the correctness of the result was
signi�cantly improved by this approach. The paper is organized as follows.
Section 2 contains the de�nitions of f-speci�cation and lp-function. Their
use is illustrated by formalizing a simple hierarchical reasoning problem un-
der CWA. In Section 3 we de�ne input opening and use this constructor
to represent several other problems related to inheritance reasoning in the
absence of CWA.

2 F-speci�cations and lp-functions

2.1 De�nitions

A signature is a triple of disjoint sets called object constants, function
constants, and predicate constants. Signature �1 = fO1; F1; P1g is a sub-
signature of signature �2 = fO2; F2; P2g if O1 � O2, F1 � F2 and P1 � P2;
�1 + �2 denotes signature fO1 [O2; F1 [F2; P1 [P2g. Terms over � are
built as in the �rst-order language; positive literals (atoms) have the form
p(t1; : : : ; tn), where the t's are terms and p is a predicate symbol of ar-
ity n; negative literals are of the form :p(t1; : : : ; tn). Literals of the form
p(t1; : : : ; tn) and :p(t1; : : : ; tn) are called contrary. By l we denote the literal
contrary to l. Literals and terms not containing variables are called ground.
The sets of all ground terms, atoms and literals over signature � are denoted
by terms(�), atoms(�) and lit(�) respectively. For a list of predicate sym-
bols p1; : : : ; pn from �, atoms(p1; : : : ; pn) (lit(p1; : : : ; pn)) denote the sets of
ground atoms (literals) of � formed with predicates p1; : : : ; pn. Consistent
sets of ground literals over signature � are called states of � and denoted by
states(�).

A four-tuple f = ff; �i(f); �o(f); dom(f)g where

1. �i(f) and �o(f) are signatures;

2. dom(f) � states(�i(f));

3. f is a function which maps dom(f) into states(�o(f))

is called f-speci�cation with input signature �i(f), output signature �o(f)
and domain dom(f). States over �i(f) and �o(f) are called input and output
states respectively.

By a logic program � over signature �(�) we mean a collection of rules of
the form

(r) l0 l1; : : : ; lm; not lm+1; : : : ; not ln

where l's are literals over �(�) and not is negation as failure [Cla78, Rei78].
head(r) = fl0g, pos(r) = fl1; : : : ; lmg, neg(r) = flm+1; : : : ; lng. head(�) is
the union of head(r) for all rules from �. Similarly for pos and neg. We say
that a literal l 2 lit(�(�)) is entailed by � (� j= l) if l belongs to all answer
sets of �. A program with a consistent answer set is called consistent.

A four-tuple � = f�; �i(�); �o(�); dom(�)g where

1. � is a logic program (with some signature �(�));

2. �i(�); �o(�) are sub-signatures of �(�) called input and output signa-
tures of � respectively;

3. dom(�) � states(�i(�))

is called lp-function if for any X 2 dom(�) program �[X is consistent, i.e.,
has a consistent answer set. For any X 2 dom(�),

�(X) = fl : l 2 lit(�o(�)); �[X j= lg:

We say that an lp-function � represents an f-speci�cation f if � and f have
the same input and output signatures and domains and for any X 2 dom(f),
f(X) = �(X).

2.2 An Example

In this section, we illustrate the notions of functional speci�cation and lp-
function by solving a knowledge representation problem associated with a
simple type of taxonomic hierarchies called the is-nets. The problem of
specifying and representing is-nets is commonly used to test strengths and
weaknesses of various nonmonotonic formalisms. Logic programming ap-
proaches to this problem (which assume completeness of its domain) can
be found in [AP96] and [Lin91]. Modi�cations of this example will be used
throughout this paper.

An is-net N can be viewed as a combination of graphs Ns and Nd where Ns

describes the subclass relation between classes and Nd consists of positive
and negative links connecting classes with properties. These links represent
defaults \elements of class c normally satisfy (do not satisfy) property p".
To simplify the presentation we will assume that Ns is acyclic and that a
class c and a property p can be connected by at most one link. We use
(possibly indexed) letters o, c, p, and d to denote objects, classes, properties
and defaults respectively. Fig 1a gives a pictorial representation of a net.
Here c0; : : : ; c5 are classes and p is a property. Links from c5 to p and from c4
to p represent positive and negative defaults while the other links represent
subclass relationships.

There are many knowledge representation problems which can be associated
with a net N . We start with the simplest one when N is viewed as an

C

C C

C

C

p

1 2

3 4

5

(a)

d1

d2

C

C C

C

C

p

O O1 2

1 2

3 4

5

(b)

d1

d2

C

C C

C

C

p

O O1 2

1 2

3 4

5

O3

(c)

d

d

1

2

Figure 1: A simple taxonomic hierarchy

informal speci�cation of a function fN which takes as an input complete
collections of ground literals formed by predicate symbol is and computes
all possible conclusions about relation has which a rational agent can obtain
from this net.2 Pictorially, the input to fN is represented by positive links
from objects to classes (see Fig 1b). It is assumed that an object o is an
element of a class c i� Ns contains a path from o to c.

We are interested in applying our methodology for providing a rigorous speci-
�cation of this function and for �nding its logic programming representation.
Later we consider more complex functions which can also be associated with
N .

� We start by playing the role of a speci�er and give a precise de�nition
of function fN using the language of f-speci�cations. To this goal, we �rst
identify graphs Ns and Nd with some encoding of collections of literals of
the form subclass(c1; c2), default(d; c; p;+), default(d; c; p;�) speci�ed by
these graphs. (The last parameter in default is used to distinguish positive
and negative defaults.) For instance, a net Ns may be encoded by a logic
program consisting of rules

subclass0(ci; cj): (where ci, cj are classes connected by a link of Ns.)

subclass(Ci; Cj) subclass0(Ci; Cj)

subclass(Ci; Cj) subclass0(Ci; Ck); subclass(Ck; Cj)

or by some other means. Nd for the net from Fig 1 consists of two statements:

default(d1; c5; p;+): default(d2; c4; p;�):

Since we assume that our information about the membership relation is is
complete, i.e., for any object o and class c, is(o; c) or :is(o; c) belongs to
the net's input, we call fN a closed domain speci�cation of N . (To simplify
the notation we will from now on omit the index N whenever possible). A
closed domain f-speci�cation f of a net N can be de�ned as follows.

2is(o; c) stands for \object o is an element of class c"; has(o; p) means that \object o

has property p". Both predicates are typed.

1. Input signature �i(f) of f consists of object constants for objects and
classes of the hierarchy and the predicate symbol is; output signa-
ture �o(f) consists of object constants for the hierarchy objects and
properties and predicate symbol has.

2. dom(f) consists of complete states of �i(f) which satisfy the constraints:
3

 is(O;C1); subclass(C1; C2);:is(O;C2) (1)

3. For any X 2 dom(f), has(o; p) 2 f(X) i� there are d1 and c1 s.t.

(a) default(d1; c1; p;+) 2 N

(b) is(o; c1) 2 X

(c) for any default(d2; c2; p;�) 2 N ,

:is(o; c2) 2 X or subclass(c1; c2) 2 N

Similarly for :has(o; p).

Note that this de�nition does not require any sophisticated mathematics. In
particular, it presupposes no knowledge of logic programming.

� Now let us assume the role of an implementor, who just received a descrip-
tion of N and f and is confronted with the task of building an executable
lp-function representing f . To simplify the discussion let us assume that
we will only be interested in getting answers to ground queries formed by
predicate has. According to our methodology, we will �rst ignore the exe-
cutability requirement and proceed with the construction of an lp-function
� representing the f-speci�cation f . We start with considering a program �:

has(X;P) default(D;C; P;+);
is(X;C);
not exceptional(X;D;+):

:has(X;P) default(D;C; P;�);
is(X;C);
not exceptional(X;D;�)

exception(E;D1;+) default(D1; C; P;+);
default(D2; E; P;�);
not subclass(C;E):

exception(E;D1;�) default(D1; C; P;�);
default(D2; E; P;+);
not subclass(C;E):

exceptional(X;D; S) exception(E;D; S);
is(X;E):

Ns [Nd

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

�

3A constraint is a rule of the form � where � is a list of literals from some signature
�. A set X 2 states(�) satis�es the constraint � if � 6� X. X satis�es a collection C

of constraints if it satis�es every constraint in C.

(Here Ns and Nd are logic programming encodings of the corresponding
nets.) We would like � to be viewed as an lp-function whose input and
output signatures are the same as in f and whose domain is dom(f), i.e., we
need the following

Proposition 2.1 For any X 2 dom(f), program � [X is consistent.

Now we can show the correctness of our construction.

Proposition 2.2 Lp-function � represents f , i.e., for any X 2 dom(f),
�(X) = f(X).

The next re�nement of our program will address the question of specifying
its input X . We decided that the input to f will be represented by positive
links from objects to classes and that an object o is an element of a class
c i� Ns contains a path from o to c. It is easy to check that, under this
assumption, we can replace a complete input X to our lp-function � by a
program �X consisting of atoms of the form is0(o; c) for any link from o to c
which is present in the graph (is0(o1; c1) and is0(o2; c2) in Fig 1b), together
with three rules:

is(O;C) is0(O;C)

is(O;C2) is0(O;C1); subclass(C1; C2)

:is(O;C) not is(O;C)

It is also easy to show that for ground queries the program � [�X is ex-
ecutable by a simple modi�cation of a Prolog interpreter which replaces
:has(O; P) by a new predicate symbol ^has(O; P). Since our focus in this
paper is on the �rst two steps of the development process we will not discuss
this question further. Instead we introduce another KR-problem associated
with is-nets and demonstrate how a speci�cation constructor, called input
opening, can be used to specify and represent this problem.

3 Opening closed domain speci�cations

3.1 Specifying the problem

So far we assumed that the netN is used in conjunction with complete lists of
ground literals characterizing the relation is. In the process of development
and modi�cation of the system this assumption may become too strong and
the speci�er may decide to remove it from his speci�cation. Now the net
N will be used in conjunction with a possibly incomplete set X of ground
literals formed by predicate is. As before, X must satisfy the constraint (1).
Pictorially, the input to the net will be represented by positive and negative
links from objects to classes (see Fig 1c). Now the net N can be viewed

as a function F � which takes X as an input and returns all conclusions
about relations is and has which a rational agent can obtain from N and
X . (f� will be called the open domain speci�cation of N .) The problem
is to precisely de�ne the set of all such conclusions. In order to do that
the speci�er may use a closed domain f-speci�cation f of N together with
a speci�cation constructor called the input opening of f . To de�ne this
constructor we need the following terminology.

Let D be a collection of states over some signature �. A set X 2 states(�)
is called D-consistent if there is X̂ 2 D s.t. X � X̂; X̂ is called a D-cover of
X .

If, for instance, � is a signature associated with net Ns from Fig 1 and D

is the collection of complete sets from lit(is) which satisfy the constraint
(1) then fis(o1; c1); is(o2; c2)g is D-consistent while fis(o1; c1); is(o2; c2);
:is(o2; c3)g is not.

The set of all D-covers ofX is denoted by c(D;X). The set of all D-consistent
states of � is called the interior ofD and is denoted byD�. An f-speci�cation
f de�ned on a collection of complete states of �i(f) is called closed domain
speci�cation.

De�nition 3.1 (Input Opening) Let f be a closed domain speci�cation with
domain D. An f-speci�cation f� is called the input opening of f if

�i(f
�) = �i(f) �o(f

�) = �i(f) + �o(f) (2)

dom(f�) = D� (3)

f�(X) =
\

X̂2c(D;X)

f(X̂) [
\

X̂2c(D;X)

X̂ (4)

Now the open domain f-speci�cation f�N of a net N can be de�ned as the
input opening of its closed domain speci�cation fN . (Again, we will omit
the index whenever possible).

Our next problem is to �nd an lp-function representing f�. To do that we
will show how the input opening of f can be expressed as a composition
of two simpler speci�cation constructors called interpolation and domain
completion. We need the following de�nitions.

De�nition 3.2 A set X 2 states(�) is called maximally informative w.r.t.
a set D � states(�) if X is D-consistent and

X =
\

X̂2c(D;X)

X̂ (5)

By ~D we denote the set of states of � maximally informative w.r.t. D.

Consider the net N from Fig 1b. The set fis(o1; c1); is(o1; c3); is(o1; c5);
is(o2; c2); is(o2; c3); is(o2; c5)g is maximally informative w.r.t. the set of all
complete input states of N , while the set fis(o1; c1); is(o2; c2)g is not.

De�nition 3.3 (Interpolation) Let f be a closed domain f-speci�cation with
domain D. F-speci�cation ~f with the same signatures as f and the domain
~D is called the interpolation of f if

~f(X) =
\

X̂2c(D;X)

f(X̂) (6)

This is a slight generalization of the notion of interpolation introduced in
[BGK93], where the authors only considered interpolations of functions de-
�ned by general logic programs.

De�nition 3.4 (Domain Completion)
Let D be a collection of complete states over signature �. The domain
completion of D is a function ~fD which maps D-consistent states of � into
their maximally informative supersets.

Speci�cations f and g s.t. �o(f) = �i(g) and lit(�i(g))\ lit(�o(g)) = ; can
be combined into a new f-speci�cation g � f by a speci�cation constructor �
called incremental extension [GP96]. Function g � f with domain dom(f),
�i(g�f) = �i(f), �o(g�f) = �o(f)+�o(g) is called the incremental extension
of f by g if for anyX 2 dom(g�f), g�f(X) = f(X)[g(f(X)). The following
proposition follows immediately from the de�nitions.

Proposition 3.1 For any closed domain f-speci�cation f with domain D

f� = ~f � ~fD (7)

3.2 Realization theorems for domain completion and inter-
polation

The above proposition shows that a representation for f� can be constructed
from lp-functions representing ~f and ~fD. In the construction of these func-
tions we will be aided by realization theorems for domain completions and
interpolations.

Let C be a collection of constraints of the form � where � � lit(�). A
constraint is called binary if � consists of two literals. We say that a domain
D is de�ned by C if D consists of complete sets from states(�) satisfying C.
Let C be a set of binary constraints and D be the closed domain de�ned by
C. Let ~�D be a program obtained from C by replacing each rule l1; l2 by
the rules :l1 l2 and :l2 l1.

Theorem 3.1 (Realization Theorem for Domain Completion)
If for every l 2 lit(�) there is a set Z 2 D not containing l then a four-tuple
f~�D; �; �;D

�g is an lp-function which represents domain completion ~fD of
D.

To give a realization theorem for the interpolation we need some auxiliary
de�nitions.

Let D be a collection of complete states over a signature �. Function f

de�ned on the interior of D is called separable if
\

X̂2c(D;X)

f(X̂) � f(X)

or, equivalently, if for any X 2 dom(f) and any output literal l s.t. l 62 f(X)
there is X̂ 2 c(D;X) s.t. l 62 f(X̂).
The following examples may help to better understand this notion.

Example 3.1 Let D be the set of complete states over some signature �i
and let � be an lp-function de�ned on D� = states(�i), s.t.

1. The sets of input and output predicates of � are disjoint and input
literals do not belong to the heads of �;

2. for any l 2 �i, l 62 lit(�) or l 62 lit(�). (By lit(�) we mean the collection
of all literals which occur in the rules of the ground instantiation of �.)

Then � is separable.

The next example shows that the last condition is essential.

Example 3.2 LetD = ffp(a)g; f:p(a)gg and consider a function f1 de�ned
on D� by the program

q(a) p(a)

q(a) :p(a)

Let X = ;. Obviously, f1(X) = ; while
T
X̂2c(D;X) f1(X̂) = fq(a)g and

hence f1 is not separable.

Example 3.3 In some cases to establish separability of an lp-function � it
is useful to represent � as the union of its independent components and to
reduce the question of separability of � to separability of these components.
Let � be an lp-function with input signature �i and output signature �o. We
assume that the input literals of � do not belong to the heads of rules of �.
We say that � is decomposable into independent components �0; : : : ; �n if
� = �0[: : :[�n and lit(�k)\lit(�l) � lit(�i) for any k 6= l. It is easy to check
that, for any 0 � k � n, four-tuple f�k; �i; �o; dom(�)g is an lp-function, and
that if all these functions are separable then so is �. This observation can
be used for instance to establish separability of function f2 de�ned on the
interior of the set D from the previous example by the program

q1(a) p(a)

q2(a) :p(a)

(The output signature of f2 consists of a, q1 and q2).
2

Now we are ready to formulate our next theorem.

Theorem 3.2 (Realization Theorem for Interpolation) Let f be a closed
domain speci�cation with domain D represented by an lp-function � and let
~� be the program obtained from � by replacing some occurrences of input
literals l in pos(�) by not l. Then f~�; �i(f); �o(f); dom(~f)g is an lp-function
and if ~� is separable and monotonic then ~� represents ~f .

3.3 Representing the open domain speci�cation of N

As before, we now need to address the task of constructing an lp-function ��

representing f�. We already know that f� = ~f � ~fD where D is the domain
of f . This means that we need to �nd representation ~� of ~f and ~�D of ~fD .
An important heuristic guidance in this task will be provided to us by the
corresponding realization theorems. To �nd the representation of ~f we use
Theorem 3.2. The program ~� can be obtained from � by replacing the rule
de�ning predicate exceptional by the rule

exceptional(X;D; S) exception(E;D; S);
not :is(X;E):

(8)

(which is the only way to turn � into a signed program using the transfor-
mation from Theorem 3.2.) We may show that ~� is separable and hence:

Proposition 3.2 ~� represents ~f

To complete the construction of �� we need to �nd the representation ~�D
of the domain completion of D = dom(f). We use Theorem 3.1. The
corresponding program ~�D consists of the rules

is(O;C2) is(O;C1); subclass(C1; C2) (9)

:is(O;C1) :is(O;C2); subclass(C1; C2) (10)

Proposition 3.3 ~�D represents ~fD

Finally, using Propositions 3.2, 3.3 and the realization theorem for incre-
mental extension from [GP96] we can prove:

Proposition 3.4 �� represents f�

Proposition 3.4 shows the correctness of �� w.r.t. our speci�cation. However,
due to the left recursion in the rules 9, 10 �� cannot be run with the Prolog
interpreter. It was however run under a simple meta-interpreter based on
the SLG inference engine [CSW95] which is sound w.r.t. our semantics. Of
course, the left recursion can be eliminated by introducing a new predicate
is0 but we will not do it here due to the space limitations.

C

C C

C

C

p

O O1 2

1 2

3 4

5

O3

d1

d2

Figure 2: Hierarchy with links from objects to properties

3.4 A simple generalization

In this section we generalize the KR problem associated with a net N by
allowing strict (non-defeasible) links from objects to properties to belong to
the net's input (see Fig 2). We show that this generalization can be easily
incorporated into the design. To do that we use another speci�cation con-
structor from [GP96]. We will recall the following de�nitions from [GP96].

De�nition 3.5 Let f be a functional speci�cation with disjoint sets of input
and output predicates. A f-speci�cation f� with input signature �i(f)+�o(f)
and output signature �o(f) is called input extension of f if

1. f� is de�ned on elements of dom(f) possibly expanded by consistent
sets of literals from �o(f),

2. for every X 2 dom(f), f�(X) = f(X),

3. for any Y 2 dom(f�) and any l 2 lit(�o(f)),

(i) if l 2 Y then l 2 f�(Y)

(ii) if l 62 Y and l 62 Y then l 2 f�(Y) i� l 2 f(Y \ lit(�i(f))

De�nition 3.6 Let � be an lp-function. The result of replacing every rule

l0 l1; : : : ; lm; not lm+1; : : : ; not ln

of � with l0 2 lit(��(f)) by the rule

l0 l1; : : : ; lm; not lm+1; : : : ; not ln; not l0

is called the guarded version of � and is denoted by �̂.

Theorem 3.3 ([GP96]) (Realization Theorem for Input Extension)
Let f be a speci�cation represented by lp-function � with signature �. If the
set U = lit(�) n lit(��) is a splitting set of � dividing � into two components
�2 = top(�; U) and �1 = base(�; U) then lp-function �� = �1[�̂2 represents
the input extension f� of f .

Now we can give a speci�cation of the third function associated with a net
N . It is de�ned by a speci�cation

f� = ~f� � fD

and the representation �� is obtained by replacing the has rules in �� by

has(x; p) default(d; c; p;+);
is(x; c);
not exceptional(x; d;+);
not :has(x; p):

:has(x; p) default(d; c; p;�);
is(x; c);
not exceptional(x; d;�)
not has(x; p):

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

The following proposition follows immediately from the construction of ��

and Theorem 3.3

Proposition 3.5 �� represents f�

Again, speci�cation constructors and their realization theorems provided a
useful heuristic guidance and allowed to build a program provenly satisfying
the corresponding speci�cation.

4 Conclusion

The main contributions of this paper consist in

� Introducing the input opening of a closed domain speci�cation and proving
some properties of this constructor;

� Providing a case study for our methodology.

Somewhat surprisingly, the resulting class of programs formalizes inheritance
reasoning with incomplete information which was not previously formalized.
Unfortunately, the size limitations do not allow us to include proofs. They
can be found in [GG97].

Acknowledgments

We would like to thank the referees for valuable comments. The �rst author
acknowledges the support of NASA under grant NCCW-0089.

References

[AP96] J.J. Alferes and L.M. Pereira. Reasoning with Logic Programming,
Lecture Notes in Arti�cial Intelligence. Springer. 1996.

[BGK93] C. Baral, M. Gelfond, and O. Kosheleva. Approximating general
logic programs, Proc. ILPS, pp. 181-198, 1993.

[CSW95] W. Chen, T. Swift and D. Warren. E�cient top-down computa-
tion of queries under the well-founded semantics, Journal of Logic
Programming, 24,3:161{201, 1995.

[Cla78] K. Clark. Negation as failure. In H. Gallaire and J. Minker, eds.,
Logic and Data Bases, pp. 293{322. Plenum Press, NY, 1978.

[Dev90] Y. Deville. Logic Programming: systematic program development,
Clark, K., series editor, Addison-Wesley Publishing Co., 1990.

[GG97] M. Gelfond and A. Gabaldon. From functional speci�ca-
tions to logic programs. Technical report. Available from:
http://cs.utep.edu/gelfond/gelfond.html

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing, 9:365-
385, 1991.

[GP96] M. Gelfond and H. Przymusinska. Towards a theory of elaboration
tolerance: logic programming approach. Int'l Journal of Software
Engineering and Knowledge Engineering, 6(1):89-112, 1996.

[Kun89] K. Kunen. Signed data dependencies in logic programs. Journal
of Logic Programming, 7(3):231-245, 1989.

[Lif93] V. Lifschitz. Restricted Monotonicity. In Proc. of AAAI-93, pp.
432{437, 1993.

[LT94] V. Lifschitz and H. Turner. Splitting a Logic Program. In
P. Van Hentenryck, editor, Proc. 11th ICLP, pp. 23{38, 1994.

[Lin91] F. Lin. A study of nonmonotonic reasoning, Ph.D. Thesis, Stan-
ford U., 1991.

[Mor90] C. Morgan. In C.A.R. Hoare, series ed., Programming from spec-
i�cations, Prentice Hall, 1990.

[Rei78] R. Reiter. On closed world data bases. In H. Gallaire and
J. Minker, eds., Logic and Data Bases, Plenum Press, NY, pp.
119{140, 1978.

[Tur93] H. Turner. A monotonicity theorem for extended logic programs.
In D. S. Warren, ed., Proc. 10th ICLP, pp. 567{585, 1993.

[Tur94] H. Turner. Signed Logic Programs. In Bruynooghe, M., ed., Proc.
ILPS, pp. 61{75, 1994.

