
Annals of Mathematics and Artificial Intelligence 25 (1999) 165–199 165

Building a knowledge base: an example

Michael Gelfond a and Alfredo Gabaldon b

a Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA
E-mail: mgelfond@cs.utep.edu

b Department of Computer Science, University of Toronto, Toronto, Canada M5S 3G4
E-mail: alfredo@cs.toronto.edu

The main goal of this paper is to illustrate applications of some recent developments
in the theory of logic programming to knowledge representation and reasoning in com-
mon sense domains. We are especially interested in better understanding the process of
development of such representations together with their specifications. We build on the
previous work of Gelfond and Przymusinska in which the authors suggest that, at least
in some cases, a formal specification of the domain can be obtained from specifications
of its parts by applying certain operators on specifications called specification constructors
and that a better understanding of these operators can substantially facilitate the program-
ming process by providing the programmer with a useful heuristic guidance. We discuss
some of these specification constructors and their realization theorems which allow us to
transform specifications built by applying these constructors to declarative logic programs.
Proofs of two such theorems, previously announced in a paper by Gelfond and Gabaldon,
appear here for the first time. The method of specifying knowledge representation problems
via specification constructors and of using these specifications for the development of their
logic programming representations is illustrated by design of a simple, but fairly powerful
program representing simple hierarchical domains.

1. Introduction

“The only effective way to raise the confidence level of a program significantly is to
give a proof of its correctness. But one should not first make the program and then
prove its correctness, because then the requirement of providing the proof would
only increase the poor programmer’s burden. On the contrary: the programmer
should let correctness proof and program grow hand in hand. ...If one first asks
oneself what the structure of a convincing proof would be and, having found this,
then construct a program satisfying this proof’s requirements, then these correctness
concerns turn out to be a very effective heuristic guidance.”

E. Dijkstra, The Humble Programmer

The main goal of this paper is to illustrate applications of some recent develop-
ments in the theory of logic programming to knowledge representation and reasoning
in common sense domains. The paper is written in the framework of the declarative
logic programming paradigm which strives to reduce a substantial part of the pro-

 J.C. Baltzer AG, Science Publishers

166 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

gramming process to the description of objects comprising the domain of interest and
relations between these objects. After such a description is produced by a program-
mer, it can be queried to establish truth or falsity of statements about the domain or
to find objects satisfying various properties. The software development process in
this paradigm starts with a natural language description of the domain which, after
a necessary analysis and elaboration, is described in mathematical terms. The main
purpose of this initial mathematical specification is to be understood by the people
involved in the development of the system and to serve as a contract between the
system specifiers and implementors. This specification is then gradually transformed
by implementors into an executable program satisfying the specification. (The process
will of course normally require more than one iteration.) There are many languages
which can be used during various stages of this transformation. This paper adopts the
view from [26] where the authors argue that for a rather broad class of knowledge
representation problems the process of representing knowledge can be divided into
three (mutually dependent) parts:

• Elaboration of a natural language description of the domain can be done in a lan-
guage of functional specifications – possibly incomplete definitions of new relations
between objects of the domain of discourse given in terms of the old, known re-
lations.1 These specifications can be defined by a specifier directly in a simple
set-theoretic language, or they can be built from previously defined specifications
with the help of specification constructors – simple functions from specifications
to specifications. This method is applicable when our knowledge representation
problem can be parameterized with respect to some possible inputs. (A good dis-
cussion on the importance of explicitly specifying input and output of knowledge
representation problems in AI can be found in [30].)

• On the second stage implementors of the system are given the functional specifi-
cation f constructed during the first stage of the process. Now they are confronted
with the task of representing f in a logical language with a precisely described
entailment relation. Gelfond and Przymusinska [26] advocate the use of a language
A-Prolog of logic programs with two types of negation and the answer set semantics.
The choice is determined by the ability of A-Prolog to represent default assump-
tions, i.e., statements of the form “Elements of the class A normally (typically, as
a rule) have property P ”, epistemic statements “P is unknown”, “P is possible”,
and other types of statements needed for describing common sense domains. Other
important factors are the simplicity of the semantics, strong expressive power of the
language, existence of a mathematical theory providing a basis for proving prop-
erties of programs in A-Prolog, and the availability of query answering systems
which can be used for rapid prototyping.2 There are other reasons but we will not

1 In precise terms, a functional specification consists of two signatures σi and σo and a (possibly partial)
function f which maps sets of ground literals over σi into sets of ground literals over σo.

2 There is a variety of query-answering systems which can be used to compute answers to queries in
A-Prolog. A simple meta-interpreter build on top of Prolog or XSB [10] proved to be sufficient for

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 167

discuss them in this paper. The alternative approach which uses logic programs
with well-founded semantics and its extensions can be found in [1].
At the end of the second stage the implementor will have a logic program π which,
taken in conjunction with a collection X of facts about known relations of f , will
entail exactly those facts about the new relations which belong to f (X). Programs
of this sort are called lp-functions. In [26] the authors suggest that the construction
of π from f can be substantially facilitated by mathematical results relating speci-
fication constructors to some operations on logic programs. Such results are called
realization theorems. They can provide an implementor with a useful heuristic
guidance and the means to establish correctness of his programs. Several examples
of such theorems and their applications will be given in the following sections.

• At the last stage of the process, the lp-function π representing functional specifica-
tion f will be transferred into an efficient logic program Π computing (or approx-
imating) the entailment relation of π. Unlike π, the construction of Π will depend
significantly on the choice of query answering system used by the implementors.
For instance, the use of standard Prolog interpreter may require modification of π
which includes the cut operator of Prolog to avoid loops or to improve efficiency.
The use of XSB will avoid some of these problems but will require the choice of
predicates to be tabled, etc.

Space limitations preclude us from giving any serious comparison of our ap-
proach with other methodologies of representing knowledge. Moreover, we believe
that such a comparison can only be done when all of these methodologies are more
fully developed. Still a short remark is in order. At the moment, the specification
language most frequently used for the first formal refinement of a problem is probably
the language of first-order logic (FOL). As others before us we conjecture that FOL
is not fully adequate for our purpose. Its expressive power is insufficient to define
even fairly simple f-specifications such as transitive closure of database relations. It
also does not seem to be the best language for representing defaults, epistemic state-
ments, and other types of “common sense” knowledge. These observations are well
known and led to various extensions of FOL which allow nonmonotonic reasoning.
Our preference for a less powerful A-Prolog is similar to our preference of Modula 2
over ADA. Since, as was shown in [7,22], programs of A-Prolog can be viewed as
theories of Reiter’s default logic [40], we hope that those who prefer power over
simplicity can still benefit from this work. The next question to answer is “Why not
to use the language of logic programming during the first stage of the development
process?” What are the advantages of first formulating the problem in terms of func-

the purposes of this paper. Description of such a meta-interpreter build on top of SLDNF of Prolog
can be found in section 4. For more complicated programs, especially for those which have multiple
stable models, this interpreter will go into a loop or answer unknown to too many interesting queries.
Roughly speaking this happens because Prolog and XSB do not allow reasoning by cases. This type
of reasoning is incorporated in a more powerful system, called SLG [9], which was successfully used
to answer queries in the presence of multiple stable models. A different type of engine, [11,17,36],
are based on algorithms for computing stable models of programs without function symbols.

168 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

tional specifications? There are two reasons why we do that. The first advantage
of the language of f-specifications over A-Prolog is its simplicity. The construction
of f requires knowledge of a simple set-theoretic notation together with definitions
of a (hopefully small) collection of specification constructors. The specifier involved
at the first stage of the process does not need to know anything about the semantics
of A-Prolog. Another possible advantage of translating a natural language description
of a problem into an f-specification f is the ability to use the structure of f and the
corresponding realization theorems for reducing the construction of πf to the construc-
tion of simpler programs. One of the main goals of this paper is to demonstrate, by
way of example, how this can be achieved. Finally, we want to mention that in this
paper we are mainly interested in the first two stages of the development process. In
this sense our approach is complementary to the work on program development in
Prolog (see, for instance, [14]). (See, however, proposition 13.)

The paper is organized as follows. In the next two sections we review the
answer set semantics of logic programs and the notions of f-specification and lp-
function. In the next section we give a first example of applying our methodology to
solving a knowledge representation problem associated with a simple type of taxonomic
hierarchy. (This and other problems related to inheritance reasoning are commonly
used to test strengths and weaknesses of various nonmonotonic formalisms.) We start
with specifying the problem in terms of functional specifications, representing it by a
declarative logic program, and showing that this program can be correctly executed
by the Prolog interpreter. In the process we introduce a specification constructor,
called incremental extension, and give a realization theorem for it. The knowledge
representation problem discussed in this section assumes completeness of knowledge.
In the next section we consider the situation when this assumption is relaxed and our
knowledge of some relations from the domain of the problem becomes incomplete.
The new specification is obtained from the original one by applying a specification
constructor called input opening. We discuss the definition of this constructor, its
decomposition into two simpler constructors, interpolation and domain completion, and
the corresponding realization theorems. (These theorems were stated in [20] without
proofs, and hence their proofs are included in this paper.) Finally, in the last section,
we discuss one more knowledge representation problem defined in terms of another
specification constructor, called input extension. Somewhat surprisingly, the resulting
class of programs formalizes inheritance reasoning with incomplete information which
was not previously considered.

2. Logic programs

In this section we give a brief introduction to the answer set semantics for logic
programs with two kinds of negation [23].3 For a more detailed discussion see [5,31].

3 For programs without classical negation the answer set semantics coincides with the stable model
semantics of [21].

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 169

The language of a logic program, like a typed first-order language, is de-
termined by its signature σ, consisting of types (types(σ)), object constants for
each type τ (obj(τ ,σ)), and typed function and predicate constants (func(σ) and
pred(σ), respectively). Signature σ1 is a sub-signature of signature σ2 if types(σ1) ⊆
types(σ2), func(σ1) ⊆ func(σ2), pred(σ1) ⊆ pred(σ2), and for each type τ which
belongs to both signatures, obj(τ ,σ1) = obj(τ ,σ2); σ = σ1 ∪ σ2 if elements of σ
are unions of the corresponding elements of σ1 and σ2. Terms are built as in the
corresponding typed first-order language; positive literals (or atoms) have the form
p(t1, . . . , tn), where t’s are terms of proper types and p is a predicate symbol of ar-
ity n; negative literals are of the form ¬p(t1, . . . , tn). (Logical connective ¬ in the
context of logic programming is called “classical”, or “explicit”, or “strong” nega-
tion.) Literals of the form p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called contrary. By l
we denote a literal contrary to l. Literals and terms not containing variables are called
ground. The sets of all ground terms, atoms and literals over σ will be denoted by
terms(σ), atoms(σ) and lit(σ), respectively. For a set P of predicate symbols from σ,
atoms(P ,σ) (lit(P ,σ)) will denote the sets of ground atoms (literals) of σ formed with
predicate symbols from P . Consistent sets of ground literals over signature σ are
called states of σ and denoted by states(σ).

A rule is an expression of the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln, (1)

where n > 0, li’s are literals and not is a logical connective called negation as
failure [12,39].

A pair {σ,π} where σ is a signature and π is a collection of rules over σ is
called a logic program. (We often denote such pairs by their second element π. The
corresponding signature will be denoted by σ(π).)

If r is a rule of type (1) then head(r) = {l0}, pos(r) = {l1, . . . , lm}, neg(r) =
{lm+1, . . . , ln}. For any program π, head(π) =

⋃
r∈π head(r). Similarly, for pos and

neg. Sometimes, not li, . . . , not li+k will be denoted by not({li, . . . , li+k}).
Unless otherwise stated, we assume that l’s in rule (1) are ground. Rules with

variables will be used as a shorthand for the sets of their ground instantiations. Vari-
ables will be denoted by capital letters.

The answer set semantics of a logic program π assigns to π a collection of answer
sets – sets of ground literals over signature σ(π) of π corresponding to beliefs which
can be built by a rational reasoner on the basis of rules of π. Under this semantics the
rule (1) can be viewed as a constraint on such beliefs and is read as “if literals l1, . . . , lm
are believed to be true and there is no reason to believe that literals lm+1, . . . , ln are
true then the reasoner must believe l0”. We say that literal l ∈ lit(σ(π)) is true in an
answer set S of π if l ∈ S; l is false in S if l ∈ S; π entails l (π |= l) if l is true in
all answer sets of π. We say that π’s answer to a query l ∈ lit(σ(π)) is yes if π |= l,
no if π |= l, and unknown otherwise.

To give a definition of answer sets of logic programs, let us first consider programs
without negation as failure.

170 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

• The answer set of a program π not containing negation as failure not is the smallest
(in the sense of set-theoretic inclusion) subset S of lit(σ(π)) such that

(i) for any rule l0 ← l1, . . . , lm from π, if l1, . . . , lm ∈ S, then l0 ∈ S,

(ii) if S contains a pair of contrary literals, then S = lit(σ(π)).

It can easily be shown that every program π that does not contain negation as failure
has a unique answer set, which will be denoted by ans(π).

• Now let π be an arbitrary logic program without variables. For any set S of literals,
let πS be the logic program obtained from π by deleting

(i) each rule that has an occurrence of not l in its body with l ∈ S, and

(ii) all occurrences of not l in the bodies of the remaining rules.

Clearly, πS does not contain not, and hence its answer set is already defined. If this
answer set coincides with S, then we say that S is an answer set of π. In other words,
the answer sets of π are characterized by the equation

S = ans
(
πS
)
. (2)

A logic program is said to be consistent if it has a consistent answer set.4 It is not
difficult to show that any answer set of a consistent program is consistent.

We conclude our short introduction by presenting a theorem useful for computing
the set of consequences of logic programs. This process can be sometimes simplified
by “splitting” the program into parts. We say that a set U of literals splits a program
π if, for every rule r of π, pos(r) ∪ neg(r) ⊆ U whenever head(r) ∈ U . If U splits π
then the set of rules in π whose heads belong to U will be called the base of π (relative
to U). We denote the base of π by base(π,U). The rest of the program (called the
top of π) will be denoted by top(π,U). Whenever possible the reference to U will be
omitted.

Consider for instance a program π1 consisting of the rules

q(a)← not q(b), q(b)← not q(a), r(a)← q(a), r(a)← q(b).

Then U = {q(a), q(b)} is a splitting set of π1, base(π1,U) consists of the first two
rules while top(π1,U) consists of the last two.

Let U be a splitting set of a program π. For any set V ⊆ U , by red(π,V) we
denote the program obtained from top(π,U) by

(1) deleting each rule r such that pos(r) ∩ (U \ V) 6= ∅ or neg(r) ∩ V 6= ∅,
(2) replacing the body of each remaining rule r by pos(r) \ U ∪ not(neg(r) \ U).

Theorem 1 (Splitting set theorem, [32]). Let U be a splitting set of a program π.
A consistent set of literals is an answer set of π iff it can be represented in the form
S1∪S2, where S1 is an answer set of base(π,U) and S2 is an answer set of red(π,S1).

4 A set of literals is consistent if it does not contain contrary literals.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 171

The theorem suggests the following approach to computing consistent answer sets of a
program π which is split by some set U . First find all the answer sets of the program
base(π,U). For each such set S1, compute the program red(π,S1), and find all its
answer sets. For each such set S2 form a union S1 ∪ S2. The consistent unions found
in this way are the consistent answer sets of π. Consider, for instance, program π1

above. Then the program

q(a)← not q(b), q(b)← not q(a)

is the base of π1 with respect to U . It has answer sets S1 = {q(a)} and S2 = {q(b)}.
The corresponding reducts are

red(π1,S1) = red(π1,S2) = r(a)←

and, by the splitting set theorem, the answer sets of π1 are {q(a), r(a)} and {q(b), r(a)}.
In the context of logic programming, the splitting set theorem and its generalizations
first appeared in [32]. Similar results for autoepistemic logic can be found in [25].

3. F-specifications and lp-functions

In some cases a knowledge representation problem consists in representing a
(possibly partial) definition of new relations between objects of the problem domain
which is given in terms of previously known relations between these objects. Such a
definition can be mathematically described as a function f which maps states of an
input signature σi into the states of an output signature σo. The states of σi are called
input states. They contain all the currently available information about the old, given
relations. Similarly, the states of σo are called output states; f (X) contains all we
may know about defined relations given an input state X. We follow [25] and call a
triple consisting of such a function f together with input and output signatures σi(f)
and σo(f) a functional specification; dom(f) will denote the domain of f .5

The following example shows how a simple knowledge representation problem
can be refined in terms of f-specifications.

Example 2. Consider the following informal specification of a knowledge representa-
tion problem:

• Formalize the assertion “x has a PhD iff x is a faculty”. Given a complete list
of faculty your formalization should entail all the available information about PhD
degrees of people from this list. Use unary predicate constants faculty and phd.

5 This view is common in databases where one of the most important knowledge representation problems
consists in defining new relations (views) in terms of basic relations stored in the database tables.
Unlike our case however databases normally assume the close world assumption and hence only need
to represent positive information. As a result, views can be viewed as functions from sets of atoms
to sets of atoms.

172 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

Despite its simplicity, the above specification is slightly ambiguous. Its possible
refinements may depend on the form of representation of a “complete list of faculty”.
We look at two different representations of this list defined by two f-specifications f0

and g0. The specifications have the same signatures:

• input signature σi consisting of individual names, say, mike, john and mary and a
unary relation symbol faculty;

• output signature σo consisting of the same individual names and a unary predicate
symbol phd.

Function f0 is defined on complete states of σi.6 Obviously, for any X ∈ dom(f0)

f0(X) =
{

phd(c): faculty(c) ∈ X
}
∪
{
¬phd(c): ¬faculty(c) ∈ X

}
.

Similarly, function g0 is defined on sets of ground atoms of σi:

g0(X) =
{

phd(c): faculty(c) ∈ X
}
∪
{
¬phd(c): faculty(c) /∈ X

}
.

Making an early distinction between these two specifications of our informal
problem helps to eliminate possible difficulties which may appear later in the devel-
opment process.

Example 3. Now let us look at a slightly different informal specification. Assume
that the language of our domain is determined, as in example 2, by signatures σi

and σo but, unlike that example, the available information about faculty can be in-
complete. For instance, we may know that Mike is a faculty, John is not, but have
no relevant information about Mary. This can be represented by an incomplete set
of literals {faculty(mike),¬faculty(john)}. In general, the input of the corresponding
f-specification f̃0 consists of (possibly incomplete) states of σi and f̃0 can be defined
as follows:

f̃0(X) =
⋂

X̂∈c(X)

f0
(
X̂
)

where c(X) is the set of all complete supersets of X from dom(f0). Notice that the
new specification is defined in terms of f0 and can be viewed as an interpolation of
function f0 from complete to all input states (see section 5 for more details). It is
easy to see that f̃0 computes all possible information about PhD degrees which can be
obtained from X and f0.

To further refine the above f-specifications we will use the notion of lp-function
from [6].

Definition 4. A four-tuple π = {π,σi(π),σo(π), dom(π)} where

(1) π is a logic program (with some signature σ(π)),

6 A set X of literals over signature σ is called complete if for any l ∈ lit(σ), l ∈ X or l ∈ X.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 173

(2) σi(π),σo(π) are sub-signatures of σ(π) called input and output signatures of π,
respectively,

(3) dom(π) ⊆ states(σi(π))

is called lp-function if for any X ∈ dom(π) program π ∪ X is consistent, i.e., has a
consistent answer set.

For any X ∈ dom(π),

π(X)
def
=
{
l: l ∈ lit

(
σo(π)

)
,π ∪X |= l

}
.

We say that an lp-function π represents an f-specification f if π and f have the same
input and output signatures and domain and for any X ∈ dom(f), f (X) = π(X).

Let E be an inference engine which takes as an input a logic program π and a
ground literal l. We will say that an lp-function π is computable by E if for any query
l ∈ lit(σo) and any X ∈ dom(π), E(π ∪X, l) returns yes if l ∈ π(X), no if l ∈ π(X),
and unknown otherwise.

Example 5. It is easy to show that f-specification f0 from example 2 can be repre-
sented by lp-function πf0 with signature σ consisting of types, objects, and predicate
symbols of σi(f0) and predicate symbol phd and the rules:

phd(P)← faculty(P),
¬phd(P)←¬faculty(P).

}
πf0

The input and output signatures of πf0 are the same as those of f0 and dom(πf0) =
dom(f0). An alternative representation π′(f0) can also be given by replacing the rules
of πf0 by the rules

phd(P)← faculty(P),
¬phd(P)← not faculty(P).

}
π′f0

It is also easy to see that the restriction πg0 of π′f0
on the dom(g0) is an lp-function

representing g0.
Now let us consider f-specification f̃0 from example 3. One can show that the

lp-function πf̃0
whose rules are those of πf0 and signatures and domain are those of

f̃0, represents f̃0. This means that πf0 is elaboration tolerant with respect to allowing
new, incomplete inputs, i.e., the change of specification from f0 to f̃0 does not require
any changes in πf0. This is certainly not the case for the second representation of f0.
In this sense, πf0 is superior to π′f0

.
Since all the lp-functions above are (efficiently) computable by a slight modifi-

cation of the Prolog interpreter the refinement process stops here.7

7 Of course, by considering only ground queries we limit ourselves to a very restricted notion of
computability of lp-function f by inference engine E. It can of course be extended to allow queries
from σo(f) with variables but then the function πg0 will stop being computable due to floundering.
This again can be remedied by introducing types like person, degree, etc., and modifying our program

174 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

To complete this section we give several definitions and results which proved to
be useful for reasoning about lp-functions.

An lp-function π is called monotonic if for any X,Y from dom(π) such that
X ⊆ Y , π(X) ⊆ π(Y).

The absolute value of a literal l (symbolically, |l|) is l if l is positive, and l
otherwise.

Definition 6. Let π be a logic program with signature σ. A signing of π is a set
S ⊆ atoms(σ) such that

(1) for any rule (1) from π, either |l0|, . . . , |lm| ∈ S, |lm+1|, . . . , |ln| /∈ S or
|l0|, . . . , |lm| /∈ S, |lm+1|, . . . , |ln| ∈ S,

(2) for any atom l ∈ S, ¬l does not appear in π.

If a program has a signing, we say that it is signed [29,44]. The notion of signing
for finite logic programs without classical negation was introduced by Kunen [29], who
used it as a tool in his proof that, for a certain class of programs, two different semantics
of logic programs coincide. Turner in [44] extends the definition to the class of logic
programs with two kinds of negation. Obviously, programs without negation as failure
are signed with an empty signing.

Signed programs enjoy several important properties which make them attractive
from the standpoint of knowledge representation. In particular:

1. Signed programs without explicit negation are consistent. This is a special case
of a more general theorem by Fages [19].

2. If π is signed and consistent then the set of consequences of the program under
the answer set semantics coincides with its set of consequences under the well-
founded semantics [37,46]. Notice this result shows that interpreters, such as XSB,
which compute the well founded semantics of logic programs, can also be used
to compute the consequences of such programs under the answer set semantics.

We will however be especially interested in the following monotonicity theorem.

Theorem 7 (Monotonicity theorem, Turner). If an lp-function π has a signing S such
that S ∩ (lit(σi) ∪ lit(σo)) = ∅ then π is monotonic.

This result is a special case of a substantially more general result from [45].

Example 8. Consider an lp-function π2 with input signature σi = {{a, b, c}, {p, r}},
output signature σo = {{a, b, c}, {q}}, dom(π2) = states(σi) and logic program π2
consisting of the following rules:

q(X)← p(X), not ab(X),

¬q(X)← r(X),

ab(X)← not¬r(X).

π2

accordingly or by using a query answering system with constructive negation [8,38]. For the sake of
readability we will only consider ground queries.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 175

It is easy to see that lp-function π2 has a signing consisting of atoms formed by pred-
icate ab. The signing satisfies the condition of theorem 7, and hence π2 is monotonic.
It is worth noticing that π2 considered as a logic program is nonmonotonic. The ad-
dition of extra rules (or facts) about ab can force us to withdraw previous conclusions
about q. Monotonicity is however preserved for inputs from σi.

4. An example: is-nets on closed domains

In this section, we illustrate the notions of functional specification and lp-function
by using them to solve a knowledge representation problem associated with a simple
type of taxonomic hierarchy, called is-nets. The problem of specifying and representing
is-nets is commonly used to test strengths and weaknesses of various nonmonotonic
formalisms. Logic programming approaches to this problem (which assume complete-
ness of its domain) can be found in [1,33]. Modifications of this example will be used
throughout the rest of the paper.

An is-net N can be viewed as a combination of graphs Ns and Nd where Ns

describes the (proper) subclass relation between classes and Nd consists of positive
and negative defeasible links connecting classes with properties. The latter represent
defaults: “elements of class c normally satisfy (do not satisfy) property p”. As usual
we assume that Ns is acyclic and that a class c and a property p can be connected by
at most one link. We use (possibly indexed) letters o, c, p, and d to denote objects,
classes, properties and defaults respectively. Figure 1(a) gives a pictorial representation
of a net. Here c1, . . . , c5 are classes and p is a property. Links from c5 to p and from
c4 to p represent positive and negative defaults while the other links represent the
subclass relationship.

There are many knowledge representation problems which can be associated with
a net N . We start with the simplest one, when N is viewed as an informal specification
of a function fN which takes as an input the links of N together with a collection I of
positive links from objects to classes (see figure 1(b)). We denote the resulting graph

Figure 1. A simple taxonomic hierarchy.

176 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

by N (I) and assume that for any object o and class c from N (I), o is an element
of c iff N (I) contains a path from o to c. Similarly, c1 is a (proper) subclass of c2

iff there is a path from c1 to c2. Given N (I), the function fN computes all possible
conclusions about relations subclass, is and has which a rational agent can obtain from
this net.8 Our ability to represent an input of fN by positive links only is justified by
our assumption that, at least with respect to objects included in N (I), the net N (I)
contains complete information about relations is and subclass. Accordingly, we call
fN a closed domain specification of N .

In what follows we will be interested in applying our methodology for providing
a rigorous specification of this function and for finding its logic programming repre-
sentation. Later we consider more complex knowledge representation problems which
can also be associated with N .

4.1. Specifying the problem

We start by playing the role of a specifier and give a precise definition of function
fN using the language of f-specifications. To this goal, we first fix three collections
of object constants for objects, classes and properties of the nets. The corresponding
types will be denoted by τo, τc, and τp. Constants of the fourth type (τd) will be used
to name the nets default links. Next we identify graphs Ns and Nd with the collection
of literals of the form subclass0(c1, c2), default(d, c, p, +), and default(d, c, p,−) which
correspond to the links of these graphs. (The last parameter in default is used to
distinguish positive and negative links.) A set I of links from objects to classes will
be identified with the collection of the corresponding statements of the form is0(o, c).
Function fN will be constructed as a combination of three simpler functions fs, fi and
fd:

(a) An f-specification fs will take as an input a net Ns – a collection of atoms
subclass0(ci, cj) where ci, cj are classes connected by a link of Ns and return
the complete set of literals, formed by the predicate symbol subclass, defining
the transitive closure of the input; both, input and output signatures of fs have
the same object constants of the type τc, and predicate symbols subclass0 and
subclass, respectively.

(b) An f-specification fi takes as an input a complete set of subclass-literals (repre-
senting transitive and asymmetric relations subclass) together with the set I of
atoms is0(o, c) representing links from objects to classes; fi returns the complete
set of is-literals representing the membership relation defined by the input. In-
put and output signatures of fi have object constants of two types, τo and τc;
pred(σi(fi)) = {is0, subclass} while pred(σo(fi)) = {is}.

(c) We also need a more complex f-specification fd defined as follows:

8 is(o, c) stands for “object o is an element of class c”; has(o, p) means that “object o has property p”.
Both predicates are typed.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 177

• The input signature σi(fd) of fd consists of object constants of three types, τo, τc,
and τd and predicate symbols is, subclass, and default. The output signature
σo(fd) consists of object constants of the types τo and τp and predicate symbol
has.

• dom(fd) consists of states of σi(fd) which are complete with respect to is and
subclass and satisfy the constraints:9

← is(o, c1),
subclass(c1, c2),
¬is(o, c2).

← subclass(c, c).
← default(d, c, p, +),

default(d, c, p,−).

• For any X ∈ dom(fd), has(o, p) ∈ fd(X) iff there are d1 and c1 such that

(i) default(d1, c1, p, +) ∈ X,

(ii) is(o, c1) ∈ X,

(iii) for any default(d2, c2, p,−) ∈ X,

¬is(o, c2) ∈ X or subclass(c1, c2) ∈ X.

This condition corresponds to the Inheritance Principle [43] which says that
more specific defaults override less specific ones.

Similarly for ¬has(o, p).

(d) To complete the construction of fN we will need the following notation: for any
α ⊆ pred(σ) and X ⊂ lit(σ) by [X]α we denote the set of literals from X formed
by predicate symbols from α.
Now the f-specification fN will be defined as follows:

• the input signature of fN consists of object constants of the types τo, τc, τd and
predicate symbols is0, subclass0, default;

• the output signature of fN consists of objects constants of the types τo, τc, τp

and predicate symbols subclass, is, has;

• dom(fN) = {X: X ⊆ atoms(σi(fN))};10

9 A constraint is a rule of the form ← ∆ where ∆ is a list of literals from some signature σ. A set
X ∈ states(σ) satisfies the constraint ← ∆ if ∆ 6⊆ X. X satisfies a collection C of constraints if it
satisfies every constraint in C.

10 The domain of fN can be alternatively represented by complete sets of literals of σi(fN). The resulting
specification will be isomorphic to fN and used when convenient.

178 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

• fN is defined by combining functions fs, fi and fd as follows:

Y0(X) = fs
(
[X]subclass0

)
,

Y1(X) = fi
(
Y0(X) ∪ [X]is0

)
,

Y2(X) = fd
(
Y0(X) ∪ Y1(X) ∪ [X]default

)
,

fN (X) = Y0(X) ∪ Y1(X) ∪ Y2(X).

Note that this definition does not require any sophisticated mathematics. In particular,
it presupposes no knowledge of logic programming.

It is worth noticing that we can view fN as being constructed from f-specifications
fd, fs and fi by a specification constructor called incremental extension [26]. Since
this fact will be useful later in our search for an lp-function representing fN we recall
the corresponding definition.11 For simplicity we only consider signatures which agree
on their common types, i.e., if τ ∈ σ1 ∩ σ2 then obj(τ ,σ1) = obj(τ ,σ2).

Definition 9. The f-specification f ◦ g is called the incremental extension of g by f if
it satisfies the following conditions:

(1) σi(f ◦ g) = σi(g) ∪ σi(f),

(2) σo(f ◦ g) = σo(g) ∪ σo(f),

(3) X ∈ dom(f ◦ g) if
[X]pred(σi(g)) ∈ dom(g) and [X]pred(σi(f))\pred(σo(g)) ∪ g([X]pred(σi(g))) ∈ dom(f),

(4) f ◦ g(X) = f ([X]pred(σi(f))\pred(σo(g)) ∪ g([X]pred(σi(g)))) ∪ g([X]pred(σi(g))).

It is easy to see that the definition of fN above can be rewritten as

fN = fd ◦ (fi ◦ fs). (3)

4.2. Building the declarative representation

Now let us assume the role of an implementor, who just received the above
definition of fN and is confronted with the task of building a computable lp-function
representing fN . (Recall that we will only be interested in getting answers to ground
queries formed by predicates subclass, is, and has.) According to our methodology,
we will first ignore the computability requirement and concentrate on correctness of
our representation viewed as a declarative logic program.

11 The definition we give in this paper actually extends that in [26].

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 179

We start with a representation for fs. Since Ns is acyclic, it is easy to show that
fs can be represented by the program πs:

subclass(C1,C2)← subclass0(C1,C2).

subclass(C1,C2)← subclass0(C1,C3),

subclass(C3,C2).

¬subclass(C1,C2)← not subclass(C1,C2).

πs

It is equally easy to show that fi can be represented by an lp-function

is(O,C)← is0(O,C).

is(O,C2)← is0(O,C1),

subclass(C1,C2).

¬is(O,C)← not is(O,C).

πi

In our next step we need to find a representation πfi◦fs of the specification fi ◦ fs.
For simple lp-functions like πi and πs we can directly check that this can be done by
combining the rules of πi and πs. As was shown in [25], however, this is not always
the case, i.e., there are f-specifications f , g represented by lp-functions πf and πg such
that πf ∪ πg does not represent f ◦ g. The following realization theorem (which is
a slight modification of a similar theorem from [25]) is useful for eliminating this
possibility.

Theorem 10 (Realization theorem for incremental extension). Let f and g be
f-specifications represented by lp-functions πf and πg, respectively, and let πf◦g =
πf ∪ πg.12 A 4-tuple πf◦g = {πf◦g,σi(f ◦ g),σo(f ◦ g), dom(f ◦ g)} is an lp-function
representing f ◦ g if πf and πg satisfy the following conditions:

(1) for any X ∈ dom(πg) and any answer sets A1 and A2 of πg ∪X,
A1 ∩ lit(σo(πg)) = A2 ∩ lit(σo(πg)),

(2) lit(σ(πf)) ∩ lit(σ(πg)) ⊆ lit(σo(πg)),

(3) head(πf) ∩ lit(σ(πg)) = ∅.

It is easy to see that functions πi and πs defined above satisfy the conditions of
the theorem, which justifies our construction.

12 Recall that π = π1 ∪ π2 if σ(π) = σ(π1)∪ σ(π2) and the rules of πf◦g consist of rules of πf and πg .
Note that this definition is applicable to programs with and without variables.

180 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

To continue our search for an lp-function representing the specification fN we need to
find a representation of fd. To this goal let us consider a program πd:

has(X,P)← default(D,C,P , +),
is(X,C),
not exceptional(X,D, +).

¬has(X,P)← default(D,C,P ,−),
is(X,C),
not exceptional(X,D,−).

exception(E,D1, +)← default(D1,C,P , +),
default(D2,E,P ,−),
not subclass(C,E).

exception(E,D1,−)← default(D1,C,P ,−),
default(D2,E,P , +),
not subclass(C,E).

exceptional(X,D,S)← exception(E,D,S),
is(X,E).

πd

The signature of this program is obtained from σfd by adding predicate constants
exception and exceptional. The statement exception(e, d, +) reads as “the positive de-
fault d is not applicable to elements of the class e”; the statement exceptional(o, d, +)
states that “the positive default d is not applicable to the object o of the domain”;
similarly for negative defaults. The program uses a standard logic programming repre-
sentation of defaults and their exceptions (see, for instance, [5]). We would like πd to
be viewed as an lp-function whose input and output signatures are the same as those
of fd and whose domain is dom(fd), i.e., we need the following:

Proposition 11. For any X ∈ dom(fd), program πd ∪X is consistent.

Proof (sketch). A program πd∪X can be viewed as a logic program Π without classi-
cal negation in a language which contains new predicate symbols ¬is,¬subclass,¬has.
This program is stratified [2] and has therefore a unique answer set A [21]. As shown
in [22], A is also the unique answer set of πd ∪ X iff A does not contain contrary
literals. Since literal l belongs to an answer set A of a program Π (not containing
classical negation) iff there is a rule in Π whose head is l and whose body is sat-
isfied by A [34], we need to show that there are no rules r1 and r2 with the heads
has(o, p),¬has(o, p) whose bodies are satisfied by A. Suppose that there are c1 and
c2 such that default(d1, c1, p, +) ∈ A, default(d2, c2, p,−) ∈ A, is(x, c1) ∈ A and
is(x, c2) ∈ A. Since a class c and property p can be connected by at most one link,
c1 6= c2. Since the net Ns is acyclic, subclass(c1, c2) /∈ A or subclass(c2, c1) /∈ A.
Therefore, exceptional(x, d1, +) or exceptional(x, d2,−) is also in A, i.e., at least one
of the rules r1, r2 has a body which is not satisfied by A. �

Now we can show correctness of our construction.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 181

Proposition 12. Lp-function πd represents fd, i.e., for any X ∈ dom(fd), πd(X) =
fd(X).

Proof (sketch). In the previous proof we showed that πd ∪X has a unique consistent
answer set. Let us denote it by A.

Since a literal l belongs to a consistent answer set A of the program iff there is
a rule with l in the head whose body is satisfied by A, we have that has(o, c1) ∈ A iff
there are literals default(d1, c1, p, +), is(o, c1) ∈ A and exceptional(o, d1, +) /∈ A. This
happens iff default(d1, c1, p, +) ∈ Nd, is(o, c1) ∈ X and for any default(d2, c2, p,−) ∈
Nd, is(o, c2) /∈ X or subclass(c1, c2) ∈ Ns. Since X is complete, is(o, c2) /∈ X iff
¬is(o, c2) ∈ X and therefore, has(o, p) ∈ πd(X) iff has(o, p) ∈ f (X). A similar
argument works for negative literals. �

To complete our search for a representation of fN we use the construction from
theorem 10. It is easy to see that programs πfi◦fs and πd satisfy the conditions of the
theorem and hence πfN = {πfN ,σi(fN),σo(fN), dom(fN)} where

πfN = πs ∪ πi ∪ πd (4)

represents fN .

4.3. Answering queries

Now we are ready for the implementation stage of our design. This stage crucially
depends on the choice of inference engine we use to answer queries to πfN . Since
Prolog is the most popular logic programming language to date, we base this engine
on the Prolog interpreter. To do that we must first replace all occurrences of negative
literals ¬p(t1, . . . , tn) in πfN by np(t1, . . . , tn). The resulting program can be viewed
as a Prolog program with variables. We consider an inference engine A defined as a
simple meta-interpreter which takes a query q and a program π as an input. If q is an
atom, A makes two calls to the Prolog interpreter; one with parameters q and π and
another with parameters nq,π. If the first query is answered yes, the meta-interpreter
A returns yes; if yes is the answer to the second query, A returns no; otherwise the
answer is unknown. Similarly, if q is a negative literal. The meta-interpreter is defined
for programs which do not entail q and ¬q (for any query q).

Proposition 13. The lp-function πfN is computable by A.

Proof (sketch). Let us start by listing the questions which need to be addressed to
prove this proposition. First, it is well known that, for some programs, the Prolog
interpreter may produce unsound results. This may happen because of the absence
of the occur-check which, in some cases, is necessary for soundness of the SLDNF
resolution, or because the interpreter may flounder, i.e., may select for resolution a goal
of the form not q where q contains an uninstantiated variable. Second, the interpreter

182 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

may fail to terminate. Even if we show that for any X ∈ dom(fN) and ground query q,
the interpreter which takes πfN ∪X and q as an input terminates, does not flounder,
and does not require the occur-check, the soundness of our result is guaranteed only
with respect to the unsorted grounding of πfN , i.e., the grounding of πfN by terms of
signature σu obtained from signature σ(fN) by removing types and type information.
In what follows we briefly discuss how these questions can be addressed.

(a) We show that for any X ∈ dom(πfN) and query q ∈ lit(σo(fN)) the program
πfN ∪ X ∪ {← q} is occur-check free, i.e., the unification algorithm used by
Prolog interpreters never selects a step requiring the occur-check. To prove this
we need a notion of mode [13] – a function assigning + or − to each parameter
of a predicate symbol p from the language of program π. If the parameter in a
position i of p is assigned +, then i is called an input position. Otherwise it is
called an output position. In our further discussion we need the following mode
m0 of the program πfN :

has(+, +)

¬has(+, +)

default(−,−,−,−)

is0(−,−)

is(+, +)

¬is(+, +)

subclass0(−,−)

subclass(+, +)

¬subclass(+, +)

exceptional(+, +, +)

exception(−,−,−)

A rule r of a program π is called well-moded with respect to a mode m if:

(i) Every variable occurring in an input position of a literal l from the body of r
occurs either in an input position of the head or in an output position of some
literal from the body that precedes l.

(ii) Every variable occurring in an output position of the head occurs in an input
position of the head, or in an output position of a literal from the body.

A program π is well-moded with respect to m if all its rules are. It is not difficult
to check that the program πfN ∪X is well-moded with respect to mode m0.
Apt and Pellegrini in [4] showed that if a program π is well-moded with respect
to some mode m and there is no rule in π whose head contains more than one
occurrence of the same variable in its output positions then π is occur-check free
with respect to any ground query. The mode m0 satisfies these conditions and
therefore answering query q to πfN ∪X does not require the occur-check.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 183

(b) To prove that a query q ∈ lit(σo(fN)) to πfN ∪ X does not flounder we use
another theorem from [4,42]: if program π is well-moded with respect to some
mode assignment m and all predicate symbols occurring in π under not are moded
completely by input then a ground query to π does not flounder. Again, the mode
m0 satisfies this property. From (a) and (b) we can conclude that if the Prolog
interpreter terminates on query q to program π then there is an SLDNF resolution
derivation of q from π.

(c) The termination of πfN ∪ X follows from [3] where the authors gave a notion
of acceptable program and proved that for such programs the Prolog interpreter
terminates on ground queries. It is easy to check that πfN ∪X is acceptable.

(d) Let gr(π,σ) denote the set of all ground instantiations of π by ground terms of σ.
From soundness of SLDNF resolution with respect to stable model semantics of
logic programs we can now conclude that, given a query q ∈ lit(σo(fN)) and the
program πfN ∪X, the Prolog interpreter answers yes iff gr(πfN ,σu(fN))∪X |= q.
We need to show that gr(πfN ,σu(fN)) ∪ X |= q iff gr(πfN ,σ(fN)) ∪ X |= q.
In [35] McCain and Turner showed that to guarantee this property we need to check
that πfN is stable and predicate-order-consistent. The notion of stability is based
on the program having a mode satisfying certain properties. It is easy to check
that the mode m0 defined above satisfies these conditions. The predicate-order-
consistency of this program follows immediately from the absence of function
symbols and the absence of negative edges from a predicate symbol to itself in
the dependency graph of πfN . �

5. Opening closed domain specifications

In this section we introduce another knowledge representation problem associated
with is-nets and demonstrate how a specification constructor, called input opening, can
be used to specify and represent this problem.

5.1. Specifying the problem

So far we have assumed that net N (I) contains complete information about
relations default, subclass and is. In the process of development and modification of
the system this assumption may become too strong and the specifier may decide to
limit it to some of the relations or even to completely remove it from the specification.
In this section we will consider a case when information about defaults and subclasses
is still complete but information about the membership relation can be incomplete.
Pictorially, the input to a net will be represented by positive and negative links from
objects to classes (see figure 1(c)). These links will be recorded by literals of the form
is(o, c) and ¬is(o, c). (Notice that here we use is instead of is0 which was used in
the previous specification. This change is not essential and is done only to simplify
the presentation.) Obviously, not any collection I of such links is consistent with our

184 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

interpretation of the net N . To ensure consistency I must not contain contrary literals,
and the is and subclass relations defined by N (I) must satisfy the constraint:

← is(o, c1),

subclass(c1, c2),

¬is(o, c2).

(5)

Now the net N can be viewed as an informal specification of the function f◦N which
takes as an input the links of N together with I ∈ lit(is) and returns all conclusions
about relations subclass, is and has which a rational agent can obtain from N and I .
(Such a function f◦N will be called the open domain specification of N .) The problem
is to precisely define the set of all such conclusions. To do that we use the represen-
tation of N and functions fs and fd from the previous section. Function fs remains
unchanged; fd however needs to be modified since we do not necessarily have enough
information to provide it with input complete with respect to is. To modify fd the
specifier may use a specification constructor called input opening which removes the
closed world assumption from (some or all) input predicates of a specification. To
define this constructor we first need the following terminology.

Let D be a collection of states over some signature σ and let α ⊆ pred(σ).
Predicates from α are called open; the other predicates from pred(σ) are called closed.
A state X of σ is called an α-state if for any l ∈ lit(pred(σ \ α)), l ∈ X or l ∈ X.
The set of all α-states of σ will be denoted by α-states(σ). A set X ∈ states(σ) is
called D-consistent if there is X̂ ∈ D such that X ⊆ X̂; X̂ is called a D-cover of X.

For instance, in our example the only open predicate of σi(fd) will be is; D will
be the set of all possible complete inputs X to fd such that

(i) [X]subclass,default = N ∪N , where N ⊆ atoms(default, subclass) which represents
the net N and

N =
{
¬l: l ∈ atoms(default, subclass) ∧ l /∈ N

}
,

(ii) X satisfies the constraint (5).

It is easy to see that for the net N from figure 1(c) the set N ∪ N ∪ {is(o1, c1),
is(o2, c2)} is D-consistent while N ∪N ∪ {is(o1, c1), is(o2, c2),¬is(o2, c3)} is not.

The set of all D-covers of a set X is denoted by c(D,X). The set of all
D-consistent α-states of σ is called the α-interior of D and is denoted by Dα. An
f-specification f defined on a collection of complete states of σi(f) is called closed
domain specification.

Definition 14 (Input opening). Let f be a closed domain specification with domain
D and α ⊆ pred(σ(f)). An f-specification fα is called the input opening of f with
respect to α if

σi
(
fα
)

= σi(f), σo
(
fα
)

= σi(f) ∪ σo(f), (6)

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 185

dom
(
fα
)

= Dα, (7)

fα(X) =
⋂

X̂∈c(D,X)

f
(
X̂
)
∪

⋂
X̂∈c(D,X)

X̂. (8)

The open domain f-specification f◦N of a net N can be defined as

f◦N = fαd ◦ fs. (9)

As was shown in [20] the input opening fα of f can be further decomposed using
two simpler specification constructors called interpolation and domain completion. To
define these constructors we need the following definitions.

Definition 15. A set X ∈ states(σ) is called maximally informative with respect to a
set D ⊆ states(σ) if X is D-consistent and

X =
⋂

X̂∈c(D,X)

X̂. (10)

Consider, for instance, the net N from figure 1(b). The set

Ns ∪N s ∪
{

is(o1, c1), is(o1, c3), is(o1, c5), is(o2, c2), is(o2, c3), is(o2, c5)
}

is maximally informative with respect to the set of all complete input states of N ,
while the set

Ns ∪N s ∪
{

is(o1, c1), is(o2, c2)
}

is not.

Definition 16 (Interpolation). Let f be a closed domain f-specification with domain D
and α ⊆ pred(σi(f)). By D̃ we denote the set of all α-states of σi(f) which are
maximally informative with respect to D. F-specification f̃α with the same signatures
as f and the domain D̃ is called the interpolation of f if

f̃α(X) =
⋂

X̂∈c(D,X)

f
(
X̂
)
. (11)

This is a slight generalization of the notion of interpolation introduced in [6],
where the authors only considered interpolations of functions defined by general logic
programs.

Definition 17 (Domain completion). Let D be a collection of complete states over
signature σ and α ⊆ pred(σ). The domain completion of D with respect to α is a
function f̃αD which maps D-consistent α-states of σ into their maximally informative
supersets.

186 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

The following proposition follows almost immediately from the definitions.

Proposition 18. For any closed domain f-specification f with domain D,

fα = f̃α ◦ f̃αD. (12)

Proof. First note that by definition of fα and f̃αD, X ∈ dom(fα) iff X ∈ Dα. Let
X ∈ Dα and Y = f̃αD(X). By definition of f̃αD and f̃α, Y ∈ dom(f̃α). By definition
of incremental extension, f̃α ◦ f̃αD(X) = Y ∪ f̃α(Y). Moreover, by definition of
f̃α, f̃α(Y) =

⋂
X̂∈c(D,Y)

f (X̂). Clearly, c(D,Y) = c(D,X) and hence f̃α(Y) =⋂
X̂∈c(D,X)

f (X̂). Finally, by definition of domain completion, fα(X) = f̃α◦f̃αD(X). �

From proposition 18 and equation (9) we have that the open domain specification
f◦N can be given by equation

f◦N = g̃α ◦ g̃αD ◦ fs, (13)

where g = fd, α = {is} and D = dom(fd).

5.2. Realization theorems for domain completion and interpolation

Equation (13) above suggests that a representation for f◦N can be constructed
from lp-functions representing g̃α and g̃αD . In the construction of these functions we
will be aided by realization theorems for domain completions and interpolations.

5.3. Domain completion

Let C be a collection of constraints over signature σ, α ⊆ pred(σ), and D be a
collection of complete states of σ satisfying C. We will be interested in representing
the domain completion of D with respect to α. Such a representation is especially
simple for constraints which are binary with respect to α, i.e., constraints whose
bodies contain exactly two literals from lit(α). By the disjunctive image d(c) of a
binary constraint

c =← l1, l2, Γ (14)

where l1, l2 ∈ lit(α) we mean the disjunction l1 ∨ l2; by d(C) we denote the set of
disjunctive images of constraints from C. A set C of binary constraints is said to be
indefinite if there is no l ∈ lit(σ) such that d(C) |= l or d(C) |= l.

Notice that the set of constraints {← p, q;← ¬p, q} (where p, q ∈ α) is not
indefinite.

Let π̃D be a program obtained from C by replacing each constraint ← l1, l2, Γ
by the rules

l1← l2, Γ,

l2← l1, Γ.

}
π̃D

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 187

Theorem 19 (Realization theorem for domain completion). Let C be a collection of
binary constraints over signature σ, α ⊆ pred(σ) and D a collection of complete states
of σ satisfying C. If C is indefinite then a four-tuple {π̃D,σ,σ,Dα} is an lp-function
which represents the domain completion f̃αD of D.

In the proof of this theorem, which appears below, we use the following lemmas.

Lemma 20. Let X ∈ Dα. Then for any X̂ ∈ c(D,X) there is a set A ⊆ X̂ which is
the answer set of π̃D ∪X.

Proof. Since X ∈ Dα we have that c(D,X) is not empty. Let X̂ ∈ c(D,X). By
definition of c(D,X), X̂ is complete and satisfies the constraints from C. This implies
that X̂ is closed under the rules of π̃D. Consider a (possibly infinite) sequence Xi of
sets of literals such that

• X0 = X̂,

• Xi+1 is a proper subset of Xi, which contains X and is closed under the rules of
π̃D.

Let A =
⋂
Xi. A contains X and is closed under the rules of π̃D. (Suppose l1 ← l2, Γ

is a rule from π̃D and Γ, l2 ∈ A. Then, for every i, l2, Γ ∈ Xi. Since Xi is closed
under the rules, l1 is also in Xi and hence in A). Obviously, there is no smaller set
of literals closed under π̃D ∪X, i.e., A is one of its answer sets. Since our program
does not contain negation as failure, A is its only answer set. �

The following corollary follows immediately from this lemma.

Corollary 21. For all X ∈ Dα,

• π̃D ∪X is consistent,

• π̃D(X) ⊆
⋂
X̂∈c(D,X)

X̂.

Lemma 22. If X ∈ Dα, then for every X̂ ∈ c(D,X), π̃D(X̂) = X̂ .

Proof. By definition of c(D,X), X̂ is consistent. Thus to prove the lemma it only
remains to show that X̂ is closed under the rules of π̃D. Let l ← l′, Γ be any rule in
π̃D and assume that Γ, l′ ∈ X̂. By definition of π̃D there is a constraint ← l, l′, Γ ∈ C.
Hence l /∈ X̂. By definition of D, X̂ is complete and therefore l ∈ X̂. �

Lemma 23. For all X ∈ Dα, π̃D(X) ⊇
⋂
X̂∈c(D,X)

X̂.

188 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

Proof. Consider an arbitrary X ∈ Dα and suppose that the lemma is false, i.e., that
there is a literal l such that

l ∈
⋂

X̂∈c(D,X)

X̂ but l /∈ π̃D(X). (15)

By lemma 22, the above is equivalent to

l ∈
⋂

X̂∈c(D,X)

π̃D
(
X̂
)

but l /∈ π̃D(X). (16)

We will first show that, under this assumption,

l /∈ π̃D(X). (17)

Suppose it does, i.e., l ∈ π̃D(X). Then, since X ∈ Dα, there is X̂ ∈ D containing
X. Since π̃D does not contain negation as failure, we have that

π̃D(X) ⊆ π̃D
(
X̂
)
.

This implies that l ∈ π̃D(X̂) which contradicts assumption (16). Hence (17) holds.
Now we will construct a set Z ∈ c(D,X) containing l. By corollary 21, π̃D(X)

is consistent. Since it contains no negation as failure it has exactly one answer set,
say, A. Let

C ′ = {← l1, l2: ← l1, l2, Γ ∈ C, Γ ⊆ A},

P1 =
{
li: li ∈ π̃D(X) or li ∈ π̃D(X)

}
, and

P2 = lit(α) \ P1.

Let C1 be a collection of constraints from C ′ such that l1 or l2 is in A, and let
C2 = C ′ \ C1.

Notice that no literal li occurring in constraints from C2 belongs to P1. (If it
were the case then we would have that li ∈ A or li ∈ A. The former is impossible
since it would place the constraint containing this literal into C1. The latter is also
impossible since in this case the second literal from this constraint would be falsified
by A, again placing it in C1.) By construction, P2 is closed under ¬, i.e., for any
li ∈ lit(σ) if li ∈ P2 then so is li. This implies that if li belongs to a constraint of C2

then li, li ∈ P2 and, therefore, interpretations of C2 can be viewed as complete and
consistent sets of literals from P2. From (16) and (17) we have that l ∈ P2. Since
C is indefinite so is C2 and therefore there is an interpretation B of C2 which makes
d(C2) true and l false. Now let

Z = A ∪B.
To show that Z is complete consider two cases: If li /∈ lit(α) then, since X ∈ Dα,
we have that li ∈ X or li ∈ X and hence either li or li is in A. Otherwise, li ∈ P1

or li ∈ P2. If li ∈ P1 then, by definition of P1, li ∈ A or li ∈ A. For li ∈ P2
completeness follows from the construction of B.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 189

Consistency follows from consistency of A and B and the fact that if li ∈ B
then li /∈ A.

It is also easy to check that, by construction, Z satisfies the constraints C and
hence, Z ∈ c(D,X). This contradicts our assumption that l ∈

⋂
X̂∈c(D,X)

X̂ and
therefore the lemma holds. �

Proof of theorem 19. We need to show that for all X ∈ Dα, f̃αD(X) = π̃D(X). By
definition of domain completion, this is equivalent to

π̃D(X) =
⋂

X̂∈c(D,X)

X̂

which follows immediately from corollary 21 and lemma 23. �

5.4. Interpolation

Now we discuss a realization theorem for interpolation of f-specifications. Let
σ be a signature, α ⊆ pred(σ), and D be a collection of complete α-states of σ.
Function f defined on the interior Dα of D is called separable if⋂

X̂∈c(D,X)

f (X̂) ⊆ f (X)

or, equivalently, if for any X ∈ dom(f) and any output literal l such that l /∈ f (X)
there is X̂ ∈ c(D,X) such that l /∈ f (X̂).

The following propositions give simple sufficient conditions for separability
which may help to better understand this notion.

Proposition 24. Let D be the set of complete states over some signature σi, α =
pred(σi), and let π be an lp-function defined on Dα = states(σi), such that

1. The sets of input and output predicates of π are disjoint and input literals do not
belong to the heads of π.

2. For any l ∈ σi, l /∈ lit(π) or l /∈ lit(π). (Here by lit(π) we mean the collection of
all literals which occur in the rules of the ground instantiation of π.)

Then π is separable.

Proof (sketch). Let X ∈ dom(π) and consider the set

X∗=X ∪
{
l: l /∈ X, l ∈ lit(π)

}
∪
{
l: l ∈ atoms(σi), ¬l /∈ X, l /∈ lit(π), ¬l /∈ lit(π)

}
.

By condition (2), X∗ is consistent. Since it is also complete by construction we have
that X∗ ∈ dom(π). By condition (1) lit(σi) is a splitting set of programs π ∪X and
π ∪ X∗. By the splitting set theorem and condition (1) we have that for any output

190 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

literal l, l ∈ π(X) iff red(π,X) |= l and l ∈ π(X∗) iff red(π,X∗) |= l. But by
construction of X∗ and the definition of red, red(π,X) = red(π,X∗), hence l ∈ π(X)
iff l ∈ π(X∗) and therefore, π is separable. �

The next example shows that the last condition is essential.

Example 25. Let σi be a signature consisting of object constant a and predicate con-
stant p, and consider D = {{p(a)}, {¬p(a)}} and a function f1 defined on Dα by the
program

q(a)← p(a)

q(a)← ¬p(a)

where σo(f1) consists of a and q. Let X = ∅. Obviously, f1(X) = ∅ while⋂
X̂∈c(D,X)

f1(X̂) = {q(a)} and hence f1 is not separable.

In some cases, to establish separability of an lp-function π it is useful to represent
π as the union of its independent components and to reduce the question of separability
of π to separability of these components. This can be done in the following way: Let
π be an lp-function with input signature σi and output signature σo. We assume
that the input literals of π do not belong to the heads of rules of π. We say that π
is decomposable into independent components π0, . . . ,πn if π = π0 ∪ · · · ∪ πn and
lit(πm) ∩ lit(πk) ⊆ lit(σi) for any k 6= m.

Proposition 26. Let π0, . . . ,πn be independent components of lp-function π. Then:

(i) for any 0 6 k 6 n, four-tuple {πk,σi,σo, dom(π)} is an lp-function,

(ii) if πk is separable for any 0 6 k 6 n then so is π.

Proof. The proposition follows immediately from the splitting set theorem and defi-
nition of separability. �

Example 27. Consider σ,α and D from example 25 and let function f2 with the
output signature consisting of a, q1 and q2 be defined by a program

(1) q1(a)← p(a),

(2) q2(a)← ¬p(a).

Obviously, π can be decomposed into independent components π1 and π2 consisting
of rules (1) and (2), respectively. By proposition 24, π1 and π2 are separable, and
hence, by proposition 26, so is π.

The following simple observation proves to be useful for constructing interpola-
tions.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 191

Theorem 28 (Realization theorem for interpolation). Let f be a closed domain specifi-
cation with domain D represented by an lp-function π and let π̃ be the result of replac-
ing some occurrences of input literals l in pos(π) by not l. If {π̃,σi(f),σo(f), dom(f̃)}
is a separable and monotonic lp-function then it represents the interpolation f̃ of f .

Proof. Let π̃ be a separable and monotonic lp-function. To show that it represents
f̃ , we need to show that

π̃(X) =
⋂

X̂∈c(D,X)

π
(
X̂
)
.

From the separability of π̃ we have one direction, namely that⋂
X̂∈c(D,X)

π
(
X̂
)
⊆ π̃(X).

By monotonicity, if X ⊆ X̂ , then π̃(X) ⊆ π̃(X̂). Hence,

π̃(X) ⊆
⋂

X̂∈c(D,X)

π̃
(
X̂
)
.

Clearly, for any complete set X̂, π̃(X̂) = π(X̂). Therefore,

π̃(X) ⊆
⋂

X̂∈c(D,X)

π
(
X̂
)
. �

Corollary 29. Let f , π and π̃ be as in theorem 28. If π̃ = {π̃,σi(f),σo(f), dom(f̃)}
is a separable lp-function with a signing S such that S ∩ (lit(σi) ∪ lit(σo)) = ∅ then it
represents the interpolation f̃ of f .

The corollary follows immediately from theorems 7 and 28.

5.5. The declarative representation of open nets

In this section we will go back to the task of building a computable lp-function
π◦ representing the open domain specification f◦N . Recall that f◦N is defined via
incremental extension and three f-specifications: g̃α, g̃αD and fs where g = fd and
α = {is} (13). We start with finding a representation π̃ of g̃α. Theorem 28 will provide
an important heuristic guidance for this construction. In particular, we will look for
a transformation from this theorem which will turn the lp-function π (section 4.2)
representing g into a monotonic lp-function. The only transformation achieving this
goal is that of replacing the rule defining predicate exceptional in π by the rule

exceptional(X,D,S)← exception(E,D,S),

not¬is(X,E). (18)

192 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

Let us denote the resulting program by π̃ and use corollary 29 to prove the following
proposition.

Proposition 30. π̃ represents g̃α.

Proof (sketch). We need to show that π̃ is an lp-function and that it is separable and
monotonic.

1. (Consistency.) Let D be the domain of g = fd and D̃ be the domain of g̃.
(Recall that dom(g) consists of complete states of σi(g) which satisfy the constraints (5)
and dom(g̃) is the set of all {is}-states of σi(g) which are maximally informative with
respect to D). Let X ∈ dom(π̃). To show that π0 = π̃ ∪X is consistent we use an
argument similar to that which we used to prove consistency of π∪X in proposition 11.
We use renaming to reduce π̃ to a program without ¬; use its stratifiability to entail
existence of a unique answer set and show that this answer set is consistent.

2. (Separability.) Let X ∈ D̃ and consider an output literal l /∈ π̃(X). Let
us first assume that l = has(x, p). We need to construct a cover X̂ of X such that
l /∈ π̃(X̂). We say that a class e is p-negative if there is a negative link from e to p in
N ; a p-negative class e can defeat has(x, p) if ¬is(x, e) /∈ X. Let E0 be the set of all
classes which can defeat has(x, p) and consider

E =E0 ∪
{
c: ∃e (e ∈ E0 and subclass(e, c) ∈ N)

}
,

U =X ∪
{

is(x, e): e ∈ E
}

, and

X̂ =U ∪
{
¬is(o, c): is(o, c) /∈ U

}
.

We show that

(a) X̂ is a cover of X,

(b) l /∈ π̃(X̂).

(a) By construction, X̂ is complete and consistent. We need to show that it
satisfies the constraints (5).

Consider arbitrary o, c1 and c2 such that subclass(c1, c2) ∈ N and is(o, c1) ∈ X̂.
First let us consider the case when is(o, c1) ∈ X. Then any cover of X must contain
is(o, c2). Since X is maximally informative, is(o, c2) ∈ X, and hence by consistency
of X̂ the constraints (5) are satisfied. Suppose now that is(o, c1) /∈ X. If o is not x,
then ¬is(o, c1) ∈ X̂ and constraints (5) are satisfied by consistency of X̂. If o is x, then
c1, c2 ∈ E and, by construction, is(x, c2) ∈ X̂. Consistency of X̂ again guarantees
that constraints (5) are satisfied.

(b) Since X̂ is complete and consistent and lit(is) is a splitting set of π̃, we have
that red(π, X̂) = red(π̃, X̂) and hence π ∪ X̂ is consistent iff π̃ ∪ X̂ is consistent.
Consistency of π ∪ X̂ was established before and hence π̃ ∪ X̂ is also consistent and
has a consistent answer set S. As shown in [34], has(x, p) ∈ S iff there is class c such
that default(d, c, p, +) ∈ N , is(x, c) ∈ X̂, exceptional(x, d, +) /∈ S. Let c satisfy this
condition and consider two cases:

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 193

(i) is(x, c) ∈ X.
Then, since l /∈ π̃(X), we have that for every class e such that exception(e, d, +) ∈
S, ¬is(x, e) /∈ X. By construction of X̂ this implies that ¬is(x, e) /∈ S,
exceptional(x, d, +) ∈ S, and therefore has(x, p) /∈ π̃(X̂).

(ii) is(x, c) /∈ X.
Then is(x, c) ∈ U . By construction of U we have that there is a class e such that
default(d2, e, p,−) ∈ N , ¬is(x, e) /∈ X and either e = c or subclass(e, c) ∈ N . By
construction we have that is(x, e) ∈ U . Since our graph is acyclic, we have that
exception(e, d, +) ∈ S, exceptional(x, d, +) ∈ S and therefore has(x, p) /∈ π̃(X̂).
A similar argument works for l = ¬has(x, p).

3. (Monotonicity.) Let X1,X2 ∈ dom(π̃) and X1 ⊂ X2. To show that

(i) π̃(X1) ⊂ π̃(X2)

we first use the splitting set theorem to eliminate from π1 = π̃ ∪X1 and π2 = π̃ ∪X2

all the occurrences of literals from lit(default). Since X1 and X2 are is-states of σi we
have that [X1]{default} = [X2]{default} and hence

(ii) top(π1, lit(default)) = top(π2, lit(default)).

Let us denote this program by π′. By the splitting set theorem

(iii) π′(X) = π̃(X) for any X ∈ dom(π̃).

Now observe that the set S = atoms({exception, exceptional)} is a signing for π′ and
that S ∩ (lit(σi(π)∪ lit(σo(π))) = ∅. The monotonicity condition follows from (iii) and
theorem 7 and the conclusion of our proposition becomes an immediate consequence
of theorem 28. �

To complete the construction of representation π◦ of f◦N we need to find a rep-
resentation π̃D of the domain completion of D = dom(g) with respect to α = {is}.
Recall that D is the collection of complete states of σi(g) satisfying constraints (5).
These constraints are binary with respect to α. It is also easy to see that they are
indefinite and hence we can use the construction from theorem 19. The corresponding
program π̃D consists of the rules

is(O,C2)← is(O,C1), subclass(C1,C2), (19)

¬is(O,C1)←¬is(O,C2), subclass(C1,C2). (20)

Proposition 31. π̃D represents g̃αD.

Proof. Follows immediately from theorem 19. �

Finally, we can show that

Proposition 32. π◦ = π̃ ∪ π̃D ∪ πs represents f◦N .

194 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

Proof. Follows immediately from the equation (13), propositions 30, 31, theorem 10,
and the fact that π̃, π̃D and πs have unique answer sets. �

As in the case of closed nets, proposition 32 shows the correctness of π◦ with
respect to our specification if π◦ is viewed as a declarative program. However, due
to the left recursion in rules (19) and (20), π◦ is not computable with respect to our
interpreter A. To achieve computability we need to change the order of literals in the
bodies of these rules. The resulting program π◦ will look as follows:

has(X,P)← default(D,C,P , +),

is(X,C),

not exceptional(X,D, +).

¬has(X,P)← default(D,C,P ,−),

is(X,C),

not exceptional(X,D,−).

exception(E,D1, +)← default(D1,C,P , +),

default(D2,E,P ,−),

not subclass(C,E).

exception(E,D1,−)← default(D1,C,P ,−),

default(D2,E,P , +),

not subclass(C,E).

exceptional(X,D,S)← exception(E,D,S),

not¬is(X,E).

is(O,C2)← subclass(C1,C2),

is(O,C1).

¬is(O,C1)← subclass(C1,C2),

¬is(O,C2).

subclass(C1,C2)← subclass0(C1,C2).

subclass(C1,C2)← subclass0(C1,C3),

subclass(C3,C2).

¬subclass(C1,C2)← not subclass(C1,C2).

π◦

Its computability can be shown by an argument similar to that in proposition 13. Notice
that if we were to use an inference engine based on XSB which includes a form of
loop checking, no changes in the rules (19) and (20) would be needed.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 195

6. A simple generalization

In this section we generalize the knowledge representation problem associated
with a net N by allowing strict (non-defeasible) links from objects to properties to
belong to the net’s input (see figure 2). We show that this generalization can be easily
incorporated into the design. To do that we use another specification constructor
from [26], called input extension.

Definition 33. Let f be a functional specification with disjoint sets of input and output
predicates. An f-specification f∗ with input signature σi(f)+σo(f) and output signature
σo(f) is called input extension of f if

(1) f∗ is defined on elements of dom(f) possibly expanded by consistent sets of literals
from σo(f),

(2) for every X ∈ dom(f), f∗(X) = f (X),

(3) for any Y ∈ dom(f∗) and any l ∈ lit(σo(f)),

(i) if l ∈ Y then l ∈ f∗(Y),

(ii) if l /∈ Y and l /∈ Y then l ∈ f∗(Y) iff l ∈ f (Y ∩ lit(σi(f)).

A new problem associated with a net N can be defined by f-specification

f∗ = g∗ ◦ g̃αD ◦ fs, (21)

where g∗ is the input extension of g̃α.
To find an lp-function representing g∗ we will use the following transformation

from [26].

Definition 34. Let π be an lp-function. The result of replacing every rule

l0 ← l1, . . . , lm, not lm+1, . . . , not ln

Figure 2. Hierarchy with links from objects to properties.

196 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

of π with l0 ∈ lit(σ◦(f)) by the rule

l0 ← l1, . . . , lm, not lm+1, . . . , not ln, not l0

is called the guarded version of π and is denoted by π̂.

The following theorem is useful for constructing lp-functions representing input
extensions.

Theorem 35 (Realization theorem for input extension [26]). Let f be a specification
represented by lp-function π with signature σ. If the set U = lit(σ)\lit(σ◦) is a splitting
set of π dividing π into two components π2 = top(π,U) and π1 = base(π,U), then
lp-function π∗ = π1 ∪ π̂2 represents the input extension f∗ of f .

The representation π∗ of input extension g∗ of g̃α is obtained by replacing the
has rules in π◦ (section 5.5) by

has(x, p)← default(d, c, p, +),

is(x, c),

not exceptional(x, d, +),

not¬has(x, p).

¬has(x, p)← default(d, c, p,−),

is(x, c),

not exceptional(x, d,−)

not has(x, p).

The following proposition follows immediately from equation (21), the construction
of π∗, and theorems 35 and 10.

Proposition 36.

(i) π∗ represents g∗,

(ii) π∗ ∪ π̃D ∪ πs represents f∗.

This example again demonstrates that specification constructors and their real-
ization theorems provided a useful heuristic guidance for specifying knowledge repre-
sentation problems and for building program provably satisfying these specifications.

7. Conclusions

In this paper we discussed a systematic methodology of solving certain types
of knowledge representation problems in logic programming. The methodology was
illustrated by a detailed development of solutions of several knowledge representation

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 197

problems associated with simple taxonomic hierarchies. In each case we started with a
functional specification of a problem constructed from specifications of simpler prob-
lems with the help of specification constructors, and used various realization theorems
to guide the process of representing these specifications by declarative programs of
A-Prolog. We also demonstrated how these programs can be transformed into exe-
cutable programs of Prolog and XSB. The paper also contains previously unpublished
proofs of several realization theorems.

Even though the formalization of inheritance reasoning was extensively studied
in the AI literature [15,16,18,24,27,28,41,47], the emphasis on precise specifications of
the problems allowed us to come up with a clearer picture of dependencies of various
types of inheritance reasoning on the closed and open world assumptions about the
problem domain and on the type of the allowed updates. In particular, we addressed
the question of reasoning in open nets, which, to the best of our knowledge, was never
investigated before. We are currently working on studying the applicability of our
approach to more general forms of inheritance, to reasoning about actions and change,
and to several other domains. The results so far seem to be rather promising.

Acknowledgements

Many people contributed to the development of ideas presented in this paper and
we cannot name all of them here. We would like to mention however our collab-
orators who directly contributed to this approach – H. Przymusinska, C. Baral and
O. Kosheleva. Our thanks to them and to all the others. The authors are grateful to
the anonymous referees for their comments and suggestions for improving the paper.
The first author acknowledges the support of NASA under grant NCCW-0089.

References

[1] J.J. Alferes and L.M. Pereira, Reasoning with Logic Programming, Lecture Notes in Artificial
Intelligence (Springer, Berlin, 1996).

[2] K. Apt, H. Blair and A. Walker, Towards a theory of declarative knowledge, in: Foundations of
Deductive Databases and Logic Programming, ed. J. Minker (Morgan Kaufmann, San Mateo, CA,
1988) pp. 89–148.

[3] K. Apt and D. Pedreschi, Proving termination in general Prolog programs, in: Proc. of the In-
ternational Conference on Theoretical Aspects of Computer Software, Lecture Notes in Computer
Science, Vol. 526 (Springer, Berlin, 1991) pp. 265–289.

[4] K. Apt and A. Pellegrini, On the occur-check free logic programs, ACM Trans. Programming
Languages and Systems 16(3) (1994) 687–726.

[5] C. Baral and M. Gelfond, Logic programming and knowledge representation, J. Logic Programming
12 (1994) 1–80.

[6] C. Baral, M. Gelfond and O. Kosheleva, Expanding queries to incomplete databases by interpolating
general logic programs, J. Logic Programming 35 (1998) 195–230.

[7] N. Bidoit and C. Froidevaux, Minimalism subsumes default logic and circumscription, in: Proc. of
LICS-87 (1987) pp. 89–97.

198 M. Gelfond, A. Gabaldon / Building a knowledge base: an example

[8] D. Chan, Constructive negation based on the completed databases, in: Proc. 5th International
Conference and Symposium on Logic Programming (1988) pp. 111–125.

[9] W. Chen, Extending Prolog with nonmonotonic reasoning, J. Logic Programming 27(2) (1996)
169–183.

[10] W. Chen, T. Swift and D. Warren, Efficient top-down computation of queries under the well-founded
semantics, J. Logic Programming 24(3) (1995) 161–201.

[11] P. Cholewinski, W. Marek and M. Truszczynski, Default reasoning system DeReS, in: Proc. of
KR-96 (1996) pp. 518–528.

[12] K. Clark, Negation as failure, in: Logic and Data Bases, eds. H. Gallaire and J. Minker (Plenum
Press, NY, 1978) pp. 293–322.

[13] P. Dembinski and J. Maluszynski, AND-parallelism with intelligent backtracking for annotated logic
programs, in: Logic Programming: Proc. of the International Symposium on Logic Programming,
eds. V. Saraswat and K. Ueda (1985) pp. 25–38.

[14] Y. Deville, Logic Programming: Systematic Program Development (Addison-Wesley, Reading, MA,
1990).

[15] P.M. Dung and T.C. Son, Nonmonotonic inheritance, argumentation, and logic programming, in:
Proceedings of LPNMR (1995) pp. 316–329.

[16] P.M. Dung and T.C. Son, An argumentation-theoretic approach to reasoning with specificity, in:
Proceedings of KR ’96 (1996) pp. 407–418.

[17] T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello, A deductive system for non-monotonic
reasoning, in: Proc. 4th LPNMR, Lecture Notes in Computer Science, Vol. 1265 (Springer, Berlin,
1997) pp. 363–374.

[18] D. Etherington and R. Reiter, On inheritance hierarchies with exceptions, in: Proceedings of AAAI-
83 (1983) pp. 104–108.

[19] F. Fages, Consistency of Clark’s completion and existence of stable models, J. Methods Logic
Comput. Sci. 1(1) (1994) 51–60.

[20] M. Gelfond and A. Gabaldon, From functional specifications to logic programs, in: Logic Program-
ming: Proc. of the 1997 International Symposium, ed. J. Maluszynski (1997) pp. 355–371.

[21] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Logic Program-
ming: Proc. of the 5th International Conference and Symposium, eds. R. Kowalski and K. Bowen
(1988) pp. 1070–1080.

[22] M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: Logic Programming:
Proc. of the 7th International Conference, eds. D. Warren and P. Szeredi (1990) pp. 579–597.

[23] M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Generation Computing 9 (1991) 365–385.

[24] M. Gelfond and H. Przymusinska, Formalization of inheritance reasoning in autoepistemic logic,
Fund. Inform. 13 (1990) 403–445.

[25] M. Gelfond and H. Przymusinska, On consistency and completeness of autoepistemic theories,
Fund. Inform. 16(1) (1992) 59–92.

[26] M. Gelfond and H. Przymusinska, Towards a theory of elaboration tolerance: logic programming
approach, J. Software Eng. Knowledge Eng. 6(1) (1996) 89–112.

[27] J.F. Horty, Some direct theories of non-monotonic inheritance, in: Handbook of Logic in Artificial
Intelligence and Logic Programming, eds. D. Gabbay, C. Hogger and J.A. Robinson (1994).

[28] J.F. Horty, R.H. Thomason and D.S. Touretzky, A skeptical theory of inheritance in nonmonotonic
semantic networks, Artificial Intelligence 42(2–3) (1990) 311–348.

[29] K. Kunen, Signed data dependencies in logic programs, J. Logic Programming 7(3) (1989) 231–245.
[30] V. Lifschitz, Restricted monotonicity, in: Proc. of AAAI-93 (1993) pp. 432–437.
[31] V. Lifschitz, Foundations of logic programming, in: Principles of Knowledge Representation,

ed. G. Brewka (CSLI Publications, 1996) pp. 69–128.

M. Gelfond, A. Gabaldon / Building a knowledge base: an example 199

[32] V. Lifschitz and H. Turner, Splitting a logic program, in: Proc. 11th ICLP, ed. P. Van Hentenryck
(1994) pp. 23–38.

[33] F. Lin, A study of nonmonotonic reasoning, Ph.D. thesis, Stanford University (1991).
[34] W. Marek and V.S. Subrahmanian, The relationship between logic program semantics and non–

monotonic reasoning, in: Proc. of the 6th International Conference on Logic Programming,
eds. G. Levi and M. Martelli (1989) pp. 600–617.

[35] N. McCain and H. Turner, Language independence and language tolerance in logic programs, in:
Proc. of the 11th International Conference on Logic Programming (1994) pp. 38–57.

[36] L. Niemela and P. Simons, Efficient implementation of the well-founded and stable model semantics,
in: Proc. of JICSLP-96 (MIT Press, Cambridge, MA, 1996).

[37] L. Pereira and J. Alferes, Well-founded semantics for logic programs with explicit negation, in:
Proc. of the 10th European Conference on Artificial Intelligence (1992) pp. 102–106.

[38] T. Przymusinki, On constructive negation in logic programming, in: Proc. of the North American
Conference of Logic Programming (1989) pp. 16–20.

[39] R. Reiter, On closed world data bases, in: Logic and Data Bases, eds. H. Gallaire and J. Minker
(Plenum Press, New York, 1978) pp. 119–140.

[40] R. Reiter, A logic for default reasoning, Artificial Intelligence 13(1–2) 81–132.
[41] L.A. Stein, Resolving ambiguity in non-monotonic inheritance hierarchies, Artificial Intelligence

55(2–3) (1992) 259–310.
[42] K. Stroetmann, A completeness result for SLDNF-resolution, J. Logic Programming 15(4) (1993)

337–355.
[43] D. Touretzky, The Mathematics of Inheritance Systems (Morgan Kaufmann, Los Altos, CA, 1986).
[44] H. Turner, A monotonicity theorem for extended logic programs, in: Proc. 10th ICLP, ed. D.S. War-

ren (1993) pp. 567–585.
[45] H. Turner, Signed logic programs, in: Proc. of ILPS, ed. M. Bruynooghe (1994) pp. 61–75.
[46] A. Van Gelder, K. Ross and J. Schlipf, The well-founded semantics for general logic programs,

Journal of the ACM 38(3) (1991) 620–650.
[47] X. Wang, J.H. You and L.Y. Yuan, A default interpretation of defeasible network, in: Proceedings

of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97) (1997) pp. 156–161.

