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Formulation of the problem. Experts may be uncertain about their statements. To
express this uncertainty, most expert systems assign numbers to expert statements,
numbers that range from O (completely false) 1o 1 (completely true). These numbers
are called degrees of belief, or degrees of certainty. To handle logical combinations
of expert’s statements, we must, therefore, extend logical connectives that are
normally defined for the values 0 (= “false”) and 1 (= “true”) to arbitrary values
from the interval [0, 1].

There are many different ways to extend a function from the 2-valued set {0, 1}
to the interval [0, 1], and different choices may drastically change the quality of the
resulting expert system. One of the possible methods of choosing the operations
is to take into considcration that thc numbers expressing the experts’ degrees of
belief can only be approximately determined, and therefore, a meaningful choice
of a logical operation should be the one that is the least affected by a small change
in these numerical values.

In [3], [4], we have formalized this requirement and used this formalization
to find the least sensitive “and”, “or”, and “not” operations. It turns out that
the least sensitive “and” operation is fg{a,b) = min(a,b), the least sensitive
“or” operation is f,(a, &) = max(a, b), and the least sensitive “not” operation is
f_{m) = | — a. Back then, however, we were unable to analyze another important
logical connective that is often useful to describe the expert statements: exclusive
“or” @.

In this papcr, we describe the least sensitive exclusive “or” operation. To describe
our result, let us start with the definitions (mainly borrowed from [3]).
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Definitions.
* By an interpolation problem, we mean the tuple
Po=(nU,FNTD, ,Z0 M yWy

where:
- n 18 a positive integer;
— U is a subset of R";
— Fis a set of functions from U to R;
— N is a positive integer;
— ¥® (1 < k < N) are elements of U/;
— y® (1 < k < N) are real numbers.

¢ We say that a function f € F is a possible solution to the interpolation problem
if f(F®) - y® for all k.

e Let f be a possible solution to an an interpolation problem P, and let § > 0 be
a positive real number.

— We say that a 3-input uncertainty leads to a < a-output error, if for every
X € Uand ¥’ € U, for which x € [x; — 8, x; + 8] for all i, we have
) e (1) — @, 72 +al.

— By a 8-sensitivity of a function f(X') we mean the smallest of real numbers ¢,

for which a 8-input uncertainty leads to a < a-output error. The 8-sensitivity
of a function f(¥') will be denoted by 5(8).

e We say that a function f(¥) is asymptotically less sensitive than a function g(x),
if there exists a A > 0 such that for every & < A, 55(3) < 5,(9).

* We say that a function f(¥) is the least asymptotically sensitive solution to an

interpolation problem P if f is a possible solution, and f is asymptotically less
sensitive than any other possible solution.

Description of the problem in formal terms. Let n = 2 and U = [0, 1] % [0, 1].
Let us define the following interpolation problem Pg:

¢ F =the set of all continuous functions f : U - [0, 1];
* N=4,f(0,00=f(1,1)=0, f(0,1) = £(1,0) = 1.
THEOREM. The only asymptotically least sensitive solution to the problem Pg is
fala, b) = min{max(a, ). 1 ~ min(a, b)).
Comments.
» Although the expression for f(a,b) may appear clumsy, this solution is, in
effect, very natural: it can be obtained if we take a formula from classical logic
a ® b = (a v b) & ~(a & b) that expressed exclusive “or” in terms of “and™,

“or”, and “not”, and replace each of the logical operations &, v, and — by the
corresponding least sensitive operation.
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o Instead of requiring the smallest worsi-case sensitivity as we did, we could
require the smallest average-case sensitivity. The corresponding formalism is
described in [2], [5], [6). According to the results from [2], [5], [6], the operation
with the least average sensitivity must satisfy the Laplace equation

% I _

da? " ab?
So, if we fix the boundary conditions by requiring that fg(a,0) = fe(0,a2) = a
and fu(a, 1) = fo(l,a) = 1 — a, we conclude that fg(a,b) ~a+b—2.a-b.

0.

The same operation follows from the general Maximum Entropy approach
described in [ 1] (it actually follows as a general result from a theorem proved in
[1] for arbitrary logical operations).

s A more general probabilistic approach leads to an inferval of possible values:
namely, if we know that the probability P(A) of an event A is equal to a and that
P(B) = b, then one can check that the probability P(A @ B) can take any value
from the interval [la — b|, min{a + b, 2 — a — b)).

Proof of the theorem. One can easily check that for the chosen function,
s¢(8) = 8.

Let us show that this sensitivity function is indeed asymptotically the smallest,
and that the operation described in the formulation of the theorem is indeed the
only one for which this sensitivity is attained.

Our proof is based on two ideas. The first idea is the remark that if we restrict a
function to a subset, its sensitivity can only decrease.

The second idea is Theorem 1 from [3], according to which when we interpolate
a function of one variable between two known values, then linear interpolation is
the only one that leads to the least asymptotically sensitive solution.

Therefore, if we consider, e.g., the function f'(a) = f(a, 0) of one variable, that
is known to be equal to 0 for a = 0 and to 1 for a = 1, then any non-linearity would
make this function asymptotically less sensitive than our chosen our chosen fg (for
which s;(8) = 8)). We can, therefore, make two conclusions:

» First, that there is no way that a possible solution to the interpolation problem
is asymptotically better than our choice of fg.

¢ Second, that unless we want the function to be asymptotically worse than fg,
wc must have lincar extrapolation of f(a, (), i.e., we must have f(a,0) = a.

Similarly, we can conclude that if a function is not linear on any other edge of the
unit square U, this function is asymptotically more sensitive than cur choice. Thus,
we must have f{g,0) = f(0,a)=aand fla, 1) = f(l,a)=1 ~a.

Let us now describe the values of the desired asymptotically least sensitive
vperation inside the square. The inside of the square can be subdivided into four
triangles by the diagonalsa=banda=1—b.
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Without losing generality, let us consider a triangle in which b < gand b < 1—a.
Let (ag, bp) be an arbitrary point from this triangle. Let us consider the following
function of one variable: f'(a) = f(a, k(a)), where:

k(a) = b 4 fora <ap, and k@)= bo
dg 1—ag
Fora - 0and a = 1, we have k(0) = k(1) = 0.

One can easily see that for every a,a” € [0,1}, |k(a) — k{a")| < |a — a'|;
therefore, the condition that |[a —a’| < & and |k(a) — k(a’)| < & is simply equivalent
to |a — a’| < 8. Thus, the sensitivity of a function f(a, b), as limited to the piece-
wise linear set § = {(a, k(a)) | a € [0, 1]}, is exactly equal to the sensitivity of the
function f’(a) of one variable. Hence, due to Theorem 1, if a function f’(a) is not
linear, then the sensitivity of the restriction of f to S is asymptotically worse than
8. In this case, the sensitivity of the un-restricted function f itself is also worse
than &.

Thus, if for a function f(a,b), one of ifs restrictions (@) is non-linear, then
s¢(8) is asymptotically worse than &. The only possibility for the sensitivity to
be asymptotically cqual to & is when all the functions f'(a) are linear, i.c., if
fla,k(a)) = a for all a. In particular, this means that f(ag, bg) = ay as long as
bo < ap and by < 1 — ag. Similarly, we conclude that:

e fla,by=b if a<b<l—a

s fla,by=1—-a if b>a and b>1 - a

e flab)=1—bif 1l —a<b<a.

These four expression describe exactly our function fg{a,b). The theorem is
proven. ]

-(1 —a) for a > ayp.
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