
ESP: A Logic of Only-Knowing, Noisy Sensing and Acting

Alfredo Gabaldon
National ICT Australia

University of New South Wales
Sydney, NSW 1466

Australia
alfredo@cse.unsw.edu.au

Gerhard Lakemeyer
Dept. of Computer Science

RWTH Aachen
52056 Aachen

Germany
gerhard@cs.rwth-aachen.de

Abstract

When reasoning about actions and sensors in realistic do-
mains, the ability to cope with uncertainty often plays an es-
sential role. Among the approaches dealing with uncertainty,
the one by Bacchus, Halpern and Levesque, which uses the
situation calculus, is perhaps the most expressive. However,
there are still some open issues. For example, it remains un-
clear what an agent’s knowledge base would actually look
like. The formalism also requires second-order logic to repre-
sent uncertain beliefs, yet a first-order representation clearly
seems preferable. In this paper we show how these issues can
be addressed by incorporating noisy sensors and actions into
an existing logic of only-knowing.

Introduction

When reasoning about actions in realistic domains, the abil-
ity to cope with uncertainty often plays an essential role.
This is true, for example, in cognitive robotics (Levesque
and Lakemeyer 2007), where one is interested in giving a
logic-based account of the actuators and sensors of robots.

There have been a number of approaches to address ac-
tions and uncertainty. For example, there are planners that
deal with uncertainty like (N. Kushmerick et al. 1995;
Weld et al. 1998) and there is the whole area of Markov
Decision Processes (L. P. Kaelbling et al 1998). In order to
fully capture the interplay between knowledge, action and
uncertainty, more expressive languages are needed. In this
regard, the situation calculus (McCarthy and Hayes 1969;
Reiter 2001) has proven to be a very useful tool (Poole 1998;
Bacchus et al. 1999; Boutilier et al. 2000; Thielscher
2001; Grosskreutz and Lakemeyer 2003). The starting
point for our own investigations is Bacchus, Halpern and
Levesque (1999) (BHL). As we will see, they have a com-
pelling story about how to update beliefs when actions are
uncertain, but there are also some problems with their frame-
work which we will try to address in this paper.

To begin with, let us consider the following running ex-
ample of a simple robot which is able to move towards the
wall and which can use its sonar to measure the distance to
the wall (Figure 1). All actions are noisy. In particular, sup-
pose that the robot’s sonar returns the true distance to the

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

��

�
�

f f

sonar

.........
.........

..
.....................

forward �

Figure 1: A simple robot

wall with probability .5 and and with probability .25 it is off
by 1 unit in both directions. Also assume that initially the
robot is 6 units away from the wall, but it is uncertain about
its own position and believes that it might be 6, 5, or 4 units
away, each with probability 1

3 .

BHL model this using the situation calculus as follows:
S0 denotes the initial situation and a fluent wd(s) repre-
sents the distance to the wall in each situation. For example,
wd(S0) = 6 says that initially the true wall distance is 6.
To represent what the robot knows a fluent K(s′, s) is intro-
duced, which captures, in possible-world fashion, the epis-
temically possible situations. In our example, there could
be three such situations with wd(s1) = 6, wd(s2) = 5, and
wd(s3) = 4. If we have K(s, S0) iff s is one of the si,
then the robot knows that wd is one of 4, 5, or 6 but does
not know which. Here knowledge is simply truth in all ac-
cessible situations, abbreviated as Knows(wd, S0). To model
uncertainty, BHL introduce another functional fluent p(s′, s)
which is similar to K but also assigns a probability to the ac-
cessible situations s′. To indicate that the above si all have
probability 1

3 , we would write p(si, S0) = 1
3 . With p in

place BHL define probabilistic belief in a sentence φ in S0

(written Bel(φ, S0)) simply as the sum of the probabilities
of those accessible situations where φ holds. For example,
we get Bel((wd = 6 ∨ wd = 5), S0) = 2

3 .

A model of the noisy sonar can be obtained as fol-
lows. Imagine that the robot executes a noisy sensing ac-
tion nobs(x), which returns a value x. The action which
is actually executed (chosen by nature) is obs(x, y), where
y is the actual value of wd. The uncertainty about which
outcome is chosen by nature is measured by a probability
(likelihood) l assigned to obs(x, y). In our example, we

would have l(obs(x, x)) = .5, l(obs(x, x − 1)) = .25,
l(obs(x, x + 1)) = .25, and 0 otherwise. With this descrip-
tion, it follows that the belief that wd = 6 after executing
nobs(6) has probability

p(s1, S0) · l(obs(6, 6))
∑

s′ p(s′, S0) · l(obs(6, wd(s′)))
=

2

3
,

that is, after receiving the value 6 from the sonar, the belief
that wd = 6 is sharpened, as it should be.1 In a similar way
it can be established that executing a noisy forward action
would increase the robot’s uncertainty about wd.

The way belief is updated in the BHL framework seems
right, and it conforms to practice in robotics. Nevertheless
there are at least two shortcomings which we would like
to address in this paper. For one, under seemingly innocu-
ous assumptions like the K-relation being transitive and Eu-
clidean, and p(s, s1) = p(s, s2) for all s, s1, s2, it follows
under BHL that ∃x.Knows(Bel(φ) = x, S0), suggesting that
agents necessarily have de re knowledge about their degrees
of belief. This is so because in each model of such BHL-
theories there is exactly one probability distribution over sit-
uations. For another, there is also the technical problem that
Bel(φ, s) is not a primitive of the language but defined in
terms of equations like the above. In particular, representing
summation requires second-order logic, and it seems like a
heavy price to pay if a robot needs second-order sentences
in its knowledge base.

Our solution to these problems is to reconstruct the BHL
way of updating probabilistic belief in a recently proposed
variant of the situation calculus (Lakemeyer and Levesque
2005), where situation terms are banned from the language.
Instead they are used only as part of the possible-world se-
mantics of the logic. To address the problem about what
is known about probabilities, we will allow the robot to
entertain many probability distributions over the worlds it
considers possible, and these distributions may differ from
an actual (objective) distribution over the set of all worlds.
We will have summations over products of probabilities, but
in contrast to BHL, these are pushed into the semantics.
The language will have sentences of the form HasP(φ, p)
as primitives to denote that φ has probability p. With that
we are able to restrict knowledge bases to first-order sen-
tences. Moreover, as the new logic supports the concept of
only-knowing, we can precisely model what a robot knows
and does not know given its knowledge base, something we
cannot do in the BHL framework.

The rest of the paper is organized as follows. In the next
section we briefly review the logic ES. We then discuss the
necessary changes to incorporate uncertainty into the logic
and discuss some of the properties of the new logic. To il-
lustrate the formalism, we then apply the logic to our robot
example and end the paper with a brief conclusion.

The Logic ES
The language of ES consists of formulas over symbols from
the following vocabulary:

1See BHL for a discussion of how this is just a situation-
calculus version of Bayesian conditioning.

• first-order variables: x1, x2, . . . , y1, y2, . . . , a1, a2, . . .;

• standard names: n1, n2, . . .;

• fluent function symbols, rigid function symbols, fluent
predicate symbols, and rigid predicate symbols of every
arity;

• connectives and other symbols: =, ∧, ¬, ∀, Know,
OKnow, �, round and square parentheses, period,
comma.

We assume that first-order variables, standard names, and
function symbols come in two sorts, action and object. Con-
stants are function symbols of 0 arity.2 We let N denote
the set of all standard names and Z denote the set of all
sequences of standard names for actions, including 〈 〉, the
empty sequence. For sequences z and z′, we let z · z′ denote
their concatenation.

Terms and formulas

The terms of the language are of sort action or object, and
form the least set of expressions such that

1. Every standard name and first-order variable is a term of
the corresponding sort;

2. If t1, . . . , tk are terms and h is a k-ary function symbol
then h(t1, . . . , tk) is a term of the same sort as h.

By a primitive term we mean one of the form h(n1, . . . , nk)
where h is a (fluent or rigid) function symbol and all of the
ni are standard names.

The well-formed formulas of the language form the least set
such that

1. If t1, . . . , tk are terms, and H is a k-ary predicate symbol
then H(t1, . . . , tk) is an (atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;

3. If t is an action term and α is a formula, then [t]α is a
formula;

4. If α and β are formulas, and v is a first-order variable,
then the following are also formulas: (α∧β), ¬α, ∀v. α,
�α, Know(α), OKnow(α).

We read [t]α as “α holds after action t”, and �α as “α holds
after any sequence of actions.” As usual, we treat (α ∨ β),
(α ⊃ β), (α ≡ β), and ∃v. α, as abbreviations. We call
a formula without free variables a sentence. By a primi-
tive sentence we mean a formula of the form H(n1, . . . , nk)
where H is a (fluent or rigid) predicate symbol and all of the
ni are standard names.

The semantics

The language contains both fluent and rigid expressions.
The former vary as the result of actions and have values that
may be unknown, but the latter do not. Intuitively, to deter-
mine whether or not a sentence α is true after a sequence of
actions z has been performed, we need to specify two things:

2The standard names can be thought of as special extra con-
stants that satisfy the unique name assumption and an infinitary
version of domain closure.

a world w and an epistemic state e. We write e, w, z |= α.
A world determines truth values for the primitive sentences
and co-referring standard names for the primitive terms af-
ter any sequence of actions. An epistemic state is defined
by a set of worlds, as in possible-world semantics. More
precisely:

• a world w ∈ W is any function from the primitive sen-
tences and Z to {0, 1}, and from the primitive terms and
Z to N (preserving sorts), and satisfying the rigidity con-
straint: if r is a rigid function or predicate symbol, then
w[r(n1, . . . , nk), z] = w[r(n1, . . . , nk), z′], for all z and
z′ in Z.

• an epistemic state e ⊆ W is any set of worlds.

We extend the idea of co-referring standard names to arbi-
trary ground terms as follows. Given a term t without vari-
ables, a world w, and an action sequence z, we define |t|zw
(read: the co-referring standard name for t given w and z)
by:

1. If t ∈ N , then |t|zw = t;

2. |h(t1, . . . , tk)|zw = w[h(n1, . . . , nk), z],
where ni = |ti|

z
w.

Truth is then defined as follows. Given e ⊆ W and w ∈ W ,
we define e, w |= α (read: α is true) as e, w, 〈 〉 |= α, where
for any z ∈ Z:

1. e, w, z |= H(t1, . . . , tk) iff
w[H(n1, . . . , nk), z] = 1, where ni = |ti|zw;

2. e, w, z |= (t1 = t2) iff
n1 and n2 are identical, where ni = |ti|zw;

3. e, w, z |= [t]α iff e, w, z · n |= α, where n = |t|zw;

4. e, w, z |= (α ∧ β) iff
e, w, z |= α and e, w, z |= β;

5. e, w, z |= ¬α iff e, w, z 6|= α;

6. e, w, z |= ∀v. α iff e, w, z |= αv
n,

for every standard name n (of the same sort as v);

7. e, w, z |= �α iff e, w, z · z′ |= α, for every z′ ∈ Z;

8. e, w, z |= Know(α) iff for every w′ ∈ e, e, w′, z |= α;

9. e, w, z |= OKnow(α) iff
for every w′, w′ ∈ e iff e, w′, z |= α.3

When Σ is a set of sentences and α is a sentence, we write
Σ |= α (read: Σ logically entails α) to mean that for every
e and w, if e, w |= α′ for every α′ ∈ Σ, then e, w |= α.
Finally, we write |= α (read: α is valid) to mean {} |= α.

ESP = ES + uncertainty

The uncertainty we are adding to ES comes in two flavors.
The first concerns the uncertainty about what is true initially.
In particular, this will mean that the agent may believe that
a sentence is true with some probability before any actions
have occurred. The other concerns the uncertainty in the
outcome of performing an action or sensing the value of a
fluent.

3We remark that the original definition of knowledge in (Lake-
meyer and Levesque 2005) was somewhat more complicated due
to their treatment of (nonstochastic) sensing, which we ignore here.

Uncertainty about the initial situation

To start with, as we want to talk about probabilities, we need
to include numbers in the language and the semantics. Nor-
mally, the reals are used for this purpose, but since we limit
ourselves to a countably infinite domain, we use the ratio-
nals, which suffice for most practical purposes. Formally,
we include the rationals as a new subsort of NO and call it
NQ, that is, there is a standard name for each rational num-
ber.

Recall that in BHL, uncertainty in the initial situation is
captured by assigning probabilities to situations. It seems
natural to try something similar in our semantics and as-
sign probabilities to worlds. Unfortunately, there is a catch:
there are an uncountable number of worlds, which would
mean that any individual world has probability 0. Moreover,
it would be nice to be able to restrict ourselves to discrete
probabilities to simplify matters. Since for now we are only
interested in what is true initially, distinguishing between
each world is actually not necessary, as many worlds as-
sign identical values to the primitive terms and formulas. So
we could consider assigning probabilities to sets of worlds
where the worlds in each set agree initially. But that is still
not enough, since these sets are still uncountable because the
universe is infinite. To address this issue, we assume that, as
far as the agent is concerned, there are only a finite num-
ber of objects together with a finite number of predicate and
functions symbols defined over these objects. Formally, we
introduce a new sort NU which is any finite subset of NO,
and two finite sets of predicate symbols HU , whose argu-
ments are all of type NU , and a finite set of function symbols
hU , whose arguments and values are also of type NU . NU

together with HU and hU is called the agent signature S.
With that we can now lump together worlds which agree

on S. In particular, for any world w, let

||w|| = {w′ |w′[h, 〈 〉] = w[h, 〈 〉] for all h ∈ Sp},

where Sp is the set of all primitive formulas and terms men-

tioning only symbols from S. Let B = {||w|| |w ∈ W}.
Clearly, ||w|| defines an equivalence relation over W , and
there are only finitely many equivalence classes, that is, B is
finite. In our semantics we will consider probability distri-
butions over B as a means to capture uncertainty about what
is true initially.—Note that only domain-specific predicates
and functions are restricted to be defined over the finite sort
NU . We still allow infinitely many actions, and the set of
values probabilities range over is also infinite.

Noisy actions and sensors

When adding uncertainty to actions we follow the ideas
of BHL (see also (Reiter 2001)) and introduce stochastic
actions which are associated with a number of outcomes
(nature’s choices) and a probability distribution over them.
In the robot example, forward would become a stochastic
action with three possible outcomes adv(0), adv(1), and
adv(2), indicating that the robot initiates a forward action,
but in fact he will either not move at all, correctly move one
unit forward or overshoot by 1 unit. Each of the outcomes
would happen with a certain probability, say, .25 for adv(0),

.5 for adv(1), and .25 for adv(2). Noisy sensors are mod-
elled exactly the same way (see later when we return to the
robot example). To simplify the presentation we assume,
from now on, that all actions are stochastic. It is easy to see
that this is no restriction as we can model ordinary actions
as stochastic ones which have only a single choice.

The language

Here we summarize the changes and additions of the lan-
guage when moving from ES to ESP .

• In addition to the sorts NQ and NU for the rationals and
the objects of the signature S, we also introduce another
sort NS , which contains a countably infinite set of stan-
dard names for stochastic actions. We continue to use N
to refer to the set of all standard names.4 We assume that
the language has an appropriate number of function sym-
bols for every sort. Action function symbols are rigid,
those of type NO can be rigid or fluent.

• We add a predicate Choice(a, n) which will be true just
in case n is one of the choices of stochastic action a.

• We add a binary function symbol prob such that
prob(a, n) is the probability of choice n of stochastic ac-
tion a in the current situation.

• We introduce a new kind of modality HasP(φ, p), where φ
is any static objective sentence5 over the signature S and p
is a rational number. It may be read as “φ has probability
p.” Note that HasP is not a predicate but a modal operator,
mainly for practical reasons so that we do not need to reify
formulas.

• In ES a formula [n]α means that α holds after n is per-
formed. Since we are now dealing with actions as pairs
we change this to [(a, n)]α, which can be read as “after
performing the choice n of stochastic action a α holds.”

• We also include a new kind of modal operator [[a]], where
a is a stochastic action. [[a]]α is intended to mean that
α holds after doing a regardless of which choice actually
occurs.

• Formulas are formed in the usual way with the following
restrictions, which help in keeping the semantics simpler:

– for any [(t, t′)]α and [[t]]α, all function symbols occur-
ring in t and t′ are rigid;

– for any [[t]]α, all predicate and function symbols men-
tioned in α occur within a HasP(φ, p) expression. In
other words, after performing a stochastic action we
are only interested in statements about what is true or
known about the probability of the outcomes.

The semantics

For the semantics we start by introducing a function C :
NS −→ 2NA , which associates with each stochastic action
a nonempty (possibly infinite) set of choices taken from the
set of (ordinary) actions.

4Note that NU is the only finite sort of the language.
5A static and objective sentence is one which does not mention

modal operators of any kind.

Since actions now come in pairs, we change Z to mean
the set of sequences of pairs (a, n), where a is a standard
name of a stochastic action and n is either a standard name
of an ordinary action or the wild card ∗ to indicate that the
choice is left unspecified. Let Zg be the subset of ground
sequences of Z , that is those which do not mention ∗.

Next we define worlds to give meaning to primitive terms
and formulas as in ES except that we now use the set of
ground sequences of action pairs from Zg as the second ar-
gument. Note that this has no bearing on our definition of B
above, where we only need the empty sequence of actions.

Since B is a finite set, we can easily define probability
distributions µ over it. As we already mentioned, such µ
assign weights to the various ways the world might look like
initially.

To define the likelihood of action choices we make use
of functions λ : B × Zg × NS × NA −→ Q, where

λ(b, z, a, n) = p associates with each choice n of stochastic
action a after any number of actions z starting in b a likeli-
hood p; we assume that for each b, z, and a, λ is a probabil-
ity distribution over the choices n. (For any n which is not
a choice of a, λ is assumed to be 0.) Let Λ be the set of all
such functions.

An epistemic state is then characterized by a triple ǫ =
(e,m, l), where e is a set of worlds as before, l ⊆ Λ, and
m is a set of probability distributions over B with the re-
striction that for each µ ∈ m and w 6∈ e, µ(||w||) = 0.
In other words, as far as the agent is concerned all worlds
which are not considered possible are also improbable. Let
Me = {µ |µ(||w||) = 0 for all w 6∈ e}

For the meaning of terms we can simply lift the defini-
tion of |t|zw when z ∈ Zg. For z which are not ground we
can at least give meaning to terms t all of whose function

symbols are rigid by letting |t|zw = |t|
〈 〉
w . Since prob does

not receive its meaning from worlds, we need to treat it spe-
cially: for a given λ ∈ Λ, |prob(a, n)|zw = λ(||w||, z, a, n)
where prob(a, n) is primitive and z ∈ Zg. (It will always be
clear from the context which λ is meant.)

Given a function C as above, an epistemic state ǫ =
(e,m, l), a world w, a probability distribution µ, and λ ∈ Λ,
we define ǫ, w, µ, λ |= α (read: α is true) as ǫ, w, µ, λ, 〈 〉 |=
α, where ǫ, w, µ, λ, z |= α is inductively defined as follows:

For z ∈ Zg we have:

1. ǫ, w, µ, λ, z |= Choice(t, t′) iff |t′|zw ∈ C(a)
where a = |t|zw;

2. ǫ, w, µ, λ, z |= H(t1, . . . , tk) iff
w[H(n1, . . . , nk), z] = 1, where ni = |ti|

z
w;

3. ǫ, w, µ, λ, z |= (t1 = t2) iff
n1 and n2 are identical, where ni = |ti|zw.

For arbitrary z ∈ Z (including nonground z) we have:

4. ǫ, w, µ, λ, z |= (α ∧ β) iff
ǫ, w, µ, λ, z |= α and ǫ, w, µ, λ, z |= β;

5. ǫ, w, µ, λ, z |= ¬α iff ǫ, w, µ, λ, z 6|= α;

6. ǫ, w, µ, λ, z |= ∀v. α iff ǫ, w, µ, λ, z |= αv
n,

for every standard name n (of the same sort as v);

7. ǫ, w, µ, λ, z |= [(t, t′)]α iff ǫ, w, µ, λ, z · (a, n) |= α,
where a = |t|zw and n = |t′|zw;

8. ǫ, w, µ, λ, z |= [[t]]α iff ǫ, w, µ, λ, z · (a, ∗) |= α,
where a = |t|zw;

9. ǫ, w, µ, λ, z |= �α iff
ǫ, w, µ, λ, z · z′ |= α, for every z′ ∈ Zg;

10. ǫ, w, µ, λ, z |= Know(α) iff for every w′ ∈ e,
µ′ ∈ m, and λ′ ∈ l, ǫ, w′, µ′, λ′, z |= α;

11. ǫ, w, µ, λ, z |= OKnow(α) iff for every w′, µ′ ∈ Me, λ′,
w′ ∈ e, µ′ ∈ m, λ′ ∈ l iff ǫ, w′, µ′, λ′, z |= α.

We remark that even though z must be ground for the
cases (1)–(3), this gives us a complete specification of truth
because of the restriction that predicate and function sym-
bols following a [[t]]-operator must occur within a HasP-
expression, whose semantics we now turn to.

In order to give meaning to sentences of the form
HasP(φ, p), we need to introduce some abbreviations. For
any z ∈ Z let gnd(z) be the set of ground sequences,
where each occurrence of (a, ∗) is replaced by (a, n) for

some n ∈ C(a). For any ground sequence z let Bz
φ =

{b ∈ B | for all w ∈ b, ǫ, w, µ, λ, z |= φ}, that is Bz
φ con-

tains all those sets where φ is true everywhere after the
actions in z have been performed. For any z ∈ Zg with

z = (a1, n1) · . . . · (ak, nk), let zi be the prefix of the first i
elements of z (with z0 = 〈 〉). Then

12. ǫ, w, µ, λ, z |= HasP(φ, p) iff

p =

∑

{z′∈gnd(z),b∈Bz′
φ

}
µ(b) ·

∏k−1
i=0 λ(b, z′i, ai+1, ni+1)

∑
{z′∈gnd(z),b∈B} µ(b) ·

∏k−1
i=0 λ(b, z′i, ai+1, ni+1)

,

provided the denominator is not 0, otherwise p = 0.

To better understand what is happening here, consider ex-
panding the sequence z into a (situation) tree as follows: if
z = (a, n) · z+ then add a node with an edge connected to
the tree generated by z+ and label the edge with (a, n); if
z = (a, ∗) · z+ then add a node and for each (a, n) where n
is one of the choices of a add an edge connected to a subtree
generated by z+ and label the edge with (a, n). In this tree
each branch represents one of the possible executions of all
the actions in z. One such tree is then associated with each
b ∈ B. Computing the probability of φ being true after z
then amounts to computing the probability of each branch
by multiplying the likelihoods of nature’s choices along the
edges of the branch, then summing up the probabilities of
those branches where φ holds at the end (over all trees asso-
ciated with the b’s) and dividing over the sum of the prob-
abilities of all branches, again over all trees. Note that the
denominator is needed for normalization purposes.

Finally, for a fixed signature S we define logical impli-
cation in ESP for a set of sentences Σ and a sentence α
as follows: Σ |= α iff for all C, for all epistemic states ǫ,
worlds w, probability distributions µ over B, and λ ∈ Λ, if
ǫ, w, µ, λ |= σ for all σ ∈ Σ then ǫ, w, µ, λ |= α. As usual,
α is valid if {} |= α.

Some properties

A thorough investigation of the semantics of ESP is out
of the scope of this paper. Instead we will focus on some
of the properties regarding the relationship between uncer-
tainty and knowledge.

1. |= Know(φ) ⊃ Know(HasP(φ, 1));

2. |= Know(HasP(φ, p)) ⊃ ¬Know(¬φ) if p > 0;

3. |6= HasP(φ, p) ⊃ Know(HasP(φ, p));

4. |6= Know(HasP(φ, p)) ⊃ HasP(φ, p);

5. |= Know(∃x.HasP(φ, x));

6. |6= ∃x.Know(HasP(φ, x)) where |6= φ.

Proof:

1. Recall that for every ǫ = (e,m, l) and µ ∈ m we have
that µ(||w||) = 0 for all w 6∈ e. Assuming that φ holds
in all worlds of e, both the numerator and denominator in
the definition of HasP are equal and hence the result is 1.

2. Let ǫ, w, µ, λ |= Know(HasP(φ, p)) with ǫ = (e,m, l)
and let µ ∈ m. Then µ(||w′||) > 0 for some w ∈ e and
ǫ, w, µ, λ |= φ. Hence ǫ, w, µ, λ |= ¬Know(¬φ).

3. The implication fails simply because if ǫ, w, µ, λ |=
HasP(φ, p), then µ is not necessarily a member of m
where ǫ = (e,m, l).

4. The reverse fails for the same reason.

5. This clearly holds because in any model, HasP(φ, p) is
true for exactly one value of p.

6. The implication fails because for every ǫ = (e,m, l) each
µ ∈ m may be different and hence the probability of φ
may vary.

We remark that it is because of properties (3) and (4) that
we did not use BHL’s notation Bel(φ, p), but opted for the
more neutral HasP(φ, p). While they have a purely subjec-
tive view of probabilities (all distributions assign a proba-
bility of 0 to epistemically inaccessible situations), we take
a more objective view in that we allow distributions which
assign non-zero probabilities to ||w|| where w 6∈ e, but these
distributions are never considered by the agent.

The robot example revisited
Let us now model the robot example in ESP . Recall that we
have two stochastic actions, forward with choices adv(0),
adv(1), and adv(2), and nobs with choices obs(x), where x
ranges, say, between -1 and +20. The domain theory needs
to specify these choices (Σch), and the robot’s knowledge
base, consisting of a successor state axiom6 for the only flu-
ent wd (Σpost), the likelihood of the action choices (Σl), and
the robot’s beliefs about the initial situation (Σ0). We also
need to assume that actions have unique names (ΣUNA) and
that the agent knows that. (Normally domain theories also
include axioms about the executability of actions, an issue
we ignore here for simplicity.)
Σch consists of these axioms:7

6These were introduced by Reiter as a solution to the frame
problem (Reiter 2001).

7In the following all free variables are implicitly universally
quantified.

Choice(forward, x) ≡
(x = adv(0) ∨ x = adv(1) ∨ x = adv(2))

Choice(nobs, x) ≡
∃y.x = obs(y) ∧ (y = −1 ∨ y = 0 ∨ . . . ∨ y = 20)

Σpost has one axiom:

�[(a, x)]wd = y ≡ a = forward ∧
[x = adv(1)∧wd = y + 1∨x = adv(2)∧wd = y + 2
∨x 6= adv(1) ∧ x 6= adv(2) ∧ wd = y]
∨a 6= forward ∧ wd = y

This axiom describes precisely how the value of wd changes
or does not change after an action (a,x) has occurred. For
example, in the case of (forward, adv(1)), wd will be 1 unit
less than before the action.
Σl consists of these axioms:8

�prob(forward, adv(1)) = if wd > 0 then .5 else 0

�prob(forward, adv(0)) = if wd = 0 then 1 else .25

�prob(forward, adv(2)) = if wd > 1 then .25 else 0

�prob(nobs, obs(x)) =
if wd = x then .5 else
if wd = x + 1 then .25 else
if wd = x − 1 then .25 else 0

In other words, unless the robot is very close to the wall, the
likelihood of advancing 1 unit is .5, whereas the likelihood
of moving 2 units or not at all is .25. Observing the cor-
rect value of wd has likelihood .5 and being off by ±1 has
likelihood .25 each.
Σ0 consists of these axioms:

HasP(wd = 6, 1
3), HasP(wd = 5, 1

3), HasP(wd = 4, 1
3)

These indicate that the robot finds it equally likely that wd is
either 6, 5, or 4.

The domain theory is then defined as

Σ = ΣUNA ∧ Σch ∧ OKnow(ΣUNA ∧ Σpost ∧ Σl ∧ Σ0)

(We assume that the signature S includes at least wd and all
the numbers mentioned in Σ.)
The following sentences are logical consequences of Σ:

1. ¬Know(wd = 6).
Note that, when Σ is satisfied, the robot considers ev-
ery world in W possible. Therefore it surely considers
a world possible where wd 6= 6.

2. Know(HasP(wd = 6, 1
3)).

This is because HasP(wd = 6, 1
3) is part of Σ0.

3. [[forward]]Know(HasP(wd = 5, 1
4)).

After doing a noisy forward action the robot believes that
wd = 5 with less confidence than before.

4. [(nobs, obs(6))]Know(HasP(wd = 6, 2
3)).

This is the way we model sensing: the agent performs a
noisy sense action and receives a sensed value in return.
Since the value is 6, the robot’s belief that wd = 6 is now
much stronger than before. The belief that wd = 4 is 0.

5. [[forward]][(nobs, obs(5))]Know(HasP(wd = 5, 11
16)).

While moving forward weakens the belief in wd = 5,
observing a 5 afterwards strengthens it again.

8We use the abbreviation f = if φ then p else q to stand for
f = x ≡ φ ∧ x = p ∨ ¬φ ∧ x = q.

Conclusions
In this paper we reconstructed BHL’s approach to noisy
sensing and acting in a variant of the situation calculus. In
contrast to BHL, an agent’s epistemic state not only consists
of a set of possible worlds but also of sets of probability
distributions over both the initial situations and the outcome
of stochastic actions after any number of actions. Also, no
second-order logic is needed.

One of the questions we addressed is what only-knowing
means in the presence of probabilities. We gave one answer,
but there may be others. Indeed, one of the anonymous
reviewers suggested to define only-knowing in terms of
probabilities in the sense that an agent only-knows α iff the
models of α are just the worlds with non-zero probability.
While this may have interesting features, we conjecture
that it does not have the following property, which holds in
our case: only-knowing certain knowledge bases involving
probabilities, including the one in the robot example,
precisely determines what the agent knows and does not
know, something we feel is very appealing from a KR point
of view.

References
C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.
Decision-theoretic, high-level agent programming in the
situation calculus. In Proc. of AAAI-00, 355–362, 2000.

F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning
about noisy sensors and effectors in the situation calculus.
Artificial Intelligence 111(1-2), 1999.

H. Grosskreutz and G. Lakemeyer, Probabilistic Complex
Actions in Golog. Fundamenta Informaticae 57(2–4), 167–
192, 2003.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101(1-2, 1998.

N. Kushmerick, S. Hanks, and D. Weld. An algorithm for
probabilistic planning. Artificial Intelligence, 76:239–286,
1995.

G. Lakemeyer and H. J. Levesque, Semantics for a useful
fragment of the situation calculus. IJCAI, 490–496, 2005.

H. J. Levesque and G. Lakemeyer, Cognitive Robotics, in
F. van Harmelen, V. Lifshitz, B. Porter (Eds.) The Hand-
book of Knowledge Representation, Elsevier, to appear.

J. McCarthy and P. J. Hayes, Some philosophical problems
from the standpoint of artificial intelligence. In B. Meltzer,
D. Mitchie and M. Swann (Eds.) Machine Intelligence 4,
Edinburgh University Press, 463–502, 1969.

David Poole. Decision theory, the situation calculus and
conditional plans. Linköping Electronic Articles in Com-
puter and Information Science, 3(8), 1998.

R. Reiter, Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT
Press, 2001.

M. Thielscher, Planning with Noisy Actions. Australian
Joint Conference on Artificial Intelligence, 495–506, 2001.

D S. Weld, C. R. Anderson and D. E. Smith, Extend-
ing Graphplan to Handle Uncertainty and Sensing Actions.
Proc. of AAAI, 897–904, 1998.

