
Hierarchical Task Libraries in (Con)Golog

Alfredo Gabaldon
National ICT Australia School of CS & Eng.

Kensington Research Lab U. of New South Wales
Sydney, Australia

alfredo@cse.unsw.edu.au

Abstract

We are interested in building libraries of complex ac-
tions, or tasks, in the Situation Calculus based lan-
guages Golog and its variants. We consider simple ways
of organizing tasks in a hierarchical fashion by defin-
ing generalized tasks from specialized ones. We use a
military operations planning domain to illustrate these
ideas.

Introduction
Complex activity planning such as that required in military
operations, the construction industry, refinery maintenance,
software development, and many others, is usually carried
out by expert hand from scratch or by reuse and adaptation
of solutions to similar, previous problems. Computer assis-
tance is used for solving the resulting scheduling problem,
usually only after the set of activities necessary to achieve
the desired goal has been chosen. The activity planning
phase is thus time consuming because it is done by hand,
and expensive because it requires domain expertise.

We are interested in building libraries of tasks in the high-
level language Golog (Levesqueet al. 1997) or its con-
current counterpart ConGolog (De Giacomo, Lesperance,
& Levesque 2000). One motivation is the possibility of
mitigating the time and cost overhead in complex activity
planning by developing techniques that allow the reuse of
libraries of tasks in an (ideally) automatic way. Domain ex-
perts would still be required during the initial construction of
such a library (no way around that). However, the idea is that
once a library containing a substantial amount of knowledge
in the form of domain-specific, detailed tasks for achievinga
number of goals, the cost incurred in this initial phase would
be amortized over the many problems solved by reusing that
knowledge. In order to achieve this, the library has to be in
a form that can be reused by users who are not necessarily
domain experts. For example, we would like the library to
be such that planning for the construction of a building on a
soft clay ground will not require consulting with an expert on
how to lay foundations on such a ground, if the library con-
tains tasks for doing that. In this case, it should be enough to
simply specify the type of ground, the type of building, and

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

so on, in order to obtain from the library a detailed construc-
tion plan. And if some details are missing or underspecified,
we ultimately would like the library to provide alternative
plans, possibly including costs and risks.

Toward this goal, we start by considering simple ways of
constructing task hierarchies. Given a set of highly special-
ized tasks, we consider defining new tasks that generalize
the specialized ones in different ways. In defining relation-
ships between more general and more specifics tasks, we
consider imposing constraints on parameters and the use of
knowledge abouttypesand subtypes associated with objects
of the domain.

We will explore these ideas in the context of the military
operations planning domain from (Aberdeen, Thiébaux, &
Zhang 2004), which we describe next.

Application Domain
Our application domain comes from a military operations
planning domain described in (Aberdeen, Thiébaux, &
Zhang 2004). Roughly, a domain description consists of a
set oftasks, such as “anti-submarine operation”, which are
a similar but more complex than the operators or actions in
classical planning. Also given is a description of the ini-
tial state, which usually consists of only a listing of what
resources are available and in what quantity. The tasks are
specified with a given duration, multiple possible outcomes
with corresponding probabilities, resource requirementsand
other preconditions, and are described as capable of achiev-
ing a particular goal. Some tasks also require that other tasks
be carried out prior or during their execution. These last two
characteristics of tasks in this application resemble lessclas-
sical planning than how Hierarchical Task Networks (HTNs)
(Sacerdoti 1974; Erol, Hendler, & Nau 1996) and complex
action languages like Golog operate. Hence our appeal to
the latter in this work.

We are also given a goal to be achieved which may include
some constraints on duration and resource consumption, and
the problem consists in finding a set of tasks to achieve the
goal. For instance, a goal may be “control of Island” and a
task could be “anti-submarine operation with frigates”.

The description of the task “anti-submarine operation
with frigates” may be as follows:

• task:antiSubOperWfrigates



• duration: 4

• probability of success: 0.9

• preconditions: 2 frigates, air-space control

• immediate effects: -2 frigates

• effects at successful termination: seaSubSurface control
established, +2 frigates

• effects at termination with failure: +1 frigate

Other tasks are more complicated, requiring the execution
of other tasks prior to starting, support tasks to execute con-
currently, and so on.

Querying a Task Knowledge Base
The task libraries we are interested in contain tasks that
are probabilistic, use different amounts of resources such
asfrigates, and have different durations. Moreover, one
of the main motivating applications is decision support. We
are therefore interested in a wide variety of queries. Here
are some examples in English:

• Q1: “can we achieve control of regionR?”
if R is a land region, yes, with prob=0.78;
if R is asea region, yes, with prob=0.85

• Q2: same as above, after adding the fact “R is of typeair
space region”
no

• Q3: same as above, after adding the fact “12 units of
fighter aircraftare available”
yes, with prob=0.95

• Q4: “can we achieve control of regionR by using
frigates”
if R is asea surface, yes, with prob=...;
if R is asea sub surface, yes, with prob=...

• Q5: “can we achieve control of regionR with prob. of
success> 0.9?”
if > 12 special forcesare available, yes, with prob=...

• Q6: “can we achieve control of regionR with loss of air-
craft< 10?”
if ..., yes, with prob=...

• Q7: “can we achieve control of regionR in time < 4
hours?”
if > 20 special forcesare available, yes, with prob=...

Golog/ConGolog
Using a situation calculus axiomatization of primitive ac-
tions due to (Reiter 1991), the high-level action languages
Golog (Levesqueet al. 1997) and ConGolog (De Giacomo,
Lesperance, & Levesque 2000) provide Algol-like program-
ming constructs for defining complex actions in terms of
simpler ones. We want to use (variants of) these languages
to build our libraries of tasks, so in this section we review
some of the constructs available in them.

The following are some of the constructs provided by
Golog:

• Test condition:φ?. Test whetherφ is true in the current
situation.

• Sequence:δ1; δ2. Execute programδ1 followed by pro-
gramδ2.

• Nondeterministic action choice:δ1|δ2. Nondeterministi-
cally choose between executingδ1 or executingδ2.

• Nondeterministic choice of arguments:(πx)δ. Choose a
value forx and executeδ with such a value forx.

• Procedure definitions:proc P (~x) δ endProc . P (~x) be-
ing the name of the procedure,~x its parameters, and pro-
gramδ its body.

ConGolog extends Golog with a number of constructs. The
most relevant for our purposes is the following:

• concurrent execution:δ1 ‖ δ2

Intuitively, the execution of a complex actionδ1‖δ2 re-
sults in the execution of one of the possible interleavings of
the primitive actions that result fromδ1 with those fromδ2.
If there is no interleaving that is executable (the precondi-
tions of each action are satisfied at the appropriate moment),
then the execution ofδ1‖δ2 fails.

Representing Tasks
We will describe a tasktsk by a list of statements of the
following forms:

• task(tsk, x1, . . . , xn, δ), meaning thattsk is a task with
parametersx1, . . . , xn and the Golog programδ as its
body. Variablesx1, . . . , xn may appear free inδ;

• tskTypes(tsk, t1, . . . , tn), meaning that the parameters
of tsk are of typest1, . . . , tn;

• tskRes(tsk, res, resn), meaning that tsk requires
amountresn of resourceres;

• tskDur(tsk, dur), meaning thattsk has durationdur;

• achievesG(tsk, φ), meaning that tasktsk is capable of
achieving goalφ.

For example, an “anti-sub operation with submarines”
task might be specified by means of the list of statements:

task(aswWsubs, r, t, δ1),
tskTypes(aswWsubs, seaSubSurf),
tskRes(aswWsubs, submarine, 2),
tskDur(aswWsubs, 32),
achievesG(aswWsubs, seaSubSurfCtrlEst).

(1)

specifying that the taskaswWsubs takes two parameters:
r of type SeaSubSurf , the special temporal argumentt,
and the programδ1, which we describe below, as its body.
The task requires 2 units of resourcesubmarine, and has a
duration of 32 units of time. The last statement indicates that
this task, when successful, achieves the goal of establishing
control of the regionr. We discuss “achieving” goals further
below.



Situation Calculus encoding
While basic action theories formalize actions that are deter-
ministic and instantaneous, we want to formalize tasks that
have a duration, may be stochastic, and may involve the ex-
ecution of other tasks. We will therefore turn to the complex
action languages Golog and ConGolog to encode such tasks
as programs. The temporal aspect of tasks will be handled
by using the technique of representing durative actions in the
situation calculus asprocesses, that is, by means of a “start”
and an “end” action, plus a fluent that holds in situations
when the process is executing.

Consider the task “anti-sub operation with submarines”
mentioned above. This task takes a timet and a regionr as
parameters. The regionr must be of type “sea sub-surface”
(denoted bySeaSubSurf ). The main effect of the task,
when successfully executed, is “control established” for the
regionr. There may be other effects such as resource con-
sumption. Suppose we specify a duration of 32 units of
time.1 The task is defined by means of the statements (1),
whereδ1 stands for the following Golog program:

δ1 =

{

(π te).endT ime(aswWsubs, t, te) ;
st aswWsubs(r, t) ;
end aswWsubs(r, te)

Here, the expression(π te).endT ime(aswWsubs, t, te) is
used to compute the time the task is to terminate.endT ime
is a macro defined as follows:

endT ime(tsk, t, te)
def
=

(πd)[tskDur(tsk, d)? ; (te = t + d)?].

The last two lines inδ1 are actions for starting and ter-
minating the task. The start action,st aswWsubs(r, t) is a
stochastic action (and modeled as in stGolog (Reiter 2001)).
The terminating actionend aswWsubs(r, t) is a primitive
deterministic action. In our military operations planningex-
ample, we only consider two outcomes for stochastic ac-
tions: success and failure. For actionst aswWsubs(r, t),
the outcomes are modeled by means of the primitive ac-
tions stS aswWsubs(r, t) and stF aswWsubs(r, t). In
general, however, any finite number of outcomes is possi-
ble.2 These actions are axiomatized as follows.

• Action precondition axioms for the primitive start and end
actions:

Poss(stS aswWsubs(r, t), s) ≡
(∃s)available(submarines, n, s)∧ n >= 2,

Poss(stF aswWsubs(r, t), s) ≡
(∃s)available(submarines, n, s)∧ n >= 2,

Poss(end aswWsubs(r, t), s) ≡ aswWsubsExe(r, s).

The only requirement for starting this task, is that two sub-
marines be available. Terminating the task is possible iff
the task is executing.

1For simplicity, we use constant amounts of resources and du-
rations, but in general these may be determined by other factors,
such as properties of the current situation.

2The probabilistic part of the formalization is important but not
our main concern in this paper, thus from now on we leave it out.

• A “process” fluent that holds while the task is occurring:

aswWsubsExe(r, do(a, s)) ≡
(∃t).a = stS aswWsubs(r, t) ∨

a = stF aswWsubs(r, t) ∨
aswWsubsExe(r, s)∧
¬(∃t)a = end aswWsubs(r, t).

• Choice of outcomes and their probabilities for the
stochastic actionst aswWsubs(r, t):

choice(st aswWsubs(r, t), c) ≡
c = stS aswWsubs(r, t) ∨ c = stF aswWsubs(r, t),

prob0(stS aswWsubs(r, t), st aswWsubs(r, t)) = 0.8
prob0(stF aswWsubs(r, t), st aswWsubs(r, t)) = 0.2

Let us consider next a task that triggers the execution of
a subtask before it starts. Similar to the task above, it rep-
resents an anti-submarine operation that achieves controlof
a region of type “sea sub-surface,” but uses frigates instead
of submarines. Because it uses frigates, it requires control of
the air-space before it starts. This task, with a given duration
of 4 units of time, is defined as follows:

task(aswWfrigates, r, t, δ2),
tskTypes(aswWfrigates, SeaSubSurf),
tskRes(aswWfrigates, frigate, 2),
tskDur(aswWfrigates, 32),
achievesG(aswWfrigates, controlEst(r)),

where

δ2 =



















achieve(airCtrlEst, r, t) ;
(π tnow).start(now, tnow)? ;
(π te).endT ime(aswWfrigates, tnow, te)? ;
st aswWfrigates(r, tnow) ;
end aswWfrigates(r, te)

The first line calls a procedureachieve(airCtrlEst, r, t).
By means of this special procedure, tasks may invoke other
tasks in order to satisfy some condition (in this case, air con-
trol of region r). Note that the task does not invoke any
particular task to satisfy the condition. The achieve proce-
dure will, non-deterministically, choose a task among those
specified as capable of achieving the goal “air control es-
tablished,” and execute it. The information about which
tasks are capable of achieving which goals is provided by
the knowledge engineer by means ofachievesG statements
as shown earlier. In a later section we show how theachieve
procedure is defined. Once such a subtask has executed, the
current timetnow is obtained, and start and end actions are
subsequently executed at the appropriate times.

Since the attempt to achieve “air control established”
could have failed, the actionst aswWfrigates(r, t) has
that property as a precondition, in addition to the required
number of resources:

Poss(st aswWfrigates(r, t), s) ≡
airCtrlEst(r, s) ∧
available(frigates, 2, s).



In general, tasks will be ConGolog programs of the form:

[achieve(subtask1, ~x1, t) ‖
. . .
achieve(subtaskk, ~xk, t)] ;
(π tnow).start(now, tnow)? ;
(πte).endT ime(tsk, tnow, te)? ;
st task(~x, tnow) ;
end task(~x, te)

We use programs with the ConGolog construct for con-
currency,‖, because the conditions required to be satisfied
before the task starts can often be attempted in parallel. If
some need to be attempted earlier than others, the‖ con-
struct can be replaced with Golog’s sequential construct;
and nesting used as necessary.

Task Execution
A task is executed by 1) checking the arguments are of the
right types, 2) substituting the arguments in the body of the
task, and 3) executing the body. Let us introduce two more
abbreviations. One for type checking the arguments of a
task:

typeCheck(tsk, x1, . . . , xn)
def
=

(∃t1, . . . , tn)[tskTypes(tsk, t1, . . . , tn) ∧
∧

i=1,...,n type(xi, ti)]

and the other one for task execution:

execTask(tsk, ~x)
def
=

typeCheck(tsk, ~x)? ;
(∃δ).task(tsk, ~x, δ)? ;
δ

(2)

So executing, say, taskaswWsubs with arguments
Region1 and timeT0, is implemented as the execution of
the (Con)Golog program:

execTask(aswWsubs, Region1, T0).

We are assuming here that type information for domain
objects is contained in the knowledge base through a predi-
catetype(x, t). We briefly come back to this later.

Achieving Goals
The two tasks discussed above,aswWsubs and
aswWfrigates, represent two different ways of achieving
the same thing, namely, establishing control of a region of
type “sea sub-surface”. They differ on the means used to
achieve this goal: one uses submarines and the other uses
frigates, and have different durations, success probabilities,
and subtask requirements.

Using these two tasks, we specify anachieveprocedure
for the goal “establish sea subsurface control”, denoted by
the fluent seaSubSurfCtrl. This procedure will non-
deterministically choose among the tasks specified as capa-
ble of achieving this goal and execute it. This simple proce-
dure is defined in Golog as follows:

proc achieve(seaSubSurfCtrl, reg, t)
seaSubSurfCtrl(reg)? |
execTask(aswWsubs, reg, t) |
execTask(aswWfrigates, reg, t)

endProc

Notice that one of the choices for achieving this goal is
to do nothing other than successfully test that the goal is
already true. The other two choices consist in executing
one of the tasks discussed earlier, that were specified by an
achievesG statement as capable of achieving this goal.

Generalized Tasks
A collection of tasks can also be organized based on the level
of generality. A task can be related to another task by being
a more general or specific version of another. A task may
be more specific than another by virtue of taking a subset of
the parameters, or because it requires some of the parame-
ters to have a specific value, or because it requires some of
the parameters to be of a subtype of the type of parameters
accepted by the more general task.

For example, suppose that in addition to the tasks
aswWsubs and aswWfrigates, which take a region of
type seaSubSurf (sea sub-surface) as parameter, there
is also a taskmarEscortOp (maritime escort operation)
which has a region of typeseaSurf (sea surface) as a pa-
rameter and is capable of producingseaSurfCtrl as an ef-
fect (it establishes control of the sea surface region). Sup-
pose also that we know thatseaSurf andseaSubSurf are
both subtypes ofseaRegion. Then, given the definitions of
these three tasks, we may want to define another task, gen-
eralizing them, that takes a parameter of typeseaRegion
and, when successful, establishes control of such a region.
A simple approach one can follow then is to define the gen-
eral task as the execution of one of the more specialized
tasks, according to the subtype of the parameter passed to
it. Since type checking is done as part of task execution (see
abbreviation (2)), we can define the general task using the
non-deterministic choice construct of Golog:

execTask(ctrlSeaRegion, reg, t)
def
=

execTask(aswWsubs, reg, t) |
execTask(aswWfrigates, reg, t) |
execTask(marEscortOp, reg, t).

For the case where tasks are more specific by virtue of
assuming some of the parameters to have specific values,
we need to include these constraints on parameters. Con-
sider an example borrowed from (Lifschitz & Ren 2006)
(this proceedings) where a generalmoveaction is related
to the specialized move actionspush boxand walk. The
push box action is always performed byMonkey and the
object being moved is alwaysBox. Thus the action has
only one parameter,loc, for the location the box is pushed
to. The actionwalk takes two parameters:agent and loc,
for the agent doing the walking and the location the agent
is walking to. The definitions of these tasks may include
the following assertions:task(pushBox, loc, t, δpB) and



task(walk, agent, loc, t, δw). A generalized move action
could be defined in terms of these specialized actions, by
including constraints on parameters together with execution
invocation:

execTask(move, a, o, l, t)
def
=

[(a = Monkey ∧ o = Box)? ; execTask(pushBox, l, t)] |
[(a = o)? ; execTask(walk, a, l, t)].

It is easy to imagine a huge number of specialized ver-
sions ofmove that could be included in the above definition.
For example, driving, taking a bus, riding a bike, would be
variations of move similar to walking in that the object being
moved is the agent itself.

On the other hand, we may also want to consider cases
where the more specific task requires more, rather than less,
parameters than the general one. For instance, riding a bus
from some location to another, could have a bus route num-
ber and a pair of locations (origin/destination) as parameters.
In this case defining riding a bus as a special case of move
requires choosing values for the extra parameters:

execTask(move, a, o, l, t)
def
=

(a = o)? ;
(π bus, stop)
[(∃l′)(atLoc(a, l′) ∧ nearby(l′, stop))? ;
execTask(rideBus, a, bus, stop, l, t)] |

. . .

Type Information
As we mentioned earlier, part of the information that we as-
sume to be encoded together with the task library is type
information. We are assuming that the knowledge base in-
cludes information such astype(Region1, seaSubSurf).

Generalized tasks together with type information allows
for interesting queries, such as Q1, where we knowR is of
type regionbut have no information on whether it is aland
region, sea region, or aairspace region. Given a task that
generalizes tasks specific for these three regions, we may
compute a corresponding answer for each of the three types
of region. We are currently working on a suitable treatment
of type information, which appears to be necessary in order
to handle the more interesting queries.

Implementation
We have implemented a version of the task library for the
military operations planning domain. Building on the inter-
preters of some of the variations of Golog and ConGolog
available from the U. of Toronto Cognitive Robotics group,
we put together an interpreter for a stochastic, temporal ver-
sion of ConGolog (let us call it sttConGolog). The inter-
preter is written in Eclipse Prolog and it uses Eclipse’s con-
straint library to solve the constraint problem that arises
from the use of rationals as the temporal domain in our
sttConGolog programs.

We adapted part of the stochastic Golog (stGolog) inter-
preter (Reiter 2001) that allows us to compute the probabil-
ity of a fluent formula being true after executing a sttCon-
Golog program. This allows us to compute answers to

queries of the forms Q1–Q3, Q5, and Q7. Currently we are
not able to answer queries such as Q4 and Q6 that include
constraints on resources such asfrigatesandaircraft. This
will require a more explicit treatment of resources, but we
believe that it will not be too difficult to add.

Conclusions
In this paper we discuss our very preliminary steps towards
building a library of tasks that would be incorporated into
a decision support knowledge base. We have used a mili-
tary operations planning domain to illustrate how stochastic,
temporal tasks can be encoded in the complex action lan-
guages Golog/ConGolog, and organized into a hierarchy ac-
cording to specificity of the tasks and of type information.
Such a hierarchical organization of a task library seems to
be useful in the development of a query answering system.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. InProcs. of the 14th
International Conference on (ICAPS’04).
De Giacomo, G.; Lesperance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121:109–169.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning.Annals of
Mathematics and Artificial Intelligence18:69–93.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains.Journal of Logic Program-
ming31(1–3):59–83.
Lifschitz, V., and Ren, W. 2006. Towards a modular action
description language. InProcs. of the AAAI Spring Sym-
posium: Formalizing and Compiling Background Knowl-
edge and Its Applications to Knowledge Representation
and Question Answering.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed.,Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces.Artificial Intelligence5:115–135.


