
Formalizing Complex Task Libraries in Golog
Alfredo Gabaldon1

Abstract. We present an approach to building libraries of tasks in
complex action languages such as Golog, for query answering. Our
formalization is based on a situation calculus framework that allows
probabilistic, temporal actions. Once a knowledge base is built con-
taining domain knowledge including type information and a library
of tasks and the goals they can achieve, we are interested in queries
about the achievability of goals. We consider cases where, using do-
main object type and goal information in the KB, a user is able to
get specific answers to a query while leaving some of the specifics
for the system to figure out. In some cases where the specifics are
missing from the KB, the user is provided with the possible alterna-
tive answers that are compatible with the incomplete information in
the KB. This approach is being explored in the context of a military
operations planning domain for decision support.

1 Introduction
Complex activity planning as required in military operations, the
construction industry, software development, etc., is usually carried
out by expert hand from scratch or by reuse and adaptation of solu-
tions to similar, previous problems. Computer assistance is used for
solving the resulting scheduling problem, usually only after the set of
activities necessary to achieve the desired goal has been chosen. The
activity planning phase is thus time consuming because it is done by
hand, and expensive because it requires domain expertise.

We are interested in building libraries of tasks in the situation cal-
culus based action programming languages Golog [4] and its rela-
tives. One motivation is the possibility of mitigating the time and cost
overhead in complex activity planning by developing techniques that
allow the reuse of libraries of tasks in an (ideally) automatic way.
Although domain experts would still be required during the initial
construction of such a library, once a library containing a substantial
amount of knowledge in the form of domain-specific, detailed tasks
for achieving a number of goals, the cost incurred in this initial phase
would be amortized over the many problems solved by reusing that
knowledge. In order to achieve this, the library has to be in a form
that can be reused by users who are not necessarily domain experts.
For example, we would like the library to allow planning for the con-
struction of a building on a soft clay ground, without consulting with
an expert on how to lay foundations on such a ground if the library
contains tasks for doing that. In this case, it should be enough to sim-
ply specify the type of ground, the type of building, and so on, in
order to obtain from the library a detailed construction plan. If some
details are missing or underspecified, we ultimately would like the li-
brary to provide alternative plans, possibly including costs and risks.

Toward this end, we consider formalizing tasks and task execution
in a stochastic, temporal version of Reiter’s action theories in the sit-

1 National ICT Australia and U. of New South Wales, Sydney, Australia,
alfredo@cse.unsw.edu.au

uation calculus [6]. A task is defined by means of a set of axioms in
the action theory, together with a Golog program. We also allow the
user to specify properties (goals) that tasks are capable of bringing
about, so that, given a goal, relevant tasks are executed without ex-
plicit invocation. This notion is useful for our purposes of designing a
general task library that can be utilized by non expert users. Once this
framework is in place, we then consider ways of generalizing goal
achievement so that more of the burden required in retrieving infor-
mation is shifted from the user to the knowledge base that contains
the library. In particular, we consider the use of generalized goals
so that tasks that achieve a very specific goal is also attempted on
generalized versions of the specific goal. We also consider a form of
generalized query based on compatible types of objects so that use-
ful answers are obtained even in the case of incomplete information
about domain objects’ types. We have implemented this framework
in Prolog building on the interpreters of the action programming lan-
guages mentioned above. The full version of this paper [3] contains
a detailed description of this framework and sample runs obtained
from the implementation.

2 Background
As a practical footing for our work, we consider a military oper-
ations planning problem described in [1]. Roughly, a problem in-
stance in this domain consists of a description of a set of tasks,
e.g. “anti-submarine operation”, which are similar but more complex
than actions in classical planning, together with a description of the
initial state, including numerical quantities of available resources. A
task description includes a duration, multiple possible outcomes with
corresponding probabilities, resource requirements, and other pre-
conditions. Also included are statements about goals that tasks can
achieve, which are used to invoke relevant tasks as required by a goal.
Moreover, some tasks require subgoals to hold prior or during their
execution. These last two characteristics of tasks in this application
resemble how Hierarchical Task Networks (HTNs) [2] and complex
action languages like Golog operate. We appeal to the latter in this
work, since these languages are based on a formal, logic foundation
that allows stochastic, temporal actions, and is first-order [6].

One of the motivations for building a library of tasks is for us-
ing it in decision support. We are thus interested in query answering
with respect to the library. For instance, we’d like to be able to issue
queries such as: what is the prob. of achieving control of sea region
r2?, and obtaining answers such as: A1: prob=0.8, executcing tasks:
aswWsubs,... A2: prob=0.75, executing tasks: aswWfrigates,... cor-
responding to two available ways of achieving the goal in the query.

3 Executing Tasks and Achieving Goals
As part of the specification of a task as described above, a “body” is
defined in the form of a Golog program δ to be executed when the



task is invoked. A task is executed by 1) checking the arguments are
of the right types, 2) substituting the arguments in the body of the
task, and 3) executing the body.We formalize the execution of a task
as the following Golog procedure:

proc execTsk(tsk, ~x, t)
typeCheck(tsk, ~x)? ;
(∃δ).task(tsk, ~x, t, δ)? ;
δ

endProc
The definition of a task also includes declarations of what goals it
can achieve. This allows requests that a goal be achieved without
referring to a particular task. This is important for our purpose of de-
signing libraries that can be used by non experts once the background
knowledge has been stored in the libraries. For making such requests
of achieving a goal, we define a procedure achieve(goal, ~x, t). In
general there may be multiple tasks capable of achieving the same
goal. For instance, the two tasks mentioned above, aswWsubs and
aswWfrigates, represent two different ways of establishing con-
trol of a region of type “sea sub-surface”. Thus the achieve proce-
dure is defined so that it non-deterministically chooses a task from
among those that can achieve the goal, and executes it.

proc achieve(goal, ~x, t)
goal(~x)? |
(π tsk)[achievesG(tsk, ~x, goal)? ;

execTsk(tsk, ~x, t)]
endProc

Notice that one of the choices for achieving the goal is to do nothing
other than successfully test that the goal is already true. (π x) means
choose an x, and δ1|δ2 means choose between executing δ1 and δ2.

4 Generalized goals and achieve

A successful execution of a task, as defined above, requires that the
parameters be of the correct type for the task. For instance, execut-
ing task aswWsubs on a region reg will only be successful if the
knowledge base contains the fact that reg is of type seaSubSurf .
Since we are interested in query answering we consider generalizing
our framework so that goals, and goal achievement can be organized
into a hierarchy based on specificity.

Consider a scenario where a user issuing queries is interested in
control of region reg, which he knows to be a sea region, but not
whether it is a sea surface or a sea sub-surface. Suppose that the user
does not know, but the info about the specific type of reg is in fact
stored in the system. In such a situation, we would nevertheless like
to be able to check if the goal seaRegionCtrlEst can be achieved
for reg. The library should be able to invoke an appropriate task for
reg based on its type, even if the user is not aware of it. However, we
need to endow the system with the ability to figure out that, for ex-
ample, if the more specific goal seaSubSurfCtrlEst is achieved,
this implies that the more general goal seaRegionCtrlEst has also
been achieved. The fact that one goal is a generalized version of an-
other cannot be derived from type information alone as it also de-
pends on the nature of the goals, which in our case are all about
establishing control of a region. Thus we will rely on the knowledge
engineer to provide additional information by means of statements
of the form: generalizedG(generalGoal, specificGoal). Since
tasks that achieve a specific goal also achieve the less specific ver-
sion of the goal, we can then define a generalization of achievesG
capturing this relationship between goals by means of these state-
ments and axiom:

achievesG(tsk, ~x, g) ≡ achievesG0(tsk, ~x, g) ∨
generalizedG(g, g′) ∧ achievesG0(tsk, ~x, g′)

This results in the invocation of specific tasks, if necessary and avail-
able, for attempting to achieve a generalized goal. Type information
plays a critical role in this.

Consider again the scenario mentioned above, but this time let us
assume that the KB does not contain any info on whether reg is of
type seaSurf or seaSubSurf . In this case, none of the specific
tasks will execute since their type-check tests fail. Nevertheless,
if the system knows reg is a sea region, then for a query whether
control of reg can be achieved, we would like to obtain an answer
that is more useful than “don’t know”. For instance, if a sea region
must be either a seaSurf or a seaSubSurf , the system could
give answers corresponding to these alternatives. For this, we
introduce a test to check if the arguments passed to a task are
“compatible” with the types required, where “compatible” is defined
in terms of possible sub-types. Then we introduce execution of
compatible tasks as a procedure execCompTsk(tsk, ~x, t) similar
to execTsk(tsk, ~x, t), but with a type-compatibility test instead
of the strict type-check. Finally, we modify procedure achieve so
that it tries compatible tasks when no specific task can execute:

proc achieve(goal, ~x, t)
goal(~x)? |
(π tsk)[achievesG(tsk, ~x, goal)? ; execTsk(tsk, ~x, t)] |
[(∀ tsk′)(achievesG(tsk′, ~x, goal) ⊃ ¬typeCheck(tsk′, ~x))? ;

(π tsk)[achievesG(tsk, ~x, goal)? ;
execCompTsk(tsk, ~x, t)]]

endProc

5 Conclusions
In this paper we present preliminary ideas on building a knowledge
base containing a library of tasks for query answering. We have
shown an encoding of stochastic, temporal tasks, and their execu-
tion, as complex actions in programming language Golog and its rel-
atives. We consider how such a library can be used together with
information about a domain’s object types to handle queries about
the achievement of goals. We have also considered how to make the
knowledge base more robust by allowing users to obtain useful an-
swers even in cases where queries lack some degree of specificity,
and where the knowledge base lacks detailed info about the types of
certain domain objects. Much work remains to be done, including a
proof of correctness of our implementation and extending the system
to handle a larger class of queries.

REFERENCES
[1] Douglas Aberdeen, Sylvie Thiébaux, and Lin Zhang, ‘Decision-theoretic

military operations planning’, in Procs. of ICAPS’04, (2004).
[2] Kutluhan Erol, James A. Hendler, and Dana S. Nau, ‘Complexity results

for hierarchical task-network planning’, Annals of Mathematics and Ar-
tificial Intelligence, 18, 69–93, (1996).

[3] Alfredo Gabaldon, ‘Encoding Task Libraries in Complex Action Lan-
guages’, Avail. at http://cse.unsw.edu.au/∼alfredo/papers.html (2006).

[4] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl, ‘Golog:
A logic programming language for dynamic domains’, Journal of Logic
Programming, 31(1–3), 59–83, (1997).

[5] R. Reiter, ‘The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression’, in Artificial
Intelligence and Mathematical Theory of Computation, ed., V. Lifschitz,
359–380, Academic Press, (1991).

[6] Ray Reiter, Knowledge in Action: Logical Foundations for Describing
and Implementing Dynamical Systems, MIT Press, (2001).


