
Resolving Non-Determinism in Programs for Complex Task Planning with Search
Control

Alfredo Gabaldon
National ICT Australia,

School of CS and Eng., UNSW
Sydney, Australia,

alfredo@cse.unsw.edu.au

Abstract

We consider the problem of planning in complex domains
where actions are stochastic, non-instantaneous, may occur
concurrently, and time is represented explicitly. Our approach
is based on the situation calculus based language Golog. In-
stead of general search for a sequence of actions, as in classi-
cal planning, we consider the problem of computing a deter-
ministic, sequential program (with stochastic actions as prim-
itives) from an underspecified, non-deterministic, concurrent
program. Similar to the search for a plan, the process of ob-
taining a deterministic program from a non-deterministic one
is carried out offline, with the deterministic program obtained
by this process then being available for online execution. We
then describe a form of domain-dependent search control that
can be used to provide some degree of goal-directedness to
the search for solutions in this setting, and also show how a
simple programming construct for probabilistic tests can be
used for further prunning of the search space.

Introduction
We consider the problem of planning in complex do-
mains where actions have stochastic outcomes, have a non-
instantaneous duration, may execute concurrently, and time
is represented explicitly. Planning in such domains is a
challenge to the current state-of-the-art in planning (Bresina
et al. 2002). Recent developments in response to this
challenge have been reported. Mausam & Weld (Mausam
& Weld 2004) extend Markov Decision Processes (MDPs)
to allow concurrency. Little et al. (Little, Aberdeen, &
Thiébaux 2005) present a planner for actions with prob-
abilistic effects and non-instantaneous actions. Little &
Thiébaux (Little & Thiébaux 2006) extend the Graphplan
approach for probabilistic, concurrent (but instantaneous)
actions. Mausam & Weld (Mausam & Weld 2005) extend
concurrent MDPs with durative actions.

In this paper we consider this problem in the frame-
work of the situation calculus Basic Action Theories of (Re-
iter 1991) and the complex action programming languages
Golog (Levesque et al. 1997), ConGolog (De Giacomo,
Lesperance, & Levesque 2000), and their variants. These ac-
tion theories have a higher expressive power than the above
planning frameworks. For instance, in these theories the set

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of outcomes of a stochastic action and their corresponding
probabilities may vary according to the state where the ac-
tion occurs. As far as we know, in all of the probabilistic
planning frameworks mentioned above, the possible set of
outcomes and their probabilities are fixed and context inde-
pendent. On the other hand, a more restricted class of prob-
lems allows some planning systems to gain computationally.

Moreover, we consider the problem from the more gen-
eral perspective of solving the following: given a high-level
non-deterministic program δ, a formula φ and a probabil-
ity lower-bound p, compute a sequence of stochastic actions
such that 1) it represents one of the possible ways in which
the execution of δ may proceed, and 2) its execution will
result in a state where formula φ holds with probability at
least p. If the program δ used is a planning procedure, then
we will be solving a planning problem.

The motivation behind taking the above perspective, how-
ever, is to be able to take advantage of certain types of con-
trol knowledge that can be used to inform the search for so-
lutions. Control knowledge has been successfully used in
some classical planning systems, e.g., (Bacchus & Kabanza
2000; Kvarnström & Doherty 2000). These two systems in
particular use declarative control knowledge in the form of
linear-temporal logic formulas to prune the search space of
their forward-chaining algorithms. A similar approach has
also been applied with Golog-based planners (Reiter 2001;
Gabaldon 2003). In this work, however, we consider a
form of control that allows one to engage some of the goal-
directedness typical of regression-based planners, while still
building solutions in a forward-chaining manner. This, how-
ever, does not preclude the possibility of combining this
form of control with that used in the previous approaches.

Preliminaries
We briefly review the main components of Reiter’s Basic
Action Theories and of action programming languages.

Basic Action Theories
These theories are dynamic domain axiomatizations in the
situation calculus (sitcalc) (McCarthy & Hayes 1969). Ac-
tions, situations, and objects are first-class citizens with cor-
responding sorts. Fluents, actions and situations, are the
main ingredients of a sitcalc formalization of a dynamic do-
main. Intuitively, fluents are the properties of the domain

that change when actions occur, and situations are sequences
of actions that represent possible ways in which the domain
may evolve. A special constant S0 denotes the initial situ-
ation. Other situations can be constructed as terms formed
with the reserved function symbol do.

A Basic Action Theory D consists of the following set of
axioms (lower-case letters denote variables, which are im-
plicitly prenex universally quantified when they appear free.
~x denotes a vector of variables x1, . . . , xn):

1. For each action function A(~x), an Action Precondition
Axiom of the form: Poss(A(~x), s) ≡ ΠA(~x, s), where s
is the only term of sort situation in formula ΠA(~x, s).

2. For each fluent F (~x, s), a Successor State Axiom of the
form: F (~x, do(a, s)) ≡ ΦF (~x, a, s), where s is the only
term of sort situation in formula ΦF (~x, a, s).

3. A set of axioms describing the initial sitate of the world.
4. The Foundational Axioms Σ which axiomatize situa-

tions in terms of the constant S0 and the function do.

This set of axioms is for deterministic actions. Stochastic ac-
tions are formalized in this setting by defining them in terms
of deterministic ones representing the possible outcomes.
The outcomes are thus standard actions and are first-class
citizens in the sitcalc language, while stochastic actions are
defined through abbreviations as described below.

The possible outcomes of a stochastic action A(~x) are de-
scribed by an abbreviation of the form:

choice(A(~x), c) def= c = O1(~x) ∨ . . . ∨ c = Ok(~x).

The probability that executing a stochastic action A(~x) re-
sults in the execution of outcome O(~x) is given by a sentence
denoted by prob0(O(~x), A(~x), s). Note that the probability
that executing a stochastic action result in a particular out-
come depends on the situation where the stochastic action
is executed. This means that the probabilities may vary ac-
cording to the circumstance at the time of execution. For full
details on representing stochastic actions and extending ac-
tions theories with explicit time, as we shall use them here,
we refer the reader to (Reiter 2001).

Action Programming Languages
The action programming languages Golog (Levesque et al.
1997), ConGolog (De Giacomo, Lesperance, & Levesque
2000) and its variants provide Algol-like programming con-
structs for defining complex actions on top of an underlying
basic action theory as defined above. Without going into
the formal details, we briefly review some of the constructs
available in these languages.
The following are some of the constructs provided in Golog:

• Test action: φ?. Test whether φ is true in the current situ-
ation.

• Sequence: δ1; δ2. Execute program δ1 followed by pro-
gram δ2.

• Nondeterministic action choice: δ1|δ2. Nondeterministi-
cally choose between executing δ1 or executing δ2.

• Nondeterministic choice of arguments: (πx)δ. Choose a
value for x and execute δ with such a value for x.

• Procedure definitions: proc P (~x) δ endProc . P (~x) be-
ing the name of the procedure, ~x its parameters, and pro-
gram δ its body.

ConGolog extends Golog with a number of constructs. The
most relevant for our purposes is the following:
• concurrent execution: δ1‖δ2.

Intuitively, the execution of a complex action δ1‖δ2 results
in the execution of one of the possible interleavings of the
primitive actions that result from δ1 with those from δ2. If
there is no interleaving that is executable (the preconditions
of each action are satisfied at the appropriate moment), then
the execution of δ1‖δ2 fails.

A semantics for these languages is captured through a re-
lation Do(δ, s, s′), meaning that executing the program δ in
situation s results in situation s′. When stochastic actions
are included, an additional argument p is included denot-
ing the probability of arriving at situation s′. Given a back-
ground theory D including an axiomatization of this rela-
tion, executing a program δ in a situation s is defined as the
problem of finding a sequence of actions ~α such that

D |= Do(δ, s, do(~α, s)).

Representing Tasks and Plans
As mentioned above, we are interested in domains that in-
volve actions that are stochastic, have a duration, and may
execute in parallel. In this section we describe our formal-
ization of such actions. Since these actions are not primitive
constructs in the framework, we will refer to them as “tasks”
to distinguish them from the primitive, deterministic actions.

The description of a task consists of several items. As a
name for a task, we will use a term Tsk(~x). The name of
a task thus includes a vector ~x of parameters similar to the
arguments of a standard primitive action. Since we will for-
malize tasks in the situation calculus, we will formalize them
as complex actions defined in terms of primitive ones. Thus,
the description includes a set of primitive actions oTski(~x)
called outcomes. The preconditions and effects of a task are
determined and vary according to each outcome. For each
outcome o of a task tsk, we must provide an action precon-
dition axiom, plus a probability specified by means of sen-
tences prob0(o, tsk, s). The duration of the task is specified
by means of macro:

duration(tsk, s) = d
def= ∆(tsk, d, s).

Given a description of a task, the next step is to specify
how tasks execute. The standard approach to modeling du-
rative actions in the situation calculus is to model them as
processes. This is done by means of a start action, an end
action and a fluent that holds only while the process is oc-
curring, i.e., during the time between the occurrence of the
start and the end actions.

Since we use terms of the situation calculus as names of
tasks, we can use a single start and end action for all tasks by
including the task name as an argument. A second argument
for these actions will be the occurrence time: the action term
sT (tsk, t) denotes the start action and the term eT (tsk, t)

the end action, where tsk is a task, and t is the temporal
argument.

The start action sT (tsk, t) is stochastic: it results in the
execution of one of the outcomes of tsk. The end action we
will make deterministic here, but it could be made stochastic
if necessary by providing another set of outcomes. So we
specify the start action for each task Tsk(~x) by means of a
choice macro:

choice(sT (Tsk(~x), t), c) def=
c = oTsk1(~x, t) ∨ . . . ∨ c = oTskk(~x, t).

The “plans” we intend to compute consist of sequences
of task start and end actions. Since the start and possibly
also the end action is not primitive, instead of sequences of
primitive actions, i.e., situations, we will compute sequential
Golog programs.

Definition 1 A sequence of actions (or simply, sequence) is
a Golog program α1;α2; . . . ;αn, where each αi is a start
action sT (Tsk(~x), t) or an end action eT (Tsk(~x), t).

Clearly, several different situations (sequences of primi-
tive, deterministic outcome actions) can result from execut-
ing a sequence, each with a corresponding probability.

The probability that a formula φ holds after executing a
sequence σ can be defined as follows:

probF (φ, σ) def=
∑

{(p,s′)|Do(σ,p,S0,s′)∧φ[s′]}

p

Programming and Planning with Tasks
The encoding of tasks and the definition of sequence in hand,
we can intuitively describe the problem we are interested
in solving as follows: given a non-deterministic program, a
goal and a number p, compute a sequence that achieves the
goal with probability at least p and such that the sequence
corresponds to one of the possible ways in which the non-
determinism in the program may be resolved. The following
definitions make this precise.

Definition 2 A task execution problem is a triple (δN , φ, p)
where δN is a Congolog program whose primitive actions
are of the form sT (tsk, t) and eT (tsk, t), φ is a situation
suppressed formula, and p a real number s.t. 0 < p ≤ 1.

The following definition describes when a sequence is a
solution to a task execution problem.

Definition 3 A sequence δD is a solution for the task exe-
cution problem (δN , φ, p), iff

1. D |= (∃s′).Do(δD, S0, s
′), i.e. δD is executable;

2. D |= (∀s′).Do(δD, S0, s
′) ⊃ Do(δN , S0, s

′);
3. probF (φ, δD) ≥ p.

If the program δN happens to implement a planning algo-
rithm, then the problem (δN , φ, p) is a probabilistic planning
problem similar to how (Kushmerick, Hanks, & Weld 1995)
defines it. It is in fact not difficult to write a simple planner
for tasks using a subset of the Golog constructs. Figure 1
shows one such planner. It takes a bound n on the number of
tasks a plan may contain and performs a depth-first search.

proc dfplan(n)
G? |
[n > 0?; (π tsk)sT (tsk, timeNow); dfplan(n− 1)] |
[(π tsk, tend)(tend = duration(tsk) + timeNow)? ;

eT (tsk, tend) ; dfplan(n)]
endProc

Figure 1: A simple bounded forward-search temporal task
planner in stGolog.

The planner can choose between starting a task, which is fol-
lowed by a recursive call with a decreased bound, or ending
one of the tasks currently executing, which is followed by
a recursive call with the same bound. Parameter n bounds
task usage, not plan length, so the planner will consider all
possible interleavings of n tasks: plans where the execution
of all n tasks overlaps (provided preconditions allow that,
of course), plans where the execution is completely sequen-
tial, and all the possibilities in between. Parameter n can of
course be used to conduct a search in a manner similar to
iterative-deepening.

Conducting a blind search for a solution in this manner
is computationally too onerous, especially considering that
tasks are allowed to execute in parallel. In classical plan-
ning, one alternative that has been employed with great suc-
cess is the use of declarative search control (Bacchus & Ka-
banza 2000). This approach has been used in the situation
calculus with the simple Golog planning procedures in (Re-
iter 2001) and it would be easy to use it with the planner
in Fig. 1. We do not explore this alternative in this paper
though. Instead, in a later section we consider two addi-
tional and complementary ways to exert search control.

Resolving Non-Determinism in Programs
We turn now to the question of computing a sequence that
solves a problem (δN , φ, p). This task is similar to the task
carried out by the interpreters of Golog and its relatives:
given a program, the interpreters compute a situation that
corresponds to a successful execution trace. In our case, in-
stead of a sequence of primitive actions, we want to compute
a sequence as in Definition 1. Thus we define an operator be-
low that takes a non-deterministic program δN and computes
sequences that are deterministic instances of δN . In the fol-
lowing subsection we discuss another difference regarding
test actions.

Tests
Given a task execution problem, we want to use the proba-
bilities to make all decisions offline while computing a solu-
tion. Although the extensions of Golog that allow stochastic
actions include tests, it seems useful to reconsider how tests
are handled. In stGolog, for example, the semantics of pro-
grams is defined in such a way that every execution trace
either satisfies all tests, or if a test fails, the program ter-
minates without executing any remaining actions. For the
problem we are interested on, this seems to be too strong, as

it can lead to the elimination of programs that actually are
likely enough to be successful, and in some cases can lead
to too pessimistic estimates of the probability of success.

We thus introduce a new construct for testing that a for-
mula holds with a lower bound probability: lbp(φ, p, σ),
where σ is a sequence and 0 ≤ p ≤ 1. The definition of
this probabilistic test is as follows:

lbp(φ, p, σ) def= probF (φ, σ) ≥ p.

Similar to situation suppressed formulas, when lbp(φ, p, σ)
appears in programs, it will do so with parameter σ sup-
pressed, which will be replaced with the “current sequence”
when computing a solution, as shown below. We still use
standard tests φ? but only for situation independent φ.

Computing a Sequence
Given a non-deterministic program δN , the task is to obtain
a deterministic program δD for online execution. We define
such a computation by means of a relation Det(δN , δD) that
intuitively holds if δD is one of the deterministic versions of
δN (Theorem 1 below makes this precise). We define this
relation in terms of a slightly more involved relation that
intuitively defines the computation step-by-step in terms of
program pairs: Det(δN , δD, δ′N , δ′D) intuitively means that
the pair (δ′N , δ′D) is one of the possible results of apply-
ing one step of the computation to the pair (δN , δD). The
computation would normally start with δD = nil and termi-
nate with a δN = nil. We use this approach for two rea-
sons: first, in order to resolve a test in δN , we need access
to the deterministic δD that corresponds to the segment of
δN that precedes the test. Second, the Congolog construct ‖
seems to require this kind of transition semantics. Relation
Det(δN , δD, δ′N , δ′D) is inductively defined as follows:

Det(α, δD, δ′N , δ′D) ≡ (δ′N = nil) ∧ (δ′D = δD;α),
Det(φ?, δD, δ′N , δ′D) ≡ (δ′N = nil) ∧ (δ′D = δD) ∧ φ,
Det(lbp(φ, p)?, δD, δ′N , δ′D) ≡

(δ′N = nil) ∧ (δ′D = δD) ∧ lbp(φ, p, δD),
Det(δ1; δ2, δD, δ′N , δ′D) ≡

(δ1 = nil) ∧ (δ′N = δ2) ∧ (δ′D = δD) ∨
Det(δ1, δD, δ′1, δ

′
D) ∧ (δ′N = δ′1; δ2),

Det((π x : R)δ, δD, δ′N , δ′D) ≡ Det(δ|~t∈R
x , δD, δ′N , δ′D),

Det(δ1|δ2, δD, δ′N , δ′D) ≡
Det(δ1, δD, δ′N , δ′D) ∨Det(δ2, δD, δ′N , δ′D),

Det(δ1‖δ2, δD, δ′N , δ′D) ≡
(δ1 = nil) ∧Det(δ2, δD, δ′N , δ′D)∨
(δ2 = nil) ∧Det(δ1, δD, δ′N , δ′D)∨
[(δ1 6= nil) ∧Det(δ1, δD, δ′1, δ

∗
D) ∧ (δ′N = (δ′1‖δ2)) ∨

(δ2 6= nil) ∧Det(δ2, δD, δ′2, δ
∗
D) ∧ (δ′N = (δ1‖δ′2))]

∧ (δ′D = δD; δ∗D),
Det(P (~t), δD, δ′N , δ′D) ≡ Det(δ|~x~t , δD, δ′N , δ′D)

where P is a procedure defined by
proc P (~x) δ endProc .

We have modified the construct (πx)δ by including a
“range” for variable x, in order to instantiate it with a ground
term ~t during the computation of the sequence. This is nec-
essary since it is not possible to make probability of success
guarantees while delaying that choice until execution time.

One way to implement this is to provide a range for the vari-
able x in the form of a relation range(Type, V) where V is
one of a finite number of possible values in the range Type.
For instance, a set of facts range(Block, B1) could be used
describe the range of variables on blocks. This is also the ap-
proach used in DTGolog (Boutilier et al. 2000), where the
same issue arises with the construct π in decision theoretic
Golog.

The transitive closure Det∗ of Det is defined by a second-
order axiom as follows:

Det∗(δN , δD, δ′N , δ′D)
def
= (∀P)[(*) ⊃ P (δN , δD, δ′N , δ′D)]

where the (*) stands for the conjunction of the implications
True ⊃ P (nil, δ, nil, δ),
Det(δN , δD, δ′′N , δ′′D) ∧ P (δ′′N , δ′′D, δ′N , δ′D) ⊃

P (δN , δD, δ′N , δ′D).
Finally, what we are really after can be defined using the

following macro:

Det!(δN , δD) def= Det∗(δN , nil, nil, δD).
Theorem 1 Let δN be a program as in Definition 2. For all
δD such that Det!(δN , δD), we have that:

1. δD is a sequence as in Definition 1,
2. Condition 2 of Definition 3 holds.

So given a task execution problem (δN , φ, p)
all sequences δD such that Det!(δN , δD) and
probF (φ, δD, S0) ≥ p are solutions.

We remark that since programs δN may contain proce-
dures, which can be recursive, it is possible to write a δN

that is non-terminating. For such a program there is no δD

such that Det!(δN , δD).

Search Control
Pruning with Probability Tests
The probability tests lbp(φ, p)? can of course be used to
prune out sequences just as standard tests φ? prune out some
of the situations that can be reached by a Golog program.
Probability tests are useful for expressing domain-dependent
control information such as “if the probability that φ holds
is at least p, execute δ1, otherwise execute δ2.” When this
form of control knowledge is available, this construct allows
pruning out sequence prefixes early in the search and can
thus lead to substantial speed ups. It can potentially lead to
exponential savings, as the following theorem shows. Let
P (δ) = {σ|(∃δ′)Det∗(δ, nil, δ′, σ)}, intuitively, the set of
sequence prefixes σ that are valid according to operator Det.
Theorem 2 There exist programs δ1, δ2 that are syntacti-
cally the same except for the appearance of lbp(φ, p) tests in
δ1, and such that P (δ1) is exponentially smaller than P (δ2).
Consider the programs

δ2 = (A1|B1) ; (A2|B2) ; . . . ; (An|Bn)
δ1 = (A1|B1); lbp(F1, p1)?; . . . ; (An|Bn); lbp(Fn, pn)?

and suppose that each Fi is true after Ai or Bi but not both
and that all Ai, Bi are atomic actions. It is easy to see that
the size of P (δ2) is exponential in n while P (δ1) contains n
prefixes.

Domain Dependent Search Control
The use of declarative domain-dependent search control has
been shown to be a successful approach to making planning
more feasible. The planners described in (Bacchus & Ka-
banza 2000; Kvarnström & Doherty 2000), for instance, use
search control expressed in linear temporal logic to control
forward search in the space of plan prefixes. This type of
control knowledge has also been used for planning in Golog
(Reiter 2001; Gabaldon 2003) and can be used in our frame-
work. Here, however, we explore a different and comple-
mentary form of search control that is readily available in
the real world military operations planning domain we are
considering.

The control knowledge we will use comes in two forms.
The first one is used to specify that a task tsk may achieve a
goal φ, with the intention that during a search for a sequence
that achieves φ, the task tsk should be considered before
tasks that have not been labeled “may achieve φ.” We de-
clared this by a statement of the form:

mayAchieve(tsk, φ).
The second form of search control statement specifies for

a task tsk that it requires a condition φ to be established
before it executes:

requires(tsk, φ).
Given a set of facts of the above forms, we can then de-

fine non-deterministic programs for achieving a goal that
utilize this control knowledge. We define two procedures:
achieve(φ, p) and execTsk(tsk, p). The first one is in-
voked to find a sequence to achieve an atomic goal φ with
probability of success at least p, and is defined as follows:

proc achieve(φ, p)
lbp(φ, p)? |
(πtsk){mayAchieve(tsk, φ)? ;

execTsk(tsk, p);
lbp(φ, p)? } |

plan(φ, p)
endProc

Non-atomic goals are handled by simple programs:
[achieve(φ1, p)‖achieve(φ2, p)]; (φ1∧φ2)? for a conjunc-
tion and [achieve(φ1, p)|achieve(φ2, p)] for disjunction.
Procedure achieve calls execTsk(tsk, p) which is defined
as follows:

proc execTsk(tsk, p)
achieveReq(tsk, p) ;
sT (tsk, now);
(πd){d = duration(tsk)? ;

eT (tsk, now + d) }
endProc

where achieveReq(tsk, p) is an auxiliary procedure that in-
vokes achieve(φi, p) for all φi required by tsk.

Procedure achieve involves a non-deterministic choice
among three subprograms: 1) successfully test that φ is cur-
rently true with sufficient probability, 2) execute one of the
tasks that may achieve φ and check afterwards that φ was in-
deed achieved with sufficient probability, and 3) call a gen-
eral planning procedure with φ as the goal and a lower bound
probability of p. An implementation should make sure the

last alternative is a last resort, since it is a general planning
procedure. The actual planning procedure called here could,
for example, be one based on the planner shown in Fig. 1.

Finding a plan for goal φ and probability p can
then be done simply by computing a sequence δD s.t.
Det!(achieve(φ, p), δD). Clearly, any such δD is a solution
to the problem (achieve(φ, p), φ, p). Notice that the condi-
tions required by a task are also achieved with probability at
least p. This is an instance of pruning using lbp: sequences
where conditions required by a task are not achieved with
probability at least p are pruned away since a lower proba-
bility means the goal itself will not be achievable with suffi-
cient probability.

The two types of control statements are obviously related
to the notions of pre/post-conditions of a program and it is
possible to define them logically, for example, as follows:

mayAchieve(tsk, φ) ≡
(∃s, s′, p).Do(execTsk(tsk, p), s, s′) ∧ p > 0 ∧ ¬φ[s] ∧ φ[s′]

requires(tsk, φ) ≡
(∀s, otsk).choice(otsk, sT (tsk)) ∧ Poss(otsk, s) ⊃ φ[s].

Of course, it would not make sense to use these definitions
directly since proving them is at least as hard as planning.
If a complete set of formulas φ satisfying the above defini-
tions could be pre-computed, we could eliminate the call to
a planner in procedure achieve(φ, p). However, this also
seems too hard: since there are many formulas that satisfy
the above conditions, we would need to find those φ that,
for mayAchieve, are strongest (i.e., for all φ′ satisfying the
definition, φ ⊃ φ′), and, for requires, are weakest (φ′ ⊃ φ
for all other φ′). To make things even more complicated, we
would also need to define mayAchieve for combinations
of tasks: mayAchieve(δE , φ) if δE = (δT1‖ . . . ‖δTk

) for
a minimal set of tasks Ti s.t. Do(δE , s, s′) ∧ ¬φ[s] ∧ φ[s′]
with positive probability. This essentially means we would
need to pre-compute task programs for all achievable φ.

Another reason for not insisting on the above definitions
is that weaker, resp. stronger, formulas for mayAchieve,
resp. requires, can be better heuristics. For example, it
may be a good idea not to include a mayAchieve(tsk, φ)
if φ is only a side effect of tsk. Similarly, we may want
to include requires(tsk, φ) where φ is not a precondition
of all outcomes of the start action of tsk, but only of the
“successful” or “good” start outcomes. For these reasons,
we only consider user supplied search control statements.
As in the case of the planning systems mentioned above that
use control expressed in temporal logic, this type of search
control is also frequently and readily available.

Search control expressed in terms of mayAchieve and
requires is not very useful in flat domains, such as blocks
world with only low level tasks such as move(x, y) and
pickup(x). But in domains with a high degree of hierar-
chical structure among tasks, such as the NASA Rover’s do-
main and the military operations domain described in (Ab-
erdeen, Thiébaux, & Zhang 2004), it can lead to substan-
tial improvement. Experiments in the latter domain show
huge payoffs. Our implementation finds an optimal (in
terms of prob. of success) plan in 2.5secs (on a Power-
Book G4 1.5GHz) terminating the search (without calls to a

general planning procedure from achieve(φ, p)) in 16secs.
The LRTDP (Bonet & Geffner 2003) based planner in (Ab-
erdeen, Thiébaux, & Zhang 2004) is reported to have taken
10mins on a cluster of 85 Pentium III 800MHz processors,
to find a good policy (optimality cannot be guaranteed). That
planner uses domain-dependent heuristics but not search
control of the form we discussed. These experiments indi-
cate to us that it is possible and useful to exploit some of the
domain structure, even in such complex domains, by means
of this form of search control.

Conclusions
In this paper we have described an approach to complex task
planning for domains with time, durative actions with prob-
abilistic outcome, and concurrency. Our approach is devel-
oped from the point of view of resolving non-determinism in
action programs. From this perspective, a problem is speci-
fied in the form of a non-deterministic program, a formula,
and a probability threshold; and the solutions are determin-
istic programs in the form of a sequence of stochastic ac-
tions. Underlying both types of program is a mathemati-
cally solid representation of the background domain in the
form of a sitcalc basic action theory. We describe a form
of search control that can be used to provide an essentially
forward-search planner with some of the goal-directedness
typical of regression based planners, and that can result in
very substantial improvements. Our approach is related to
the work of (Grosskreutz & Lakemeyer 2000), who con-
sider a probabilistic variant of Golog, called pGolog, that
includes a construct prob(p, δ1, δ2), for specifying proba-
bilistic branching between two programs. Their approach is
also to compute deterministic versions of non-deterministic
programs. Their main goal, however, was to introduce a
probabilistic construct for Golog, while here, following (Re-
iter 2001), we model stochastic actions by using choice in
the action theory. This approach is more general since it
allows the set of possible outcomes of a stochastic action,
and their corresponding probabilities, to depend on the sit-
uation where the action is executed, which is not the case
in pGolog. (Grosskreutz & Lakemeyer 2000) does not con-
sider search control or probabilistic tests as we have here,
but they did consider sensing actions, which we plan to do
in future work. The form of search control described above
can also be used to prune the search for a policy in DTGolog
(Boutilier et al. 2000). We plan to experiment with this in
the future.

Acknowledgements
We thank Gerhard Lakemeyer for useful discussions on the
subject of this paper. National ICT Australia is funded by the
Australian Government’s Backing Australia’s Ability initia-
tive, in part through the Australian Research Council.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004.
Decision-theoretic military operations planning. In Procs.
of ICAPS’04.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116:123–191.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Procs. of ICAPS’03.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In Procs. of AAAI’00, 355–362.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and
Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Procs. of
UAI’02.
De Giacomo, G.; Lesperance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109–169.
Gabaldon, A. 2003. Compiling control knowledge into pre-
conditions for planning in the situation calculus. In Procs.
of IJCAI’03.
Grosskreutz, H., and Lakemeyer, G. 2000. Turning high-
level plans into robot programs in uncertain domains. In
Procs. of ECAI’00
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76:239–286.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A
temporal logic based forward chaining planner. Annals of
Mathematics and Artificial Intelligence 30:119–169.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1–3):59–83.
Little, I., and Thiébaux, S. 2006. Concurrent probabilis-
tic planning in the graphplan framework. In Procs. of
ICAPS’06
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A
probabilistic temporal planner. In Procs. of AAAI’05
Mausam, and Weld, D. S. 2004. Solving concurrent
markov decision processes. In Procs. of AAAI’04
Mausam, and Weld, D. S. 2005. Concurrent probabilistic
temporal planning. In Procs. of ICAPS’05
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502. Also appears in
N. Nilsson and B. Webber (editors), Readings in Artificial
Intelligence, Morgan-Kaufmann.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.

