Programming Hierarchical Task Networksin the Situation Calculus

Alfredo Gabaldon
Department of Computer Science
University of Toronto
dfredo@cs.toronto.edu

Introduction

Hierarchica Task Network (HTN) planning (Sacerdoti
1974) is an approach to planning where problem-specific
knowledge is used to remedy the computationa intractabil-
ity of classica planning. This knowledge is in the form
of task decomposition directives, i.e. the planner is given
a set of methods that tell it how a high-level task can be
decomposed into lower-level tasks. The HTN planning
problem consistsin computing a sequence of primitivetasks
that corresponds to performing the initial set of high-level
tasks.

Our purposein thispaper is 1) to givean account of HTN-
planning as high-level programming in the situation cal-
culus (McCarthy 1963) based languages Golog/ConGolog
(Levesgue et al. 1997; Giacomo, Lesperance, & Levesque
2000) and 2) to illustrate our approach with a ConGolog en-
coding of alogistics domain HTN-planning problem. The
Golog/ConGol oglanguages have been extended to deal with
explicit time, sensing actions, exogenous events, execu-
tion monitoring, incomplete knowledge of the initia state,
stochastic actions and others. Thus the range of problems
that can be tackled with this approach is potentially much
larger. Asan example, we modified the logisticsdomain en-
coding to execute on-line and deal with run-time exogenous
delivery requests.

Preliminaries
The Situation Calculus

Thesituation calculus (McCarthy 1963) isalogical language
for axiomatizing dynamic worlds. Intuitively, it has three
basic components: actions. responsible for all the changes
in the world; situations. sequences of actions which repre-
sent possiblehistoriesof theworld; and fluents. relationsand
functionswhich represent properties of the world and whose
values change from situation to situation.

Wewill use the definition of the situation calculus and the
axiomatization of situationsasit appearsin (Levesque, Pirri,
& Reiter 1998; Reiter 2001). The language of the situation
calculus includesfunction symbolsfor actions, for example,
loadTrk(obj, trk) could stand for the action of loading obj
into truck ¢rk. It includes a special constant S, that denotes
the initia situation and a function symbol do(«, s) that de-

notes the situation that results from doing action « in situa-
tion s. For example, the situation term

do(driveTrk(Trky, Locy, Locs), do(loadTrk(A, Trk1), So))

denotes the history of the world consisting of the sequence
of actions

[loadTrk(A, Trk1),driveTrk(Trky, Locy, Locs)].

Relational fluentsand functional fluents are relations and
functions, resp., whose last argument is a situation. Exam-
ples of these are arelation at Truck(Trky, Locy, Sp) mean-
ing that T'rk, isat Locy intheinitial situation, and function
temperature(Room, , s) denoting the temperature value of
Room; insituation s.

A situation cal cul usaxiomatization of adomain includest:

1. Action precondition axioms: For each action function
A(Z) an axiom of the form Poss(A(%),s) = Ta(Z,s)
where IT4(Z, s) is a formula with free variables among
¥, s and s isitsonly situation term. These axioms charac-
terize the (situation dependent) preconditionsfor the exe-
cution of primitiveactions.

2. Successor state axioms: For each relational fluent F'(Z, s)
an axiom of theform F'(Z, do(a, s)) = ®r(Z, a, s) where
®r(Z, a, s) has free variables among #, a, s and s is its
only situationterm. Similar axioms are included for func-
tional fluents. These axioms characterize the value of flu-
ents after executing a primitive action a in situation s.
These axioms embody Reiter’ ssolutionto theframe prob-
lem for deterministic actions (Reiter 1991).

3. Unique names axiomsfor actions.

4. Axiomsdescribingtheinitia situation: A finite set of sen-
tenceswhose only situationtermis.S, and which describe
what isinitially true, before any actions have occurred.

Examplel Our main example through out this paper will
be a logisticsdomain problem. There are objects that are to
be moved between locations by truck or plane. Cities con-
tain different locations some of which are airports. Primitive
actions include loading/unl oading an object onto a truck or

LArguments in predicates and formulas starting with a lower-
case letter denote variables. Free variables are implicitly univer-
sally quantified.

plane, driving atruck and flying aplane. Thefollowingisan
axiomatization of thisdomain:
Action Precondition Axioms:

Poss(loadTruck(o,tr),s) =

atTruck(tr,l,s) A atObj(o,l,s).
Poss(unloadTruck(o,tr),s) = inTruck(o,tr,s).
Poss(load Airplane(o,p), s) =

atObj(o,l, s) A at Airplane(p,l, s).
Poss(unload Airplane(o, p), s) = inAirplane(o, p, s).
Poss(driveTruck(tr, orig, dest), s) =

atTruck(tr, orig, s) A inCity(orig, city) A

inCity(dest, city).

Poss(fly(p, orig, dest), s) =

at Airplane(p, orig, s) A airport(dest).

Successor State Axioms:

atObj(o,l,do(a, s)) =
a = unloadTruck(o,tr) A atTruck(tr,l,s) vV
a = unloadAirplane(o, p) A at Airplane(p,l, s) V
atObj(o,l,s) A a # loadTruck(o,tr)A

a # load Airplane(o, p).

atTruck(tr,l,do(a, s)) =
a = driveTruck(tr,o,l) V

atTruck(tr,l,s) A (a # driveTruck(tr,o,d) vV d =1).

at Airplane(p, apt,do(a, s)) =

a = fly(p, oapt, apt) V atAirplane(p, apt, s)A

(a # fly(p, oapt, dapt) V dapt = apt).

inTruck(o,tr,do(a, s)) =

a = loadTruck(o,tr) vV

inTruck(o,tr,s) A a # unloadTruck(o,tr).

inAirplane(o, p,do(a, s)) =

a = load Airplane(o, p) V

inAirplane(o, p, s) A a # unload Airplane(o, p).

Unique names axioms for actions:

loadTruck(o,tr) # unloadTruck(o,tr),

loadTruck(o,tr) # load Airplane(o, p), €tc.

Initia situation:

at Airplane(p,l, Sp) =

p= Plane; ANl =
atTruck(t,l, So) =

t=Trucki1 ANl = Loci1 V

t=Trucks1 ANl = Loca1 V...
airport(loc) =

loc = Locy 1 Vioe = Locy 1V

loc = Locs 1 Vloc = Loca Vioc = Locs .
inCity(l,c) =

l=TLoci1 Ne=Clity, V

l="Locsi Ne=Clitya V...
atObj(p,!,So) =

p = Package; ANl = Locz 3V

p = Packagea Nl = Locz 1 V...

The above set of axiomsformsacomplete situation cal cu-
lus primitiveaction theory for our logisticsdomain example.

Locs 1 Vp= Planes ANl = Locy ;.

Golog and ConGolog

The situation cal culus based programming languages Golog
(Levesgue et al. 1997) and ConGolog (Giacomo, Lesper-
ance, & Levesque 2000) alow usto define complex actions
in terms of the actionsin a primitive action theory. The con-
structs of Golog are the following:

e Test condition: ¢7. Test whether ¢ istruein the current
situation.

e Sequence: J1;d2. Execute §; followed by d5.
o Nondeterministic action choice: ¢;|d,. Execute §; or ds.

o Nondeterministic choice of arguments. (wz)d. Choose a
valuefor z and execute d for that value.

o Nondeterministic iteration: §*. Execute § zero or more
times.

o Procedure definitions: proc P (%) § endProc. P(Z) isthe
name of the procedure, 7 itsparameters, and § isthe body.

ConGolog has the above constructs plusthe following:
e synchronized conditional: if ¢ then §; elsed,.

e synchronized loop: while ¢ do§.

e concurrent execution: d; || da.

e prioritized concurrency: d;))d,. Execute ¢; and J, con-
currently but §» executes only when 4, isblocked or done.

o concurrent iteration: §ll. Execute § zero or more timesin
parallel.

e Interrupt: ¢ — J. Executed whenever condition ¢ istrue.

Example2 The following is a procedure definition for the
logisticsdomain:

proc moveObj(o,loc)
(7 oloc, ocity).
if atObj(o,oloc) A inCity(oloc, ocity) then
%% if obj. isto be moved within the same city
if inCity(loc, ocity) then inCity Deliver(o, oloc, loc)
else %% else must go by air to destination city
(7 deity).
if inCity(loc, dcity) A deity # ocity then
(7 oaprt, daprt).
(inCity(oaprt, ocity) A inCity(daprt, deity))? ;
inC'ityDeliver(o, oloc, oaprt) ;
air Deliver(o, oaprt, daprt) ;
inCityDeliver(o, daprt,loc)
else False?
else False?
endProc

The forma semantics of ConGolog is defined in terms
of relations Trans(d, s, 8, s') and Final(4, s).? Intuitively,
Trans(d,s,d',s') holds if after executing a single step of
program § in situation s, ' is what remains of § to be ex-
ecuted and s’ is the resulting situation. Final(d, s) means
that § can be considered in aterminating state in situation s.

2For the original, simpler semantics of Golog see (Levesque et
al. 1997; Reiter 2001).

These are some of theaxiomsfor T'rans and Final from
(Giacomo, Lesperance, & Levesque 2000):

Trans(nil,s,d’,s") = False.
Trans(a,s,d',s') =

Poss(a,s) A& =nil As' = do(a, s).
Trans(¢?,s,0',s') =

O[s]Nd =nil ANs' = s.
Trans(d1;02,5,6', s

(37)0" = (7;02) A Trans(d1,s,7,s")V

Final(d1,s) A Trans(dq,s,6',s').
Trans((7z)d, s, d',s") =

(3z)Trans(d,s, 8, s').
Trans(if ¢ then §; eseds, s, ', s') =

o[s] A Trans(d1,s,6',s")V

—¢[s] A Trans(dz,s,0",s")
Trans(while¢ dod, s, ', s') =

(39).(8" = v ; whileg do §)A

o[s] A Trans(8, s,v,s').

Trans(dy || 02,s,8",s") =

@0 = (7 | 32) A Trans(d1, 5,7,)]V

(37)[6l = (61 H 7) A TranS(J% 5% Sf)]'

~—

(
(97,) False.
anal(1;02,8) = Final(d1, s) A Final(d2, s).
Final((wz)d, s) = () Final(4, s).
Fmal(lf ¢ thend; esedy, s) =

é[s] A Final(d1,) V —¢[s] A Final(d2, s).
Final(while¢ dod, s) = —¢[s] vV Final(d, s).

Final(dy || 62, s) = Final(d1, s) A Final(da, s).

An abbreviation Do(d, s, s'), meaning that executing d in
situation s ispossibleand it legaly terminatesin situation s’,
can bedefined interms of thetransitiveclosureof T'rans and
predicate Fiinal:

Do(d,s,s') = def (33").Trans*(8,s,d', s’

Trans* isdefined by asecond order situationcal culusfor-
mula. For details see (Giacomo, Lesperance, & Levesque
2000).

A Prologinterpreter for ConGolog can be obtained almost
directly from these axioms and a primitiveaction theory (Gi-
acomo, Lesperance, & Levesgue 2000).

) A Final(§',s").

HTN Planning

In thissection we briefly review HTN-planning. Our discus-
sion is based on the definitionsof HTN-planning from (Eral,
Hendler, & Nau 1996). For the primitivetasks, however, we
will use situation calculus notation, i.e. we use primitive ac-
tionsinstead of STRIPS-style HTN operators. Moreover, we
use situationsinstead of states.

A primitivetask isan actionterm A(Z). A compound task
is aterm of the form tname(#). A task network is a pair
(T, ¢) where T" is alist of tasks and ¢ a boolean formula
of constraints of the forms (¢ <), (¢,1), ({,t), (t,1,t'),
(v = v')and (v = ¢) wheret,t’ aretasksfrom 7', l isa
fluent literal, v, v’ arevanabl&sand cisaconstant. AnHTN

methodisapair (h,d) where h isacompound task and d is
atask network. Methodsarethe HTN construct for building
complex tasks from primitive ones.

AnHTN planning problemisatuple (d, s, D) whered is
atask network, s isadituation, and D isa planning domain
consisting of a primitiveaction theory plus a set of methods.
A planis asequence of ground primitivetasks.

Let d beaprimitivetask network, s beasituation,and D a
planning domain. A sequence of primitivetasks o isa com-
pletionof dins, denotedby o € comp(d, s, D), if o isatotal
ordering of a ground instance of the primitive task network
d and isexecutablein s.

Let d be atask network that contains a compound task ¢
and m = (h,d') be amethod such that ¢ is amost general
unifier of ¢t and h. Define reduce(d, t, m) to be the task net-
work obtained from d# by replacing ¢4 with d’6 and incorpo-
rating (see (Erol, Hendler, & Nau 1996) for details) the con-
straintsin d’ with thosein d. Define red(d, s, D) as the set
of al reductions of d by methods of D.

A solution sol(d, Sy, D) toaplanning problem (d, Sy, D)
isthe set of al plansthat can be computed in afinite number
of reduction steps:

soly (d, So, D) = comp(d, So, D)
801n+1(d,SQ,D) =

soly (d, So, D) U Ud’ered(d,SD,D) soly (d', So, D)
sol(d, So, D) = U, <., 50ln(d, So, D)

Example 3 Thefollowingare methodsfor moving an object
in the logistics domain that correspond to the Golog proce-
dure example above. The first method works for moving an
object within the same city. The second isfor moving an ob-
ject between cities.

(moveObj(o,loc)

[t = inCityDeliver(o, oloc, loc)]
(atObj(o, oloc), t)A
(inC'ity(oloc, ocity), t)A
(inCity(loc, ocity),t)

)

(moveObj(o,loc)
[t1 = inCityDeliver(o, oloc, oaprt),
ty = air Deliver(o, oaprt, daprt)
ts = inClityDeliver(o, daprt, loc)]
(atObj(o,0loc),t1) A (inClity(oloc, ocity), t1)A
(inCity(loc, deity), t1) A (ocity # deity, t1)A
(inCity(oaprt, ocity), 1) A
(inCity(daprt, deity), t1)A
() A

11 <19 (tz < t3)

Programming HTNsin Golog/ConGolog

In thissection we show how HTN-planning problemscan be
encoded in Golog/ConGolog. Let usfirst consider task net-
works which are totally ordered and with a constraint for-
mula ¢ that isaconjunction of constraints of the form (Z, ¢).
Thisisthe type of task networks the HTN-planning system
SHOP (Nau et al. 1999) is designed to solve.

Totally ordered task networks can be encoded in Golog
since thereis no concurrency among the tasks.

Totally ordered task networks

Consider an HTN-planning problen P = (d, So, D).
We encode the methods (h, d1), (h,ds), ..., (h,dy) of each
compound task h as a Golog procedure as follows:

proc h

(L1a)?5ti1 55 (Liy)? s oy |
(Lz 1)‘7 ta1;... (LQ 22) 12,i, |
(Lk D75tk (Dki)? 5 te i
endProc

wheret; ; isthe jthtask ind; and L; ; isaconjunctionof the
literals! suchthat (,t; ;) isaconstraintin d;.

Let Ap denote the resulting set of Golog procedures. To
compl ete the encoding of the HTN planning problem P we
include a Golog program d obtained from the task network
d. Thisprogramhasthesame formasthat of asinglemethod:
(L7 5t (L)7?5 4.

The HTN planning problem can now be reformulated in
terms of thelogical semantics of Golog:

Dp = (3s)Do(Ap ; 61, S, 5)

Here, Dp isthe primitiveaction theory of P plusthe axioms
of Golog.

The procedurein Example 2 isan encoding of themethods
in Example 3, except that instead of using nondeterministic
choiceof actions, i.e. operator |, weused i f-statementssince
the conditionsbefore the first tasks are mutually exclusive.

Partially ordered task networks

Before we move on to partialy ordered task networks, let us
comment on enforcing constraints of the values of literals,
i.e. constraintsof theforms(Z,¢), (¢,1) and (¢,{,¢') and their
boolean combination. Intuitively, one way to think about
these constraints is that their purpose is for eiminating or
“pruning” someof the plan candidates. Their purposeissim-
ilar to that of the tempora constraints used by Bacchus and
Kabanza (1995; 2000) for controlling search in a forward
chaining classica planner. Reiter uses this techniquein a
Golog implementation of several classica planners (Reiter
2001). Theideaisto useapredicate bad Situation(s) toen-
code constraints and check them before adding a primitive
action to the plan being computed. So in the remainder of
the paper, we will assume that these constraints have been
suitably encoded by means of abadSituation predicate.

Furthermore, wewill assumethat the partia order boolean
formulais a conjunction of atoms (¢ < t’). Thisisnot a
[imitation since an unrestricted formulacan a so be enforced
throughthe bad Situation predicate. However, if the partial
order formulaisaconjunction, it iscomputationally better to
enforce it imperatively in the program.

Let us now consider encoding partia order HTN planning
problems in ConGolog. As before, for each method there
will be a procedure, but we aso need to introduce two flu-
ents and two actions which are used to enforce the partia
ordering among tasks. fluent exzecuting(p(Z), s) meaning
that the ConGolog procedure p is executing in situation s,
fluent terminated(p(Z), s) meaning that the basic action

or procedure p has executed and terminated in situation s,
action start(p(Z)) which causes executing(p(Z), s) to be-
come true, and end(p(Z)) which causes executing(p(Z), s)
to become false and terminated(p(Z), s) to become true.
Both fluents are initially false for al procedures and actions
and the two actions are the only ones that change these flu-
ents truth value. Formally, the successor state axioms for
these fluents are the following:

executing(p(Z), do(a i)) =
a = start(p (:t:)) \
executing(p(Z), s) A a # end(p(X)).

terminated(p(Z), do(a, s)) =
a= p(i") Va =end(p(Z)) vV
terminated(p(Z), s).

Let d beatask network and ¢ oneof itstasks. Let nexec(t)
stand for —executing(t) A —~terminated(t). Let pred(t, d)
stand for the conjunction:

/\ terminated(t)
{t":(t'<t)ed}
If there isno constraint (t < ¢;) ind then pred(t,d) =

True.

The ConGolog procedure that encodes the methods
(h,dy), (h,d2), ..., (h,d) foracompound task 4 is:

proc h 81|ds| . . .|dx endProc
where
pred(t; 1) A nexec(t; 1) = ;1 ||
5. def pred(2) Anezec(t; o) = tio ||

pred(i k) Anexece(tg,) = ti g,

Thet; ;sarethetasksin d;. Thed;sconsist of aset of inter-
rupts one for each subtask. As soon as the predecessors of
atask that has not yet executed terminate, the interrupt fires
and the task executes.

Example4 Thisisa simple blocks world example method
for moving ablock v, from ablock v, onto ablock vs:

(move(vy, va, v3)

[clear(vy), clear(vs), unstack(vy,va), stack(vy, vs)]
(clear(vi) < unstack (v, v2))A
(clear(vs) < unstack(vy, va))A

(unstack(vy, ve) < stack(v1, vs))

The encoding as a ConGolog procedure is the following:

proc move(vy, va, v3)
nezec(clear(vy)) — clear(vy) ||
nezec(clear(vs)) — clear(vs) ||
nezec(unstack(vy,v2)) Aterminated(clear(vy)) A

terminated(clear(vs)) — unstack(vy, vs) ||

nexec(stack(vy,vs)) Aterminated(unstack(vy,va))
— stack(vy, vs)
endProc

It is not always possible but in many cases the partia or-
dering of taskscan be captured without introducing extraflu-
ents. For instance, the procedure for move(vy, va, v3) can
clearly be written in the following simpler way:

proc move(vy, vz, v3)
(clear(vy) || clear(vs)) ;
unstack(vy,va) ; stack(vy,vs)
endProc

On-line Execution with Exogenous Actions

The situation calculus and Golog/ConGolog are very pow-
erful languages which allow one to solve problems well be-
yond the capabilities of today’s HTN-planners. In this sec-
tion we present an encoding of the logistics domain of the
previous examples for execution on-line and handling of ex-
ogenous delivery requests at run-time. We also show some
sample runs using a ConGolog interpreter in Prolog.

On-line execution of a ConGolog program means that
oncethefirst primitiveaction is determined according to the
control structure of the program, which due to nondetermin-
ism may involverandomly choosing one, thisaction is actu-
ally executed in the world. This means that our ConGolog
interpreter should not backtrack after choosing such an ac-
tion. Luckily, thisbehaviour isvery easy toredlizein Prolog
using acut. The off-lineinterpreter includestherule:

of fline(Prog, SO, Sf): -
final (Prog, SO), SO0=Sf ;
trans(Prog, SO, Progl, S1),
of fline(Progl, S1, Sf).

To prevent the interpreter from backtracking on primitive
actions, including exogenous ones, we simply add acut after
aone step transition is chosen:

onl i ne(Prog, SO, Sf): -
final (Prog, S0), S0=Sf ;
trans(Prog, SO, Prog1l, S1), !,
onl i ne(Progl, S1, Sf).

Thisisa braveonlineinterpreter. A cautiousone may, for
instance, check offlinethat theremai nder of the program suc-
cessfully terminates before committing to an action:

onl i ne(Prog, SO, Sf): -
final (Prog, S0), S0=Sf ;
trans(Prog, SO, Progl, S1),
of fline(Progl, S1, Soff), !,
onl i ne(Progl, S1, Sf).

These issues are further discussed in (Giacomo, Reiter, &
Soutchanski 1998; Reiter 2001).

Let usnow turnto exogenous actions. Although an agent,
or in our case the logistics program, does not have con-
trol over when exogenous actions occur, its background
theory includes axioms informing it what exogenous ac-
tions can occur and what their effects are. In our lo-
gistics example, we only consider one exogenous action:
request Delivery(obj, loc) meaning that arequest todeliver
obj toloc hasbeenissued. Exogenous actionswill be gener-
ated by having the interpreter ask the user to input them.

Following (Giacomo, Lesperance, & Levesque 2000), we
will model exogenous actions by defining a specia proce-
dure which will execute in paralel with the logistics main
procedure:

proc exoProg
(me)(exoActionOccurred(e) — e)
endProc

The condition ezoActionOccurred(e) aways succeeds
when evaluated and it comes back with auser supplied value
for e which can be an exogenous action, nil which meansno
exogenous action occurred, or endSim which isjust as nil
but tellstheinterpreter to stop asking the user for exogenous
actions. Wecould alternatively have had them generated ran-
domly without complication.

Now, the main logistics procedure is a program
that reacts to the occurrence of exogenous actions
request Delivery(obj,loc) by triggering the execution
of amoveObj(obj,loc) task:

proc deliveryDaemon
(mpck, loc) deliveryReq(pck,loc) —
start Delivery(pck, loc) ;
[(moveObj(pck,loc) ;
endDelivery(pck, loc)) ||
deliveryDaemon)
endProc

The main ConGolog program is the parallel execution of
thelogisticsprocedure and the exogenous actions procedure:
exoProg || deliveryDaemon.

Hereisasample runin Eclipse Prolog:

[eclipse 2]: runSim
startSim
Enter an exogenous acti on:
request Del i very(packagel, |oc5-1).
request Del i very(packagel, | oc5-1)
startDel i very(packagel, |oc5-1)

Enter an exogenous action: nil.
driveTruck(truck3-1, loc3-1, |0c3-3)

Enter an exogenous action: nil.
| oadTruck(packagel, truck3-1)

Enter an exogenous action: nil.
driveTruck(truck3-1, loc3-3, |o0c3-1)
unl oadTr uck(packagel, truck3-1)

Enter an exogenous action: nil.
fly(planel, loc5-1, |oc3-1)

Enter an exogenous acti on:

request Del i very(package2, |oc3-2).
request Del i very(package2, |oc3-2)
| oadAi r pl ane(packagel, planel)
fly(planel, loc3-1, |oc5-1)
unl oadAi r pl ane(packagel, planel)
startDel i very(package2, |o0c3-2)

Enter an exogenous action: nil.
endDel i very(packagel, |oc5-1)
| oadTruck(package2, truck3-1)
driveTruck(truck3-1, loc3-1, |o0c3-2)

unl oadTruck(package2, truck3-1)

Enter an exogenous acti on:

request Del i very(package3, |ocl-3).
request Del i very(package3, |ocl-3)

Enter an exogenous action: nil.
startDel i very(package3, |ocl-3)
endDel i very(package2, |oc3-2)
driveTruck(truck2-1, loc2-1, |oc2-3)

Enter an exogenous action: nil.
| oadTruck(package3, truck2-1)
driveTruck(truck2-1, loc2-3, |oc2-1)
unl oadTruck(package3, truck2-1)

Enter an exogenous action: nil.
| oadAi r pl ane(package3, plane2)

Enter an exogenous action: nil.
fly(plane2, loc2-1, |ocl-1)

Enter an exogenous action: nil.

Enter an exogenous action: endSim
endSi m
unl oadAi r pl ane(package3, pl ane2)
| oadTruck(package3, truckl-1)
driveTruck(truckl-1, locl-1, |ocl-3)
unl oadTruck(package3, truckl-1)
endDel i very(package3, |ocl-3)

Plan length: 32 Mre? n.

Thenon-indented linesare primitivetasks appearing inthe
order they occur. The user is prompted for an exogenous
action every time the condition exoActionOccurred(e) is
evaluated. Thishappens every timetheinterpreter computes
atransitionfor the exo Prog procedure.

Conclusion

Our purposewas two-fold. On one hand we have argued that
HTN-planning can be thought of as a specia case of high-
level programming in the sense of Golog/ConGolog. We
have done this by showing an encoding of HTN-planning
problems in these languages. In doing this, we only took
advantage of afew of their constructs and of the techniques
which have been devel oped for the many problemsthat have
arisen in cognitive robotics research. These techniques are
obvioudly relevant to planning given that both problemsin-
volve modeling dynamic worlds. The work by the Cogni-
tive Rabotics group at the U. of Toronto includesformaliza-
tionsfor robotic control that account for explicit time of ac-
tion occurrence, sensing and knowledge, execution monitor-
ing, stochastic actions, action choice based on decision the-
ory, and others.® Our second goal wasto actually show agen-
eraization of HTN-planning, after taking this programming
perspective, by takingaclassic HTN-planning problem, alo-
gisticsdomain problem, and encoding it in ConGologfor on-
line execution and run-time exogenous actions.

We were not the first to point out a connection between
HTN-planning and high-level languages Golog and Con-
Golog. Bara and Son (1999) extended ConGolog with an
HTN construct. In the extended language, a program may
include an HTN-planning problem as a statement. However,
the new construct islimited: the tasks appearing in it cannot

Much of this work can be found at
http://ww.cs.toronto.edu/cogrobo

be ConGolog programs. One has to separately define meth-
odsfor the compound tasks mentioned in an HTN-statement.

Acknowledgments

We are thankful to Ray Reiter and Fahiem Bacchus for help-
ful discussions on the subject of this paper.

References

Bacchus, F., and Kabanza, F. 1995. Using temporal logicto
control search in aforward chaining planner. In Proceed-
ings of the Third European Workshop on Planning.

Bacchus, F,, and Kabanza, F. 2000. Using temporal logics
to express search control knowledgefor planning. Artificial
Intelligence 16:123-191.

Baral, C., and Son, T. C. 1999. Extending ConGolog
to dlow partial ordering. In Proc. of the Sxth Inter-
national Workshop on Agent Theories, Architectures, and
Languages (ATAL-99), volume 1757 of LNCS, 188-204.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning. Annals of
Mathematicsand Artificial Intelligence 18:69-93.

Giacomo, G. D.; Lesperance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109-169.

Giacomo, G. D.; Reiter, R.; and Soutchanski, M. 1998. Ex-
ecution monitoring of high-level robot programs. In Pro-
ceedings of the 6th International Conference on Principles
of Knowledge Representation and Reasoning (KR 98).
Levesgue, H. J.; Reiter, R.; Lespérance, Y.; Lin, F; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1-3):59-83.

Levesque, H.; Pirri, F; and Reiter, R. 1998. Foun-
dations for the situation calculus. Linkoping Elec-
tronic Articlesin Computer and I nformation Science 3(18).
http://www.ep.liu.se/ealcis/1998/018/.

McCarthy, J. 1963. Situations, actions and causal |aws.
Technical report, Stanford University. Reprintedin Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410-417.

Nau, D. S;; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ingsof the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), 968-975.

Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a compl eteness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca
demic Press. 359-380.

Reiter, R. 2001. Knowledgein Action: Logical Founda-
tionsfor Describing and I mplementing Dynamical Systems.
Cambridge, MA: MIT Press.

Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5:115-135.

