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Abstract

The property that the executability and the effects of an
action are determined entirely by the current state or
situation is known as the Markov property and is as-
sumed in most formalizations of action. It is not diffi-
cult, however, to run into scenarios when the Markov
property is not present. We consider removing this as-
sumption from the situation calculus based formaliza-
tion of actions of Reiter, which forms the basis of the
programming language Golog, and define an operator
for regressing formulas that quantify over past situa-
tions, with respect to such nonMarkovian basic action
theories.

Introduction and Motivation
Reasoning about the effects of actions is one of the most im-
portant problems in AI and has been devoted a great deal
of effort. This work has resulted in several powerful for-
malisms. There are the Situation Calculus (McCarthy 1963;
McCarthy & Hayes 1969), the Event Calculus (Kowalski &
Sergot 1986), the action languageA (Gelfond & Lifschitz
1993) and its extensions, the Features and Fluents approach
(Sandewall 1994) and the Fluent calculus (Thielscher 1998)
among others.

A common assumption made in these formalisms is the so
calledMarkov property: whether an action can be executed
and what its effects are is determined entirely by the current
state or situation. The fact is, however, that it is not diffi-
cult to run into scenarios when the Markov property is not
present and the executability and effects of an action depend
not only on what holds in the current situation, but also on
whether some conditions were satisfied at some point in the
past.

For example, imagine a robot that works in a biological
research facility with different safety-level areas. The dy-
namics are such that a material will be considered polluted
after the robot touches it if the robot has been to a low safety
area or directly touched a hazardous material and has not
been to the disinfection station since then. So the effect of
touching the material depends on the recent history of robot
activities. We could also imagine that the robot cannot exe-
cute the actionopen(Entrance, Lab1) if temp(Lab1) >
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30 was true at any point sinceclosed(Entrance, Lab1).
This would be an example of an action with nonMarko-
vian preconditions. Although this can be formalized with a
Markovian theory by introducing more variables (e.g. more
fluents) and axioms describing their dynamics, the resulting
theory can be considerably larger and it will often be more
natural and convenient simply not to assume the Markov
property.

Furthermore, this work is motivated by a variety of re-
search problems which involve the formalization of dynamic
properties.

1. There has been work in database theory concerned with
the semantics of dynamic integrity constraints (Saake &
Lipeck 1988; Chomicki 1995). These constraints are typ-
ically expressed in terms of Past Temporal Logic, a logic
with temporal connectivesPrevious, Sometime (in the
past),Always (in the past), andSince. In a formalization
of a database system in the situation calculus, such tem-
poral connectives amount to references to past situations,
and the constraints to restrictions on when a sequence of
actions can be considered a “legal” database system evo-
lution. As we will see, these past temporal logic connec-
tives have an encoding as formulas in the nonMarkovian
situation calculus and hence this can be used as a logi-
cal framework for the study, specification and modeling
of databases with dynamic integrity constraints.

2. Also in the area of databases, more specifically in work
on database transaction systems, therollback operation
clearly has a nonMarkovian flavour: its effects depend
not on what is true in the current state, but on the state
right before the transaction being reversed started. Indeed,
(Kiringa 2001) presents a logical specification of database
transactions in the nonMarkovian situation calculus.

3. In planning, the use of domain dependent knowledge to
control search as suggested by Bacchus and Kabanza
(1996; 2000) led to impressive computational improve-
ments. Bacchus and Kabanza’s TLPlan system, a forward
chaining planner based on STRIPS, uses search control
knowledge in the form of temporal logic constraints. Re-
iter (2001) applied the same idea in his Golog planners.
These planners perform an iterative deepening forward
search, eliminating partial plans if they lead to a “bad sit-
uation.” Search control knowledge is encoded in a pred-

AAAI-02    519

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



icatebadSituation(s) but this is limited to properties of
the current situations. The nonMarkovian situation cal-
culus allows the definition of this predicate to refer to any
situation that precedess, i.e. to the full past of the current
situation. As we mentioned above, past temporal logic ex-
pressions can be encoded in the nonMarkovian situation
calculus and be used in the definition ofbadSituation(s).
This means that we can use search control knowledge of a
similar form and expressivity as the one used in TLPlan.

4. The Markovian property may also be absent if the sys-
tem specification includes stochastic actions and reward
functions. The need to accommodate nonMarkovian dy-
namics and reward functions has been recognized in the
work (Bacchus, Boutilier, & Grove 1996; 1997) who have
developed techniques for solving nonMarkovian Decision
Processes for decision-theoretic planning.

5. Finally, some time ago John McCarthy (1992) described
a programming language called “Elephant 2000” which,
among other features, does not forget. In other words, it is
a language that allows the programmer to explicitly refer
to past states of the programming environment in the pro-
gram itself. The nonMarkovian situation calculus and the
regression operator we present here can form the founda-
tion for an non-forgetting version of Golog. Such a dialect
of Golog would allow test conditions in terms of Past tem-
poral logic and so one could write, for instance, a state-
mentif (P since Q) then exec(δ)endIf in programs.

In this paper, we generalize the situation calculus based
formalization of actions of Reiter (1991) to the nonMarko-
vian case. We modify the regression operator to work with
nonMarkovian basic action theories and formulas that quan-
tify over past situations and prove the new regression opera-
tor to be correct.

The language of the Situation Calculus
In this section we briefly review the language of the situa-
tion calculus. For a complete description see (Pirri & Reiter
1999).

The languageLsitcalc is a second order language with
equality and with three disjoint sorts:action, situationand
object. In addition to∧,¬, ∃ and definitions in terms of
these for the other standard logical symbols, the alphabet
of Lsitcalc includes a countably infinite number of vari-
able symbols of each sort and predicate variables of all ari-
ties. A constant symbolS0 and a functiondo of sort : ac-
tion × situation→ situation, a binary predicate symbol
@ used to define an ordering relation on situations, a bi-
nary predicate symbolPoss : action × situation, and
for eachn ≥ 0 a countably infinite number of function
symbols of sort1 (action ∪ object)n → action calledac-
tions, a countably infinite number of predicate symbols of
sort(action∪object)n×situation calledrelational fluents,
and a countably infinite number of function symbols of sort
(action ∪ object)n × situation → action ∪ object called
functional fluents. The language includes also a countably

1We use(s1 ∪ s2)
n as a shorthand forsv1 × . . . × svn , vi ∈

{1, 2}.

infinite number of predicates and functions without a situa-
tion argument. We will refer to these assituation indepen-
dentpredicates and functions.

Intuitively, situations are finite sequences of actions
(sometimes referred to ashistories) and this intuition is cap-
tured by a set of fourFoundational Axioms(Pirri & Reiter
1999) (denoted byΣ)2:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2,
(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s),

¬s @ S0,
s @ do(a, s′) ≡ s @ s′ ∨ s = s′.

The initial situation or empty history is denoted by constant
S0. Non-empty histories are built by means of the function
do.

Basic nonMarkovian Theories of Action

In this section we introduce the basic nonMarkovian theo-
ries of action. In the Markovian action theories, the Markov
assumption is realized by requiring that the formulas in the
Action Precondition Axioms and Successor State Axioms
refer only to one situation, a variables, which is prenex uni-
versally quantified in the axioms. In nonMarkovian action
theories, situation terms other thans will be allowed under
the restriction that they refer to the past or to an explicitly
bounded future relative tos. To make this formal, we need
to introduce the notion of situation-bounded formulas. Intu-
itively, anLsitcalc formula is bounded by situation termσ if
all the situation variables it mentions are restricted, through
equality or the@ predicate, to range over subsequences of
σ. This notion is useful because in order to apply regression
on a formula, one needs to know how many actions there are
in each situation, i.e. how many regression steps to apply. A
formula that mentions a situation variable can be regressed
provided that the variable is restricted to be a subsequence
of some situation term with a known number of actions in it.

The following notation is used through out: forn ≥ 0, we
write do([α1, . . . , αn], λ) to denote the term of sortsituation
do(αn, do(αn−1, . . . , do(α1, λ) . . .)) whereα1, . . . , αn are
terms of sortaction and λ stands for a variables of sort
situationor the constantS0.

Definition 1 For n ≥ 0, define thelengthof the situation
termdo([α1, . . . , αn], λ) to ben.

Definition 2 (Rooted Terms) Forn ≥ 0, let α1, . . . , αn be
terms of sortaction. A term do([α1, . . . , αn], s) is rooted
at s iff s is the only variable of sortsituationmentioned by
α1, . . . , αn or no variable of that sort is mentioned. A term
do([α1, . . . , αn], S0) is rooted atS0 iff α1, . . . , αn mention
no variables of sortsituation.

In writing bounded formulas, we will use the following ab-
breviations:

2Lower case Roman characters denote variables. Free variables
are implicitly universally prenex quantified.
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(∃s : σ′ @ σ)W def= (∃s)[σ′ @ σ ∧ W ]
(∃s : σ′ = σ)W def= (∃s)[σ′ = σ ∧ W ]
(∀s : σ′ @ σ)W def= ¬(∃s)[σ′ @ σ ∧ ¬W ]
(∀s : σ′ = σ)W def= ¬(∃s)[σ′ = σ ∧ ¬W ]

(1)

Definition 3 (Bounded Formulas) For n ≥ 0, let σ be
a termdo([α1, . . . , αn], λ) rooted atλ. The formulas of
Lsitcalc boundedby σ are the smallest set of formulas such
that:

1. If t1, t2 are terms of the same sort whose subterms of sort
situation(if any) are all rooted atλ, then t1 = t2 is a
formula bounded byσ.

2. If σ′ is a term of sortsituationrooted at some situation
variable or constantS0, thenσ′ @ σ is a formula bounded
by σ.

3. For each n ≥ 0, each n-ary situation indepen-
dent predicateP , each (n+1)-ary fluent F and each
n-ary action A, if t1, . . . , tn are terms of sortac-
tion or object whose subterms of sortsituation are all
rooted atλ, then P (t1, . . . , tn), F (t1, . . . , tn, σ) and
Poss(A(t1, . . . , tn), σ) are formulas bounded byσ.

4. If σ′ is a term of sortsituationrooted ats andW is a
formula bounded by a possibly different term of sortsitu-
ationalso rooted ats, then(∃s : σ′ @ σ)W , (∃s : σ′ =
σ)W , (∀s : σ′ @ σ)W and(∀s : σ′ = σ)W are formulas
bounded byσ.

5. If W1, W2 are formulas bounded by situation terms rooted
atλ, then¬W1, W1 ∧W2 and(∃v)W1, wherev is of sort
actionor object, are formulas bounded byσ.

Example 1 For the purpose of illustrating the above defini-
tions, consider the following sentence

(∃a).(∃s′ : do(a, s′) @
do([get coffee, deliver coffee, gotoMailRm], s))

batteryCharged(do(chargeBatt, s′)).

Intuitively it says that there is a situation in the past
of do([get coffee, deliver coffee, gotoMailRm], s))
when executingchargeBatt would have (successfully)
resulted in charged battery. This sentence is bounded
by do([get coffee, deliver coffee, gotoMailRm], s),
with subformula batteryCharged(do(chargeBatt, s′))
bounded by do(chargeBatt, s′). Here, variable s′
ranges over the subsequences ofdo(get coffee, s). Note
that this formula actually refers to a situation which
is not in the past relative to the bounding situation
do([get coffee, deliver coffee, gotoMailRm], s).

We also need a strict version of boundedness.

Definition 4 (Strictly Bounded Formulas) Strictly
bounded formulas are defined by replacing conditions
1,4, and 5 in the definition of bounded formulas with the
following:

1′ If t1, t2 are terms of the same sort whose subterms of sort
situation(if any) are all subterms ofσ, thent1 = t2 is a
formula strictly bounded byσ.

4′. If σ′ is a term of sortsituationrooted ats andW is a
formula strictly bounded by a subterm ofσ′, then(∃s :
σ′ @ σ)W , (∃s : σ′ = σ)W , (∀s : σ′ @ σ)W and
(∀s : σ′ = σ)W are formulas strictly bounded byσ.

5′. If W1, W2 are formulas strictly bounded by a subterm of
σ, then¬W1, W1 ∧ W2 and(∃v)W1, wherev is of sort
actionor object, are formulas strictly bounded byσ.

So we require that the situation term that bindsW not
only have the same root, but be one of the subterms ofσ′.
Intuitively, a formulaW that is strictly bounded byσ has its
situation terms restricted to the past relative toσ. Reference
to hypothetical “alternative futures” as in Example 1, which
is allowed in bounded formulas, is disallowed.

Example 2 In the situation calculus, to refer to the past
means to refer to past situations. In this sense, one can
write expressions that capture the intuitive meaning of the
past temporal logic connectivesprevious, since, sometime,
andalways:3

prev(ϕ, s) def= (∃a).(∃s′ : do(a, s′) = s) ϕ[s′].
since(ϕ1, ϕ2, s)

def= (∃s′ : s′ @ s).ϕ2[s′]∧
(∀s′′ : s′′ v s).s′ @ s′′ ⊃ ϕ1[s′′].

sometime(ϕ, s) def= (∃s′ : s′ @ s) ϕ[s′].
always(ϕ, s) def= (∀s′ : s′ @ s) ϕ[s′].

It is easy to see that these formulas are strictly bounded by
s.

We are now ready to define nonMarkovian Action Pre-
condition Axioms and Successor State Axioms.

Definition 5 An action precondition axiomis a sentence of
the form:

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),
where A is an n-ary action function symbol and
ΠA(x1, . . . , xn, s) is a first order formula with free vari-
ables amongx1, . . . , xn, s that is bounded by a situation
term rooted ats and does not mention the predicate symbol
Poss.

Example 3 Suppose that there is a lab where the robot
works whose door should not be opened if the temperature
inside reached some dangerous leveld since it was closed.
The robot’s theory would include a precondition axiom:

Poss(open(Lab1), s) ≡ (∃s′ : do(close(Lab1), s′) v s).
(∀s′′ : s′′ @ s)¬(s′ @ do(open(Lab1), s′′))∧
(∀s′′ : s′′ @ s).s′ @ s′′ ⊃ temp(Lab1, s′′) < d.

Definition 6 A successor state axiomfor an(n + 1)-ary re-
lational fluentF is a sentence of the form:

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s),
whereΦF (x1, . . . , xn, a, s) is a first order formula with free
variables amongx1, . . . , xn, a, s that is strictly bounded by
s and does not mention constantS0 nor the predicate symbol
Poss.

A successor state axiomfor an(n +1)-ary functional flu-
entf is a sentence of the form:

f(x1, . . . , xn, do(a, s)) = y ≡ φf (x1, . . . , xn, y, a, s),
3We useσ v σ′ as an abbreviation forσ = σ′ ∨ σ @ σ′.
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whereφf (x1, . . . , xn, y, a, s) is a first order formula with
free variables amongx1, . . . , xn, y, a, s that is strictly
bounded bys and does not mention constantS0 nor the pred-
icate symbolPoss.

Example 4 Consider again the robot that works at a biore-
search lab. One of the successor state axioms in its theory
could be (using the past temporal logic abbreviations from
Example 2):

polluted(mat, do(a, s)) ≡ polluted(mat, s) ∨
a = touch(mat) ∧ (∃loc).safetyLevel(loc, Low)∧
since(¬atLoc(DisinfSt), atLoc(loc), s).

Relaxing the strict boundedness condition in successor
state axioms to simply boundedness, complicates regression.
Consider the following successor state axioms:

P (do(a, s)) ≡ (∃s′ : s′ @ s) Q(do([B1, B2, B3], s′)).
Q(do(a, s)) ≡ (∃s′ : s′ @ s) P (do([C1, C2, C3], s′)).

Intuitively, “regressing” P (do[A1, A2], S0) with
respect to the above axioms would result in
Q(do([B1, B2, B3], S0)) and this in turn in
P ([C1, C2, C3], S0) ∨ P ([B1, C1, C2, C3], S0). Clearly,
regression is not working here since the situation terms
are growing. This is not a problem in action precondition
axioms because the predicatePoss is not allowed in
formulaΠ, so this kind of “loop” as the above cannot occur.

A nonMarkovian Basic Action TheoryD consists of: the
foundational axiomsΣ; a set of successor state axiomsDss,
one for each relational fluent and functional fluent; a set of
action precondition axiomsDap, one for each action; a set of
unique name axioms for actionsDuna; and a set of first order
sentencesDS0 that mention no situation terms other thanS0

and represent the initial theory of the world. NonMarkovian
basic action theories, as the Markovian ones, are assumed
to satisfy thefunctional fluent consistency propertywhich
intuitively says that for each fluentf , the rhs of its successor
state axiom,φf , defines one and only one value forf in
situationdo(a, s).

The following theorem formalizes the intuition that the
truth value of a formula that is strictly bounded by some
history, depends only on the truth value of fluents through-
out such history and on situation independent predicates and
functions.

Theorem 1 LetS, S′ be structures ofLsitcalc with the same
domainAct for sort action, Obj for sort object and Sit
for sort situation. Let s ∈ Sit and S = {s} ∪ {s′ ∈
Sit|s′ @S s}. Further, letφ(~x, σ) be anLsitcalc formula
strictly bounded byσ that does not mentionPoss4 and
whose only free variable of sortsituation, if any, is the root
of σ. If,

1. S andS′ satisfyΣ andDuna, and interpret all situation
independent functions and predicates the same way;

2. for each relational fluentF (~x, s) and valuationv such that
v(s) ∈ S,
S, v |= F (~x, s) iff S′, v |= F (~x, s)

4Poss can be allowed to appear inφ(~x, σ) by adding a condi-
tion similar to (2) on this predicate.

3. for each functional fluentf(~x, s) and valuationv such that
v(s) ∈ S,5

fS(~x[v], v(s)) = fS′
(~x[v], v(s))

then, for every valuationv such that for some situation vari-
ables, v(s) ∈ S, S, v |= (s = σ) andS′, v |= (s = σ),
S, v |= φ(~x, σ) iff S′, v |= φ(~x, σ).

For Markovian basic action theories, Pirri and Reiter
(1999) proved that a satisfiable initial database and unique
names axioms for actions remains satisfiable after adding the
action precondition and successor state axioms. NonMarko-
vian basic action theories satisfy this property as well.

Theorem 2 A nonMarkovian basic action theoryD is satis-
fiable iff Duna ∪ DS0 is.

Regression
In this section we define aregression operatorR, based on
the operator for Markovian theories, for regressing bounded
formulas ofLsitcalc with respect to a nonMarkovian basic
action theory.

Definition 7 A formulaW of Lsitcalc is regressableiff

1. W is first order.
2. W is bounded by a term of sortsituationrooted atS0 and

has no free variables of this sort.
3. For every atom of the formPoss(α, σ) mentioned byW ,

α has the formA(t1, . . . , tn) for somen-ary action func-
tion symbolA of Lsitcalc.

In the following definitions and proofs, we assume that
quantified variables have been renamed and are all different.

Definition 8 (Regression)Let W be a regressable formula
of Lsitcalc.

1. If W is a regressable atom6 of one of the following forms:
• an equality atom of the form:do([α′

1, . . . , α
′
m], S0) =

do([α1, . . . , αn], S0),
• a @-atom of the form: do([α′

1, . . . , α
′
m], S0) @

do([α1, . . . , αn], S0), • an atomPoss(A(~t), σ),
• an atom whose only situation term isS0,
• an atom that mentions a functional fluent term of the
form g(~t, do(α, σ)),
• a relational fluent atomF (~t, do(α, σ)),
then R[W ] is defined exactly as for theories with the
Markov property so we will not reproduce it here.

2. SupposeW is a regressable formula of the form
(∃s : do([α1, . . . , αm], s) @ do([α′

1, . . . , α
′
n], S0)) W ′.

If m ≥ n, thenR[W ] = false.
If m < n, thenR[W ] =

R[(∃s : do([α1, . . . , αm], s) =
do([α′

1, . . . , α
′
n−1], S0)) W ′] ∨

R[(∃s : do([α1, . . . , αm], s) @
do([α′

1, . . . , α
′
n−1], S0)) W ′].

5We use~x[v] to denotev(x1), . . . , v(xn) where thexi’s are the
variables in~x.

6Notice that situation variables may not appear in a regressable
atom.
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3. SupposeW is a regressable formula of the form:
(∃s : do([α1, . . . , αm], s) = do([α′

1, . . . , α
′
n], S0)) W ′.

wherem ≥ 1.
If m > n, thenR[W ] = false.
If m ≤ n, thenR[W ] =

R[(∃s : s = do([α′
1, . . . , α

′
n−m], S0))

α1 = α′
n−m+1 ∧ . . . ∧ αm = α′

n ∧ W ′].

4. SupposeW is a regressable formula of the form:
(∃s : s = do([α1, . . . , αn], S0)) W ′.
ThenR[W ] = R[W ′|sdo([α1,...,αn],S0)

].
5. For the remaining possibilities, regression is defined as

follows:
R[¬W ] = ¬R[W ],
R[W1 ∧ W2] = R[W1] ∧R[W2].
R[(∃v)W ] = (∃v)R[W ].

Theorem 3 SupposeW is a regressable formula ofLsitcalc

andD is a basic nonMarkovian action theory. Then,

1. R[W ] is a formula uniform inS0.7

2. D |= (∀)W ≡ R[W ].

Proof 1 This proof is similar to the proof of soundness and
completeness of regression for Markovian theories of action
from (Pirri & Reiter 1999). We use induction based on a
binary relation≺ that is an ordering on tuples of integers that
represent the number of connectives, quantifiers, the length
of certain situation terms, etc., in formulas. We will not give
a precise definition of≺ here. Let us define the tuples≺ is
defined on.

Given a bounded regressable formulaW , letL(W ) be the
sum of the lengths of all maximal situation termsσ rooted at
a variables in W such thatσ does not appear inW through
one of the abbreviations (1) withs being quantified.

Defineindex(W ) as follows:

index(W ) def= ((C, E, I, λ1, λ2, . . .), P ).
whereC is the number of connectives and quantifiers inW ,
E is the number of equality atoms on situation terms inW ,
I is the number of@-atoms on situation terms inW , for
m ≥ 1, λm is the number of occurrences inW of maximal
situation terms of lengthm−L(W ) rooted atS0, andP the
number ofPoss atoms mentioned byW .

Our definition ofindex(W ) differs from the one used by
Pirri and Reiter in two ways. ParametersE andI appear
now before theλs because regressing a fluent may introduce
new equality and@-atoms. More noticeably, theλs here are
“shifted” right by L(W ), e.g. if there is one term of length
k thenλk+L(W ) = 1. Notice that a regression step on a
formula with a situation variable may result in a situation
term being replaced by a longer one. For instance, the for-
mula(∃s : s = do(A, S0)) P (do(B, s)) would be regressed
to P (do([A, B], S0)). The λs are shifted to discount this
increase in length when substituting variables with ground
terms.

7A formula is uniform inσ iff it is first order, does not men-
tion Poss, @, situation variables, equality on situations, andσ is
the only situation term mentioned by fluents in their situation argu-
ment. For the formal definition see (Pirri & Reiter 1999).

Consider a regressable formulaW . Assume the theorem
for all regressable formulas with index≺ index(W ). Due
to space limitations, we prove here only the following case:
SupposeW is a regressable formula of the form(∃s : s =
do([α1, . . . , αn], S0))W ′. R[W ] is defined as the regression
of the formulaW ′′ = W ′|sdo([α1,...,αn],S0)

. If W ′ is empty
(True), the result follows immediately. Otherwise, it must
be a formula bounded by a situation term rooted ats. Hence
W ′′ is clearly regressable.

It remains to show thatindex(W ′′) ≺ index(W ). The
value of P is clearly the same for both formulas. Let
us show that theλ’s are the same as well. Consider a
maximal termdo(~α1, s) from W ′ and letm be its length.
Let do(~α2, S0) stand fordo([α1, . . . , αn], S0) andW ∗ for
W ′|do(~α1,s)

do(~α1,do(~α2,S0))
. Note thatn + L(W ) is the index of

the valueλ that accounts for termdo(~α2, S0) in index(W )
andn + m + L(W ∗) the index of the valueλ that accounts
for do(~α1, do(~α2, S0)). Also, sinceL(W ∗) = L(W ) − m,
n + L(W ) = n + m + L(W ∗). This implies that after the
substitution that results inW ∗ theλ’s are the same. Since
this is true after the substitution of any term rooted ats,
index(W ) andindex(W ′′) have the sameλ’s. Hence that
index(W ′′) differs fromindex(W ) only in the values ofC
andE which are both smaller inindex(W ′′). Therefore,
index(W ′′) ≺ index(W ) and the induction hypothesis ap-
plies. Finally, the formulasW andW ′′ are clearly equiva-
lent. 2

Soundness and completeness of the regression operator
R follow from Theorems 2 and 3. This is established in the
following theorem:

Theorem 4 SupposeW is a regressable sentence ofLsitcalc

andD is a basic nonMarkovian theory of actions. Then,
D |= W iff DS0 ∪ Duna |= R[W ].

Conclusion
We have generalized Reiter’s situation calculus based for-
malization of actions (Reiter 1991; Pirri & Reiter 1999) to
allow nonMarkovian action theories, i.e. theories where ac-
tion precondition and successor state axioms may refer to
past situations. We revised the class of formulas that can be
regressed and modified the regression operator to work with
this class of formulas and action theories. Finally, we prove
the soundness and completeness of this regression operator.

As we mentioned in the introduction, most of the propos-
als that have been introduced for reasoning about actions as-
sume the Markov Property. Removing this assumption from
Reiter’s basic action theories without major complications
was possible because histories are first order objects in these
theories. Removing this assumption from other formaliza-
tions where this is not the case would require considerably
more effort. For example, the action languages based onA
(Gelfond & Lifschitz 1993) have semantics based on state-
to-state transitions. So removing the Markovian assumption
seems to require a different kind of semantics. An exep-
tion are the languages in (Giunchiglia & Lifschitz 1995;
Mendezet al. 1996). The former does not allow one to
specify in the language that the value of a fluent depends on
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the history. The latter does. Both of these languages have
semantics based on mappings from sequences of actions to
states. This type of semantics was abandoned in more recent
A-type action languages in favor of state-to-state mappings.

Although it may be possible to transform a nonMarkovian
action theory into a Markovian one by introducing new flu-
ents, the resulting theory can be considerably more complex,
having more predicates and successor state axioms. More-
over, it may not necessarily be computationally better. For
instance, regressing the atomsometimeP (do(α, S0)) with
respect to a Markovian theory that has a successor state ax-
iom sometimeP (do(a, s)) ≡ P (s) ∨ sometimeP (s) re-
sults in a disjunction of the same size as regressing the
bounded formula(∃s′ : s′ @ do(α, S0))P (s′). A thor-
ough analysis of the computational tradeoffs is among our
plans for future work along with a proof of the correct-
ness of a Prolog implementation of our interpreter for non-
Markovian basic action theories. We also plan to explore
extensions of Golog/ConGolog (Levesqueet al. 1997;
Giacomo, Lesperance, & Levesque 1997) with nonMarko-
vian features. These languages are used to program complex
behaviours in terms of the primitive actions of a basic action
theory. In order to execute Golog/ConGolog programs with
respect to a nonMarkovian basic action theory, one simply
needs to append the interpreter for such action theories to the
Golog/ConGolog interpreter. Such an interpreter is used by
Kiringa (Kiringa 2001) in his database transaction systems
simulations. Moreover, as mentioned in the introduction,
they can be extended with temporal test conditions.
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