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Abstract. We present a general method to formalize action domains with
numeric-valued fluents whose values are incremented or decremented by execu-
tions of actions, and show how it can be applied to the action description language
C+ and to the concurrent situation calculus. This method can handle nonserializ-
able concurrent actions, as well as ramifications on numeric-valued fluents, which
are described in terms of some new causal structures, called contribution rules.

1 Introduction

Numeric-valued fluents are used for describing measurable quantities, such as weight,
money, memory. In many cases, the values of such fluents are incremented/decremented
by the execution of actions, such as adding/removing some weight, depositing/with-
drawing some money, or allocating/deallocating memory. How to compute the value of
a numeric-valued fluent after a concurrent execution of several such actions, possibly
with indirect effects, is the question we study in this paper. We consider true concur-
rency: actions occur at the same time and may not be serializable (i.e., their effect may
not be equivalent to the effect of executing the same actions consecutively in any order).
For instance, consider two boats towing a barge upriver by applying forces via cables
tied to the barge, where the force applied by either boat is not enough to move the barge
against the current of the river; here the concurrent action of two boats applying forces
can not be serialized. True concurrency makes the problem more challenging, because
actions that are individually executable may not be executable concurrently, e.g., due to
conflicting effects, and actions that are individually nonexecutable may be executable
concurrently, e.g., due to synergistic effects, like in the example above.

This question is important for real-world applications that involve reasoning tasks,
like planning or prediction, related to resource allocation. For instance, allocation of
memory storage for use by computer programs is one such application. It is also im-
portant for applications that involve modeling the behavior of physical systems. For in-
stance, how water pressure changes at a piston when some water is pumped from above
and some force is applied from the bottom is important for modeling the behavior of a
hydraulic elevator.
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There are several planning systems designed to work in concurrent domains with
resources, like [1, 2, 3]. However, they consider a simpler concurrency: they either re-
quire the serializability of actions, or that no concurrent action contain two actions, one
producing and the other consuming the same resource.

Lee and Lifschitz [4] show, in the action language C+ [5], how to formalize action
domains involving additive fluents—numeric-valued fluents on which the effect of a
concurrent action is computed by adding the effects of its primitive actions. However,
since additive fluents range over finite sets, a concurrent action is executable only if its
effect on each additive fluent is in that fluent’s range, and it is not easy to handle indirect
effects of actions (ramifications) on additive fluents (e.g., an indirect effect of adding
too much water into a small container is an increase in the amount of water in a large
container, into which the excess water overflows from the small container). Similarly,
[6] defines the cumulative direct effects of concurrent actions on additive fluents, in an
extension of the action language A [7]; however, it is not easy to handle ramifications
(not only the ones on numeric-valued fluents) in this formalism.

In [8], the authors show, in the concurrent situation calculus [9], how to formalize
action domains containing numeric-valued fluents, that do not require serializability of
actions, and that take into account ramifications caused by too much increase/decrease
of a numeric-valued fluent. However, with this formalization, it is not easy to capture
other forms of ramifications (e.g., whenever the amount of water increases in the large
container, the force towards the bottom of the container increases).

In this paper, we present a general method to formalize action domains with numeric-
valued fluents whose values are incremented/decremented by executions of actions.
This method is applicable to both the concurrent situation calculus and the action lan-
guage C+; and thus can be used with the reasoning systems CCALC and GOLOG. The
idea is to compute the total effect of a concurrent action on a numeric-valued fluent, in
terms of the direct and indirect effects of its primitive actions on that fluent, while also
taking into account the range restrictions (e.g., the capacity of the small container).

To describe direct effects, like in [4, 8], we introduce new constructs and functions
in the original formalisms. To describe ramifications, like in [10, 11, 12], we intro-
duce an explicit notion of causality, specific for numeric-valued fluents. We charac-
terize this notion by contribution rules, motivated by the equation-like causal structures
of [13, 14, 8]. With contribution rules, both forms of ramifications above can be han-
dled. The idea of introducing these new constructs is to be able to represent effects of
actions on numeric-valued fluents concisely. Semantically these constructs are treated
as “macros” on top of the original formalisms; like the constructs introduced in [4] and
in [8], they are compiled into causal laws or formulas in the original formalisms.

The paper consists of three parts. The first two parts describe how action domains
with numeric-valued fluents can be formalized in the action language C+ and in the con-
current situation calculus, using the new constructs; the semantics of these constructs is
defined by showing how to treat them as abbreviations in the original formalims. The
third part includes a comparison of these two formalizations, and a discussion of re-
lated work. We refer the reader to [5] and [9] for descriptions of the action language C+
and the concurrent situation calculus. For the proofs, and the CCALC and GOLOG files
describing our running example, see http://www.kr.tuwien.ac.at/staff/
esra/papers/cr.pdf.

http://www.kr.tuwien.ac.at/staff/
esra/papers/cr.pdf
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2 Describing Additive Fluents in the Action Language C+

To formalize action domains with additive fluents, we extend the action description
language C+, similar to [4].

Additive fluents. According to this extension, some numeric-valued fluent constants can
be designated as additive. Each additive fluent constant has a finite set of numbers as its
domain. As in [4], we understand numbers as symbols for elements of any set with an
associative and commutative operation + that has a neutral element 0; in particular, we
consider the additive group of integers (since this case can be implemented for CCALC).
We suppose that the domain of each additive fluent constant f is specified as a range
[Lf , Uf ], so that, at any state, Lf ≤ f ≤ Uf . We suppose that heads of causal laws do
not contain any additive fluent constants.

Direct effects of actions. Direct effects of a boolean action constant a on an additive
fluent f are expressed by increment laws of [4], expressions of the form

a increments f by n if ψ (1)

where n is an integer and ψ is a fluent formula. We drop the ‘if ψ’ part if ψ ≡ �; we call
f the head of the causal law. Intuitively, an increment law of form (1) expresses that, if
ψ holds, the direct contribution of the action a to the value of the additive fluent f is n.
The idea is then, to compute the cumulative direct contribution of concurrently executed
primitive actions to the value of an additive fluent f , denoted DContr(f), by adding the
direct contributions of those primitive actions to f . Translation of these laws into causal
laws is different from that of [4] (see the definition of DContr in the next section).

Preconditions of actions. We describe preconditions of actions with the nonexecutable
construct of [5]. For instance, the expression

nonexecutable Move(A, B) if ¬Clear(B)

describes that moving Block A onto Block B is not possible if B is not clear.

Ramifications on additive fluents. Ramifications on an additive fluent f are described
by contribution rules, expressions of the form:

f
⊕←− E(h) (2)

where h is one of the additive fluents that f depends on, E is a numeric-valued function,
and ⊕ is an element of {+, −, ++, +−, −+, −−}; we call f the head of the rule. These
rules allow us to describe both kinds of ramifications mentioned in the introduction. The
first kind of ramifications is expressed with ⊕ = + or ⊕ = −.

The meaning of a rule of form (2) with ⊕ = + (respectively, with ⊕ = −) can
be described as follows: whenever the sum of the direct and indirect contributions of
a concurrent action to h, when added to h, exceeds the upper bound Uh (respectively,
goes beyond its lower bound Lh), that action indirectly contributes to f by the amount
E(DContr(h)+IContr(h)−TContr(h)), where IContr(h) denotes the indirect contribu-
tion of a concurrent action to h, and TContr(h) denotes the total contribution of a con-
current action to h respecting the range restriction [Lh, Uh]. Intuitively, DContr(h) +
IContr(h) − TContr(h) describes the excess amount being contributed to h.
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The other form of ramifications is expressed with ⊕ ∈ {++, +−, −+, −−}. A rule
of form (2) with ⊕ = ++ (respectively, with ⊕ = +−) expresses that whenever there is
an increase (respectively, decrease) n in the value of h, i.e., TContr(h) = n, the value
of f increases (respectively, decreases) by E(n); the rules with ⊕ ∈ {−+, −−} are
similar, but they specify a decrease in the value of f . This form of ramification, unlike
the one above, is not due to the range restrictions imposed on the values of fluents,
although these restrictions must be satisfied at all times.

The indirect contribution of an action to an additive fluent f is the sum of the in-
creases/decreases described by the contribution rules with the head f .

Once the direct and indirect contributions of a concurrent action to an additive fluent
f are computed, we can compute the total contribution of that action to f as follows. If
f appears on the right hand side of a contribution rule of form (2) with ⊕ = +, −, then
we add DContr(f) and IContr(f), considering the range restriction [Lf , Uf ]:

TContr(f) =

⎧
⎨

⎩

Uf −f if DContr(f)+IContr(f) > Uf −f
Lf −f if DContr(f)+IContr(f) < Lf −f
DContr(f)+IContr(f) otherwise.

Otherwise, we do not need to consider the range restriction, and TContr(f) is defined
as DContr(f)+IContr(f).

We consider action domains only where the causal influence among fluents is acyclic.
Here is an example.

Example 1. Consider three containers, small, medium, and large, for storing water. The
small container is suspended over the medium, and the medium container is suspended
over the large so that, when the small (respectively, medium) container is full of water,
the water poured into the small (respectively, medium) container overflows into the
medium (respectively, large) container. Suppose that there are three taps: one directly
above the small container, by which some water can be added to the containers from
an external source, one on the small container, by which some water can be released
into the medium container, and a third tap on the large container to release water to the
exterior. Suppose also that one unit increase (respectively, decrease) of water in the large
container increases (respectively, decreases) the amount of force applied downwards to
the bottom of the large container by two units. Also assume that some force is exerted
upwards at the bottom of the large container, e.g., by a piston, to lift it up.

A formalization of this action domain in the extended C+ is presented in Figure 1.
Here the additive fluent constants Small, Medium, and Large describe the amount of
water in each container; Force describes the force exerted upwards at the bottom of the
large container. The boolean action constant AddS(n) describes the action of adding
n units of water to the small container by opening the tap over it; ReleaseS(n) and
ReleaseL(n) describe the action of releasing n units of water from the small, respec-
tively large, container by opening its tap; and Exert(n) represents the action of exerting
n amount of force upwards.

Suppose that the range restrictions are specified as follows: LSmall = LMedium =
LLarge = 0, LForce = −8, USmall = 2, UMedium = 3, ULarge = 4, UForce = 8. If initially
Small = Medium = Large = 1, Force = −2, then, after executing the concurrent
action c = {AddS(8), ReleaseS(1), ReleaseL(2), Exert(8)}, the values of fluents are
computed by CCALC as follows: Small = 2, Medium = 3, Large = 4, Force = 0.
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Notation: n ranges over {Min, .., Max} and a ranges over action constants.

Action constants: Domains:
AddS(n), ReleaseS(n), ReleaseL(n), Exert(n) Boolean

Additive fluent constants: Domains:
Small {LSmall, .., USmall}
Medium {LMedium, .., UMedium}
Large {LLarge, .., ULarge}
Force {LForce, .., UForce}

Causal laws: AddS(n) increments Small by n
ReleaseS(n) increments Small by − n
ReleaseS(n) increments Medium by n
ReleaseL(n) increments Large by − n
Exert(n) increments Force by n

nonexecutable AddS(n) if AddS(n′) (n �= n′)
nonexecutable ReleaseS(n) if ReleaseS(n′) (n �= n′)
nonexecutable ReleaseL(n) if ReleaseL(n′) (n �= n′)
nonexecutable Exert(n) if Exert(n′) (n �= n′)
exogenous a

Contribution rules:
Medium

+←− Small Large
+←− Medium

Force
+−←− 2 × Large Force

−+←− 2 × Large

Fig. 1. Containers domain described in the extended C+

Indeed, the direct effect of c on Small is the sum of the direct contributions of its
primitive actions (described by the increment laws with the head Small, in Figure 1):
DContr(Small) = 8− 1 = 7. Since there is no contribution rule with the head Small, in
Figure 1, there is no ramification on it: IContr(Small) = 0. Since Small+DContr(Small)
+ IContr(Small) = 7 exceeds the capacity of the small container, the total contribution
of c to Small is just the amount that fills the small container: TContr(Small) = USmall −
Small = 2 − 1 = 1. Then the value of Small after the execution of c is 2.

On the other hand, since the function E in Medium
+←− Small is the identity function,

the indirect contribution of c to Medium is the amount of the excess water overflown into
the medium container: DContr(Small)+IContr(Small)−TContr(Small) = 7+0−1 =
6. Since the direct contribution of c to Medium is 1, the total contribution of c to Medium
is just the amount that fills the medium container: TContr(Medium) = 2. Then, after
the execution of c, Medium = 3.

Similarly, the direct and indirect contributions of c to Large can be computed as
follows: DContr(Large) = −2, IContr(Large) = 5. Since Large does not appear on the
right hand side of a contribution rule of form (2) with ⊕ = +, −, the total contribution
of c to Large is simply the addition of these two: TContr(Large) = 3. Then the value
of Large after the execution of c is 4.

Since the total contribution of c to Large is 3, and since the function E in Force
−+←−

2 × Large is (λx.2 × x), the indirect contribution of c to Force is −(2 × 3) = −6.
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Since the direct contribution of c to Force is +8, the total contribution of c to Force is 2.
Therefore, the value of Force after the execution of c is 0.

3 Obtaining an Action Description

To obtain an action description in C+ from a formalization of an action domain like in
Figure 1, we translate increment laws, and contribution rules into causal laws as follows.

1. To describe the direct effects of primitive actions, first we introduce new action
constants, Contr(a, f), of sort integer, where a is an action constant and f is an
additive fluent constant; an atom of the form Contr(a, f) = v expresses that the
action a contributes to f by the amount v. We define Contr(a, f) to be 0 by default:

default Contr(a, f) = 0.

Then we replace every increment law (1) with

caused Contr(a, f) = n if a ∧ ψ.

2. To describe the cumulative effects of concurrent actions, we introduce new action
constants, DContr(f), IContr(f), TContr(f), of sort integer, where f is an addi-
tive fluent constant. Intuitively, an atom of the form DContr(f) = v (respectively,
IContr(f) = v) expresses that the direct (respectively, indirect) contribution of a
concurrent action to f is v. An atom of the form TContr(f) = v expresses that the
total contribution of a concurrent action to f is v.

We define DContr(f) as follows:

caused DContr(f) =
∑

a va if
∧

a Contr(a, f) = va

where Min ≤
∑

a va ≤ Max.

Let us denote by C the set of all contribution rules. We define IContr(f) to be 0 by
default:

default IContr(f) = 0.

Then we translate contribution rules in C into the causal laws:

caused IContr(f) = v if v =∑

f
+←−E(h)∈C

E(IContr(h)+DContr(h)−TContr(h))

−
∑

f
−←−E(h)∈C

E(IContr(h)+DContr(h)−TContr(h))

+
∑

f
++←−E(h)∈C,TContr(h)>0

E(TContr(h))

+
∑

f
+−←−E(h)∈C,TContr(h)<0

E(TContr(h))

−
∑

f
−+←−E(h)∈C,TContr(h)>0

E(TContr(h))

−
∑

f
−−←−E(h)∈C,TContr(h)<0

E(TContr(h)) (Min ≤ v ≤ Max).

For instance, with the contribution rules in Figure 1, for Medium, we add

caused IContr(Medium) = v if
IContr(Small)+DContr(Small)−TContr(Small) = v (Min ≤ v ≤ Max).
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If f appears on the right hand side of a contribution rule of form (2), then we define
TContr(f) by adding the direct and indirect contributions of actions, respecting the
range restriction [Lf , Uf ]:

caused TContr(f)=v+v′ if DContr(f)=v ∧ IContr(f)=v′

(Lf ≤ v+v′+f ≤ Uf )
caused TContr(f)=Uf −f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f > Uf )
caused TContr(f)=Lf −f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f < Lf )

such that the values assigned to TContr(f) are in the range [Min, Max]. Otherwise,
we define TContr(f) simply by adding the direct and indirect contributions of ac-
tions, i.e., by the first set of causal laws above.

3. To determine the value of an additive fluent constant f after an execution of a
concurrent action, we add

caused f = v + v′ if � after f = v ∧ TContr(f) = v′ (Min ≤ v+v′ ≤ Max).

With the translation above, the meaning of an action description D in the extended
C+ can be represented by the transition diagram described by the action description D′

obtained from D as described above (see [7] for a definition of a transition diagram).
Then a query Q (in a query language, like R [7]), which describes a planning problem,
a prediction problem, etc., is entailed by D if Q is entailed by D′. This allowed us to
compute the values of additive fluents in Example 1 using CCALC.

4 Describing Additive Fluents in the Concurrent Situation
Calculus

To formalize action domains with additive fluents, we extend the concurrent situation
calculus, as in [8].

Additive fluents. According to this extension, some functional fluents that range over
numbers (not necessarily integers) can be designated as additive. For each additive flu-
ent f , we understand a given range [Lf , Uf ] as follows: in every situation s, Lf ≤
f(s) ≤ Uf .

Direct effects of actions. For describing direct effects of actions on additive fluents, we
introduce a function contrf (x, a, s) for each additive fluent f . Intuitively, contrf (x, a, s)
is the amount that the action a contributes to f when executed in situation s. In the
following, free variables are implicitly universally quantified. We describe the direct
effects of primitive actions on additive fluents by axioms of the form:

κf (x, v, a, s) ⊃ contrf (x, a, s) = v (3)

where κf (x, v, a, s) is a first-order formula whose only free variables are x, v, a, s,
doesn’t mention function contrg for any g, and s is its only term of sort situation. If
there is no axiom (3) describing the effect of an action a on an additive fluent f , we
assume that the direct contribution of a to f is zero. This assumption allows us to
derive, for each function contrf , a definitional axiom:

contrf (x, a, s) = v ≡ κf (x, v, a, s) ∨ v = 0 ∧ ¬(∃v′)κf (x, v′, a, s).
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Notation: n, n′, v are object (number) variables, s is a situation variable, a, a′ are action
variables, and c is a concurrent variable.

Action functions: addS(n), releaseS(n), releaseL(n), exert(n).

Additive fluent functions: Ranges:
small [Lsmall, Usmall]
medium [Lmedium, Umedium]
large [Llarge, Ularge]
force [Lforce, Uforce]

Direct effect axioms:
(∃n)[a = addS(n) ∧ v = n] ⊃ contrsmall(a, s) = v
(∃n)[a = releaseS(n) ∧ v = −n] ⊃ contrsmall(a, s) = v
(∃n)[a = releaseS(n) ∧ v = n] ⊃ contrmedium(a, s) = v
(∃n)[a = releaseL(n) ∧ v = −n] ⊃ contrlarge(a, s) = v
(∃n)[a = exert(n) ∧ v = n] ⊃ contrforce(a, s) = v

Preconditions of actions:
Poss(a, s)
conflict(c, s) = (∃n, n′).[addS(n) ∈ c ∧ addS(n′) ∈ c ∧ n �= n′]∨

[releaseS(n) ∈ c ∧ releaseS(n′) ∈ c ∧ n �= n′]∨
[releaseL(n) ∈ c ∧ releaseL(n′) ∈ c ∧ n �= n′]∨
[exert(n) ∈ c ∧ exert(n′) ∈ c ∧ n �= n′]

Contribution rules:
medium

+←− small large
+←− medium

force
+−←− 2 × large force

−+←− 2 × large

Fig. 2. Containers domain described in the extended concurrent situation calculus

Preconditions of actions. We describe preconditions of primitive actions as in [9]. For
preconditions of a concurrent action c, we describe by a formula conflict(c, s) the con-
ditions under which the primitive actions in c conflict with each other. This is required
to handle cases where a set of primitive actions each of which is individually possible
may be impossible when executed concurrently.

Ramifications on additive fluents. As in the language C+, we consider two kinds of
ramifications on numeric-valued fluents, and we express them by acyclic contribution
rules (2), where f and h do not contain a situation term.

For instance, Figure 2 shows a formalization of the containers example in this ex-
tended version of the concurrent situation calculus. With such a formalization, we can
compute the values of fluents, as in Example 1, using GOLOG.

5 Obtaining a Basic Action Theory

From a formalization of an action domain, like in Figure 2, we can obtain a basic action
theory in the concurrent situation calculus as follows. In the following, as in [9], instead
of axiomatizing sets, numbers, and arithmetic operations, we use them assuming their
standard interpretation.



Representing Action Domains with Numeric-Valued Fluents 159

1. We consider the foundational axioms of [9].
2. From the preconditions of primitive actions, conflicts between actions, and range

restrictions on additive fluents, we can formalize preconditions of a concurrent ac-
tion c as in [8], by an axiom of the form

Poss(c, s) ≡
(∃a)(a ∈ c) ∧ (∀a ∈ c)Poss(a, s) ∧ ¬conflict(c, s) ∧ R1[RC(do(c, s))].

Denoted by R1[W ] is a formula equivalent to the result of applying one step of
Reiter’s regression procedure [9] on W . We use RC(s) to denote the conjunction
of the range constraints on each additive fluent f (i.e.,

∧
f Lf ≤ f(s) ≤ Uf ) con-

joined with additional qualification constraints if given. By this way, a concurrent
action is possible if it results in a situation that satisfies the range constraints on
additive fluents. For Example 1,

RC(s) = Lsmall ≤ small(s) ≤ Usmall ∧ Lmedium ≤ medium(s) ≤ Umedium∧
Llarge ≤ large(s) ≤ Ularge ∧ Lforce ≤ force(s) ≤ Uforce.

3. From the direct effect axioms and contribution rules in such a formalization, we
can derive successor state axioms for additive fluents by the same kind of transfor-
mation in [9], which is based on an explanation closure assumption.

First, we express the cumulative effects of actions on f , by adding the direct
and indirect contributions of actions on f , respecting the given range [Lf , Uf ]. For
each additive fluent f , we introduce three new functions: dContrf , iContrf , and
tContrf . Intuitively, dContrf (x, c, s) describes the cumulative direct contributions
of primitive actions in c at a situation s:

dContrf (x, c, s) =
∑

a∈c

contrf (x, a, s).

The indirect contribution of a concurrent action c on f at a situation s is described
by iContrf (x, c, s), relative to a set C of contribution rules:

iContrf (x, c, s) =∑

f
+←−E(h)∈C

E(iContrh(y, c, s) + dContrh(y, c, s) − tContrh(y, c, s))

−
∑

f
−←−E(h)∈C

E(iContrh(y, c, s) + dContrh(y, c, s) − tContrh(y, c, s))

+
∑

f
++←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

+
∑

f
+−←−E(h)∈C,tContrh(y,c,s)<0

E(tContrh(y, c, s))

−
∑

f
−+←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

−
∑

f
−−←−E(h)∈C,tContrh(y,c,s)<0

E(tContrh(y, c, s)).

For instance, relative to the contribution rules in Figure 2:

iContrmedium(c, s) = iContrsmall(c, s) + dContrsmall(c, s) − tContrsmall(c, s).

After defining direct and indirect contributions of actions on an additive fluent f ,
we can define the total contribution of actions as follows. If f appears on the right
hand side of a contribution rule of form (2), then we add the direct and indirect
contributions of actions respecting the range restriction [Lf , Uf ]:



160 E. Erdem and A. Gabaldon

tContrf (x, c, s) =

⎧
⎨

⎩

Uf −f(x, s) if sumf > Uf −f(x, s)
Lf −f(x, s) if sumf < Lf −f(x, s)
sumf otherwise

where sumf stands for dContrf (x, c, s) + iContrf (x, c, s). Otherwise, the total
contribution of actions is simply the sum of the direct and indirect contributions of
actions, i.e., sumf .

Finally, we define the successor state axiom for an additive fluent f :

f(x, do(c, s)) = f(x, s) + tContrf (x, c, s).

4. From the given action functions, we can obtain unique names axioms, like
addS(n) = releaseS(n′), etc.

5. We suppose that a description of the initial world is given.

6 Comparing the Two Formalizations

We have described how to formalize an action domain with additive fluents, in two
formalisms: the action language C+ and the concurrent situation calculus. We can see
in Figures 1 and 2 that two such formalizations look similar. In fact, under some con-
ditions, a formalization D of an action domain in the extended version of C+ and a
description I of the initial world can be translated into an action theory sit(D, I) in
the extended version of the concurrent situation calculus, such that, for every additive
fluent f and for every concurrent action c, the value of f after execution of c is the same
according to each formalization.

Suppose that D consists of the following:

– additive fluent constants F1, . . . , Fm, each Fi with the domain {LFi , ..., UFi}
(Min ≤ LFi , UFi ≤ Max); and boolean action constants A1, . . . , Am′ ;

– increment laws of form (1) where a is a boolean action constant, f is an additive
fluent constant, n is an integer, and ψ is true;

– preconditions of actions of the form

nonexecutable a if ψ (4)

where ψ is a conjunction of atoms that does not contain the action constant a.
– acyclic contribution rules of form (2).

Suppose that I consists of the following:

0 : Fi = Ni (0 ≤ i ≤ m)

where Ni is an integer in the given range {LFi , . . . , UFi}, expressing that, at time stamp
0, the value of Fi is Ni.

Then we can obtain sit(D, I) from D and I as follows:

1. For each additive fluent constant Fi ∈ D, declare a corresponding unary additive
fluent function fi(s) with the range [Lfi, Ufi ]. such that LFi = Lfi and UFi =
Ufi . For each boolean action constant Ai ∈ D, declare a corresponding nullary
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action function Ai. For instance, for the fluent constant Small with the domain
{LSmall, . . . , USmall} in Figure 1, we declare in Figure 2 the fluent function small
with the range [Lsmall, Usmall].

Schemas are frequently used in C+ to represent a large number of constants or
statements. For example, AddS(n) in the declarations part denotes the action con-
stants AddS(Min), . . . , AddS(Max). In a situation calculus representation, for such a
set of action constants, we can introduce a single action function (e.g., addS(n)).

2. For each increment law Ai increments Fj by N in D, add the formula

[a = Ai ∧ v = N ] ⊃ contrfj (a, s) = v. (5)

With a function Ai(n), we can use a single formula to represent all of the formu-
las (5) for Ai, as seen in Figure 2.

3. Let NEXF be the set of all causal laws (4) in D such that ψ is a fluent formula. Let
ψ(s) be the formula obtained from a fluent formula ψ by replacing every additive
fluent atom Fi = N by fi(s) = N . For each action constant Ai in D, add the formula

Poss(Ai, s) ≡
∧

(nonexecutable Ai if ψ)∈NEXF

¬ψ(s).

If for every action constant Ai, the right hand side of the equivalence above is � then
we can simply replace all of the equivalences above by the single formula Poss(a, s)
as in Figure 2 (recall a is implicitly universally quantified.)

4. Let NEXA be the set of all causal laws (4) in D such that ψ is a formula that
contains an action constant. Let ψ(c, s) be the formula obtained from a concurrent
action c and a formula ψ by replacing every fluent atom Fi = N with fi(s) = N ,
and every action atom Aj (respectively, ¬Ak) with Aj ∈ c (respectively, Ak ∈ c).
Then add the following definition:

conflict(c, s) ≡
∨

(nonexecutable Ai if ψ)∈NEXA

[Ai ∈ c ∧ ψ(c, s)].

5. For each contribution rule F
⊕←− E(H) in D, add the contribution rule f ⊕←− E(h).

6. For each expression 0 : Fi = Ni in I , add the fact fi(S0) = Ni.

Suppose that the range [Min, Max] is wide enough that, when compiling D into an
action description as described in Section 3, the auxiliary actions DContrf , IContrf ,
and TContrf are never undefined due to range violation.

Proposition 1. Let C be a set of action constants in D and c be the set of corresponding
action functions in sit(D, I). Then the following hold:

(i) C is executable at time stamp 0 with respect to D and I iff Poss(c, S0) with respect
to sit(D, I);

(ii) for every fluent constant Fi, if C is executable at time stamp 0 and 1 : Fi = N ′i af-
ter the execution of C at time stamp 0, with respect to D and I , then fi(do(c, S0))=
N ′i with respect to sit(D, I).

(iii) for every fluent constant Fi, if Poss(c, S0) and fi(do(c, S0)) = N ′i with respect to
sit(D, I), then 1 : Fi = N ′i after the execution of C at time stamp 0, with respect
to D and I .

The assumption above is required for the ‘if’ part of (i), and for (iii).
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Although we have incorporated contribution rules into two formalisms in a similar
way, and we have shown that, under some conditions, a formalization of an action do-
main in C+ can be transformed into a formalization in the concurrent situation calculus,
these two formalisms are different in general: C+ action descriptions are nonmonotonic
and propositional, while the situation calculus action theories are monotonic and first-
order. This work can be viewed in part as an attempt to bridge the gap between these
two formalisms, in the spirit of [15].

7 Related Work

There are mainly two lines of work related to ours. The first one, [13] and [14], intro-
duces methods to obtain a causal ordering of variables (denoting numeric-valued flu-
ents) from a set of equation-like causal structures, confluence equations and structural
equations, each describing a mechanism in a device. Such a causal ordering describes
which fluents are directly causally dependent on which other fluents. The goal is, by
this way, to understand the causal behavior of a device.

The other line of work, [16] and [8], explicitly represents causal relations among
variables by equation-like causal structures, structural equations and contribution equa-
tions; so the goal is not to obtain a causal ordering on numeric-valued variables. They
use these equations for various problems of reasoning about actions and change. For
instance, [16] represents each mechanism with a structural equation, and uses them for
modeling counterfactuals. On the other hand, [8] represents each mechanism with a
contribution equation, compiles them into an action theory, allowing one to solve prob-
lems of reasoning about effects of actions, like planning and prediction.

All [14, 16, 8] suppose that the causal influence among fluents is acyclic. The method
of [13] can not in general determine the effects of disturbances by propagation when
the causal influences are cyclic. [14, 16] require each variable to be classified as either
exogenous or endogenous; the others and we do not.

In our approach, each mechanism is described by a set of contribution rules with
the same head. These rules explicitly represent the flow of causal influences among
variables; in this sense it can be considered along the second line of work above. Con-
tribution rules are assumed to be acyclic. As in [8], by compiling contribution rules
into an action theory, we can solve problems of reasoning about effects of actions. On
the other hand, unlike with contribution equations, there is no obvious correspondence
between contribution rules and algebraic equations. For instance, in the containers ex-
ample, with the contribution equations inner(s)=medium(s)+small(s) and total(s)=
inner(s)+ large(s), one can verify that total(s) = small(s)+medium(s)+ large(s). In
our approach, we can verify this equation by introducing an auxiliary fluent total(s)
and contribution rules for it, but there is no direct correspondence between the equation
and the contribution rules. Another difference between contribution equations and con-
tribution rules, is that auxiliary fluents such as total and inner are necessary to write
contribution equations, while they are not required in writing contribution rules. This is
due to the ability of contribution rules to express more directly the causal influence re-
lationships among fluents. Finally, although contribution equations can handle the first
kind of ramifications mentioned in the introduction, we cannot directly express the sec-
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ond kind of ramifications by them; there is no direct way to describe these ramifications
by the other causal structures mentioned above.

8 Conclusion

We have described how to formalize an action domain with additive fluents, in two for-
malisms: the action language C+ and the concurrent situation calculus. In both cases,
first we have extended the formalisms, e.g., by introducing some new constructs or func-
tions and by modifying some axioms. Since some ramifications are not easy to describe
in the original formalisms, or using the existing causal structures, we have introduced
contribution rules, which express causal influences between additive fluents. After that
we have formalized an action domain in the extended versions in four parts: specifi-
cation of additive fluents with their domains/ranges and actions affecting them, direct
effects of actions on additive fluents, preconditions of actions, and ramifications on ad-
ditive fluents. The formalizations obtained this way can handle not only nonserializable
actions, but also ramifications on additive fluents. Investigating the application of our
method to other formalisms, such as TAL [17], is a possible future research direction.
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