
Cumulative Effects of Concurrent Actions on Numeric-Valued Fluents

Esra Erdem
Institute of Information Systems,

Vienna University of Technology, Vienna, Austria
esra@kr.tuwien.ac.at

Alfredo Gabaldon
National ICT Australia

Sydney, Australia
alfredo.gabaldon@nicta.com.au

Abstract

We propose a situation calculus formalization of action do-
mains that include numeric-valued fluents (so-called addi-
tive or measure fluents) and concurrency. Our approach
allows formalizing concurrent actions whose effects incre-
ment/decrement the value of additive fluents. For describing
indirect effects, we employ mathematical equations in a man-
ner that is inspired by recent work on causality and structural
equations.

Introduction
In this paper we study the problem of formalizing action do-
mains that include numeric-valued fluents and concurrency,
in the situation calculus (McCarthy 1963). These fluents,
known as additive fluents (Lee & Lifschitz 2003) or mea-
sure fluents (Russel & Norvig 1995), are used for represent-
ing measurable quantities such as weight or speed. An obvi-
ous practical application of reasoning about additive fluents
is planning with resources, which usually are measurable
quantities whose value is incremented/decremented by the
execution of actions.

The ability to build plans in concurrent domains with
numeric-valued fluents is crucial in real world applications.
However, there has not been much work on formal accounts
of this problem. Although there are several planning systems
designed to work in concurrent domains with resources,1
most of them simplify the problem by requiring that con-
current actions be serializable. That is, actions are allowed
to execute concurrently as long as their effect is equivalent to
the effect of executing the same actions consecutively. This
assumption eliminates practically all the semantic issues of
the problem. On the other hand, this requirement precludes
planners from solving many interesting problems. Consider
for instance a simple problem where there are two resources
R1, R2 and actions A,B such that A consumes one unit of
R1 and produces one unit of R2, and B consumes one unit
of R2 and produces one of R1. Suppose also that there is
the constraint Ri > 0 at all times, and that they are initially

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1(Koehler 1998; Rintanen & Jungholt 1999; Kvarnström, Do-
herty, & Haslum 2000; Bacchus & Ady 2001; Do & Kambhampati
2003) are recent examples.

R1 = R2 = 1. The simple plan consisting of the concurrent
execution of A and B is not serializable, hence out of the
scope of most planning systems.

In addition to a more general account of concurrency with
additive fluents, we are also interested in allowing certain
forms of indirect effects of actions (ramifications) on addi-
tive fluents. For instance, when a robot adds some water
into a small container, and the water overflows into a larger
container, the increment in the amount of water in the large
container can be viewed as an indirect effect of the robot’s
action. Given that the total amount of water in both contain-
ers is preserved, one may want to capture indirect effects
by means of a mathematical equation. However, one is im-
mediately confronted with a problem similar to the problem
that led to the introduction of explicit notions of causality
in action theories (see (Lin 1995; McCain & Turner 1995;
Thielscher 1997) among others): mathematical equations
are symmetric and thus cannot express the causal rela-
tionship among the fluents in the equation. In this paper
we present a formalization of indirect effects of concur-
rent actions on additive fluents. Our approach is in some
respects based on the work of (Iwasaki & Simon 1986;
Halpern & Pearl 2001) on causal reasoning with structural
equations.

Our formalization for reasoning about the effect of con-
current actions on additive fluents builds on the work of
(Reiter 2001) and (Lee & Lifschitz 2003). We generalize
Reiter’s basic action theories in the concurrent situation cal-
culus (Reiter 2001) with an account of additive fluents that
is inspired on (Lee & Lifschitz 2003), which, on the other
hand, restricts additive fluents to range over finite sets of in-
tegers and does not consider the kind of indirect effects of
actions on these fluents that we do.

The Concurrent Situation Calculus
We axiomatize action domains in the concurrent situation
calculus (Reiter 2001). This is a second-order language with
equality. It has four sorts: action for primitive actions, con-
current for concurrent actions, situation for situations, and
object for objects in the domain. Intuitively, situations are
sequences of concurrent actions representing possible evolu-
tions of the world. Concurrent actions are (possibly infinite)
sets of primitive actions. In addition to the standard logical
symbols and connectives, the language includes:

AAAI-05 / 627



• variable symbols of each sort;2

• a constant S0 of sort situation denoting the initial situa-
tion;

• a function symbol do : (concurrent × situation) 7→
situation to denote the situation that results after the exe-
cution of a sequence of actions;3

• a predicate symbol @ situation × situation, with s @ s′

meaning that situation s precedes s′;
• functions of the form A(~x) of sort action (with arguments

~x of sort objectn), which denote primitive actions;
• predicates of the form F (~x, s) and functions of the form

f(~x, s), with the last argument s always being of sort
situation, which denote relational fluents and functional
fluents, i.e., properties of the world that change as a result
of the execution of actions; and

• a predicate symbol Poss of sort (action ∪ concurrent) ×
situation, which is used to describe whether a primitive or
concurrent action is possible in a situation.

Sets and reals are not axiomatized; their standard interpreta-
tion, including their operations and relations, is considered.

A basic action theory is composed of five sets of axioms:
1. Four foundational axioms that are domain-independent:

do(c1, s1) = do(c2, s2) ⊃ c1 = c2 ∧ s1 = s2,
(∀P )P (S0) ∧ (∀c, s)[P (s) ⊃ P (do(c, s))] ⊃ (∀s)P (s),

¬s @ S0,
s @ do(c, s′) ≡ s @ s′ ∨ s = s′.

2. For each primitive action A(~x), an action precondition
axiom of the form:

Poss(A(~x), s) ≡ ΠA(~x, s)
where ΠA(~x, s) is a formula uniform in s.4 Minimal
Poss requirements for concurrent actions are as follows:

Poss(a, s) ⊃ Poss({a}, s), (1)
Poss(c, s) ⊃ (∃a)a ∈ c ∧ (∀a)[a ∈ c ⊃ Poss(a, s)]. (2)

3. For each relational fluent F (~x, s), a successor state axiom
of the form:
F (~x, do(c, s)) ≡ γ+

F (~x, c, s) ∨ F (~x, s) ∧ ¬γ−F (~x, c, s)
where γ+

F (~x, c, s) and γ−F (~x, c, s) are formulas uniform
in s. Similarly, for each functional fluent f(~x, s), a suc-
cessor state axiom of the form:
f(~x, do(c, s)) = y ≡

γf (~x, y, c, s) ∨ f(~x, s) = y ∧ ¬(∃y′)γf (~x, y′, c, s).

4. Unique names axioms for actions, such as move(x, y) 6=
pickup(x).

5. Axioms describing the initial situation of the world: a fi-
nite set of sentences uniform in S0.
2Lower-case Roman letters denote variables. We use s, a, c and

x, possibly with superscripts and subscripts, for variables of sorts
situation, action, concurrent, and object. Unless stated otherwise,
variables are implicitly universally prenex quantified.

3In what follows, by “action” we will mean “concurrent action”
unless stated otherwise.

4A formula uniform in s does not contain any situation term
other than s. (See Definition 4.4.1 of (Reiter 2001).)

Action Theories with Additive Fluents
Additive fluents in the situation calculus are functional flu-
ents that take numerical values, usually within a range. We
will assume that for each additive fluent f , a range con-
straint [Lf , Uf ] is given, meaning that in every situation s,
Lf ≤ f(s) ≤ Uf . These range constraints will usually be
treated as qualification constraints, i.e., as additional action
preconditions. Later when we consider indirect effects, we
will see how these constraints also play a role there.

Direct effect axioms
For describing direct effects of actions on additive fluents,
we introduce a function contrf (~x, a, s) for each additive flu-
ent f . Intuitively, contrf (~x, a, s) is the amount that the ac-
tion a contributes to the value of f when executed in situa-
tion s.

According to (Reiter 1991), successor state axioms for
functional fluents are sometimes derived from effect axioms
of the form γ(~x, v, a, s) ⊃ f(~x, do(a, s)) = v. Similarly,
we describe the effects of primitive actions on additive flu-
ents by axioms of the form:

κf (~x, v, a, s) ⊃ contrf (~x, a, s) = v (3)

where κf (~x, v, a, s) is a first-order formula whose only free
variables are ~x, v, a, s, does not mention function contrg for
any g, and s is its only term of sort situation. For instance,
when a robot r dumps a container B with n liters of water,
this action causes its contents to decrease by n:

(∃r)[a = dumpB(r) ∧ n = −B(s)] ⊃ contrB(a, s) = n.

From such effect axioms, we intend to derive successor
state axioms for additive fluents by the same kind of trans-
formation in (Reiter 1991), which is based on an explanation
closure assumption.

Successor state axioms
The effect axioms (3) describe the effects of atomic actions
on additive fluents. We can obtain successor state axioms for
these fluents in the concurrent situation calculus as follows.

As a first step, similar to how effect axioms for regular flu-
ents are handled in (Reiter 2001), we assume that if a prim-
itive action has an effect on an additive fluent, then there is
one effect axiom of the form (3) describing this effect, and
that otherwise the effect of the action is to contribute zero
to the additive fluent. This assumption allows us to derive
a definitional axiom of the following form for each func-
tion contrf :

contrf (~x, a, s) = v ≡ κf (~x, v, a, s) ∨
v = 0 ∧ ¬(∃v′)κf (~x, v′, a, s). (4)

Frequently the formula κf (~x, v, a, s) is a disjunction of
the form a = α1 ∧ κα1,f (~x, v1, a, s) ∨ . . . ∨ a = αk ∧
καk,f (~x, vk, a, s). When this is the case, we write axiom (4)
as follows:

contrf (~x, a, s) =


v1 if a = α1 ∧ κα1,f (~x, v1, a, s)
. . .
vk if a = αk ∧ καk,f (~x, vk, a, s)
0 otherwise

AAAI-05 / 628



Example 1 Consider the missionaries and cannibals prob-
lem with two boats. The number of missionaries Mi or can-
nibals Ca at Bank1 or Bank2 of the river is described by the
additive fluent num(g, l, s). The action of crossing the river
is described by cross(b, l, nm, nc) (“nm number of mission-
aries and nc number of cannibals are crossing the river by
boat b to reach the location l”).

The only action in the domain, cross, has a direct effect
on the additive fluent num:

contrnum(g, l, a, s) =

n1 if (∃b, n2)a = cross(b, l, n1, n2) ∧ g = Mi
n2 if (∃b, n1)a = cross(b, l, n1, n2) ∧ g = Ca
−n1 if (∃b, n2, l

′)a = cross(b, l′, n1, n2)∧
g = Mi ∧ l 6= l′

−n2 if (∃b, n1, l
′)a = cross(b, l′, n1, n2)∧

g = Ca ∧ l 6= l′

0 otherwise

Once the axioms defining contrf are in place, the succes-
sor state axioms for additive fluents are straight forward to
write. What remains is to add up the contributions of all the
primitive actions in a concurrent action. Such a sum defines
the following function:

cContrf (~x, c, s) =
∑
a∈c

contrf (~x, a, s).

The successor state axiom for each additive fluent f is

f(~x, do(c, s)) = f(~x, s) + cContrf (~x, c, s). (5)

Example 2 Consider again the missionaries and cannibals
problem of Example 1. The location of a boat b is described
by the non-additive functional fluent loc(b, s). For this flu-
ent, the successor state axiom is of the usual form:

loc(b, do(c, s)) = l ≡ (∃n1, n2)(cross(b, l, n1, n2) ∈ c) ∨
¬(∃n1, n2, l

′)(cross(b, l′, n1, n2) ∈ c) ∧ loc(b, s) = l.

For the additive fluent num, the successor state axiom is of
the form (5):

num(g, l, do(c, s)) = num(g, l, s) + cContrnum(g, l, c, s).

Action preconditions
In a basic action theory as described above, a concurrent
action is possible only if each of its primitive actions is pos-
sible (see (2)). However, a set of primitive actions each of
which is individually possible may be impossible when ex-
ecuted concurrently. To handle such cases, we describe the
conditions under which the primitive actions in c conflict
with each other, denoted by conflict(c), and require their
negation as additional preconditions of c. For example, in
the blocks world, a concurrent action containing the two
primitive actions stack(x, z) and stack(y, z) (x 6= y) has a
conflict, denoted by:

conflict(c) def=
(∃x, y, z)[stack(x, z) ∈ c ∧ stack(y, z) ∈ c ∧ x 6= y],

so we include ¬conflict(c) as a precondition for c.

Another requirement for a concurrent action to be possi-
ble is that it must result in a situation that satisfies the range
constraints on additive fluents. We use RC(s) to denote the
conjunction of the range constraints on each additive flu-
ent f : ∧

f

Lf ≤ f(s) ≤ Uf

conjoined with additional qualification constraints if given
(see Example 3).

For additive fluents, most conflicts are covered by treat-
ing the range constraints as a precondition. For example,
suppose that there is a fluent f , with the range constraint
[0, 10] and the initial value f(S0) = 5, and actions A which
doubles the current value of f when executed and B which
contributes 5 to f . Due to the range constraint, although
each action is possible in S0, the concurrent action {A,B}
is not. On the other hand, actions that set additive fluents to
absolute values are an exception. A concurrent action that
includes an action that sets the value of a fluent, e.g., “dump
bucket,” and an action that contributes to the same fluent,
e.g., “pour into bucket,” has a conflict that needs to be en-
coded explicitly by conflict(c).

To exclude both sorts of conflicting cases among actions,
instead of axioms (1) and (2), we include in an action theory
a precondition axiom of the form

Poss(c, s) ≡ (∃a)(a ∈ c) ∧ (∀a ∈ c)Poss(a, s) ∧
¬conflict(c, s) ∧R1[RC(do(c, s))]. (6)

Here, R1[W ] is a formula equivalent to the result of apply-
ing one step of Reiter’s regression procedure (Reiter 1991).
Intuitively, by applying one regression step we obtain a for-
mula that is relative to s and is true iff W is true in do(c, s).
If the regressed formula holds in s, it is guaranteed that,
after executing c, the constraints RC will hold. Regress-
ing W is necessary in order to obtain an axiom of the form
Poss(c, s) ≡ Π(c, s) where Π(c, s) is a formula whose truth
value depends on situation s and on no other situation.

A single primitive action A can be viewed as a singleton
concurrent action {A}. Thus, reasoning about executable
sequences is done in terms of concurrent actions only (Reiter
2001):5

executable(s) def= (∀c, s∗).do(c, s∗) v s ⊃ Poss(c, s∗).

Example 3 Continuing with the axiomatization of the mis-
sionaries and cannibals problem, given the capacity of each
boat by a situation independent function capacity(b), we
have the following precondition axiom for cross:

Poss(cross(b, l, n1, n2), s) ≡ loc(b, s) 6= l ∧
n1 + n2 6= 0 ∧ n1 + n2 ≤ capacity(b).

One possible conflict we must consider is two cross actions
to different locations but with the same boat:

conflict(c, s) def= (∃l, l1)(l 6= l1) ∧
(∃b, n1, n2)cross(b, l, n1, n2) ∈ c ∧

cross(b, l1, n1, n2) ∈ c.

5Intuitively, an expression s v s′ means that s is a subsequence
of s′.

AAAI-05 / 629



In this example, the constraints RC(s) are more interest-
ing than just upper and lower bounds on the additive flu-
ents, since there are additional constraints on the numbers of
missionaries relative to cannibals: missionaries must not be
outnumbered by cannibals. We include the following con-
straint:

RC(s) def= ¬(∃l)(num(Ca, l, s) > num(Mi, l, s)∧
num(Mi, l, s) > 0) ∧
(∀g, l)(0 ≤ num(g, l, s) ≤ MaxNumber).

The constant MaxNumber is the upper bound on fluent
num for both cannibals and missionaries.

Ramification Constraints on Additive Fluents
A domain that does not contain any actions with ramifica-
tions can be described as an action theory in the concurrent
situation calculus as discussed in the previous sections. How
do we describe in the concurrent situation calculus a domain
that contains an action with indirect effects on some fluents?
In this section we provide an answer to this question for a
particular representation of ramifications.

Example 4 Suppose that we have a small container and a
large container for storing water. The small container is sus-
pended over the large container so that, when the small con-
tainer is full of water, the water poured into the small con-
tainer overflows into the large container. Suppose also that
there are three taps: one directly above the small container,
by which some water can be added to the containers from an
external source, one on the small container, by which some
water can be released from the small container into the large
container, and a third tap on the large container to release
water to the exterior. We want to formalize this domain in
the concurrent situation calculus.

The amount of water in the small and the large containers
is represented by the additive fluents: small(s) and large(s).
Another additive fluent, total(s), represents the total amount
of water in the containers.

We introduce the action add(n) to describe the action of
adding n liters of water to the containers by opening the
tap over them, and the actions releaseS(n) and releaseL(n),
resp., to describe the action of releasing n liters of water
from the small, resp. large, container by opening its tap.

We can describe the direct contributions of add(n),
releaseS(n) and releaseL(n) by axioms of form (3). The
action add(n) contributes directly to total:

(∃n)[a = add(n) ∧ v = n] ⊃ contrtotal(a, s) = v

and to small:

(∃n)[a = add(n) ∧ v = n] ⊃ contrsmall(a, s) = v.

The action releaseS(n) contributes directly to small:

(∃n)[a = releaseS(n) ∧ v = −n] ⊃ contrsmall(a, s) = v

and to large:

(∃n)[a = releaseS(n) ∧ v = n] ⊃ contrlarge(a, s) = v.

The action releaseL contributes to large:

(∃n)[a = releaseL(n) ∧ v = −n] ⊃ contrlarge(a, s) = v

and similarly to total:

(∃n)[a = releaseL(n) ∧ v = −n] ⊃ contrtotal(a, s) = v.

From these direct contribution axioms, we obtain defini-
tional axioms of the form (4):

contrsmall(a, s) =

{
n if a = add(n)
−n if a = releaseS(n)
0 otherwise

contrlarge(a, s) =

{
n if a = releaseS(n)
−n if a = releaseL(n)
0 otherwise

contrtotal(a, s) =

{
n if a = add(n)
−n if a = releaseL(n)
0 otherwise

Range constraints and ramification
In earlier sections, the range restrictions were treated as
qualification constraints: if executing an action will falsify
them, the action is consider impossible. In this example,
however, the upper bound on the value of small plays a dif-
ferent role. Actions that seemingly would increase the value
of small over Usmall should not be considered impossible,
but actually to increase its value up to Usmall.

This fact will be captured explicitly in the definition of the
concurrent contribution of actions to small as follows:

cContrsmall(~x, c, s) ={
Usmall − small(s) if sumsmall > Usmall−small(s)
sumsmall otherwise

where sumsmall stands for
∑

a∈c contrsmall(~x, a, s).

In general, functions cContrf are defined as follows:

cContrf (~x, c, s) ={
Uf − f(~x, s) if sumf > Uf − f(~x, s)
Lf − f(~x, s) if sumf < Lf − f(~x, s)
sumf otherwise

where sumf stands for
∑

a∈c contrf (~x, a, s), and the first
two lines in the right-hand side being present only if the
range restriction Uf , resp. Lf , are a source of ramifications.
Note that if the range restrictions play no role in ramifica-
tions and the two lines are thus missing, the definition of
cContrf is just as shown earlier.

Contribution equations
The next question in formalizing the ramifications is how to
describe the causal influence among the fluents. In our water
container example, the relation among the fluents could be
described by the equation:

total(s) = small(s) + large(s) (7)

which must hold in all situations s. However, this equa-
tion does not capture the arrangement of the containers that
makes water flow from the small container into the large one.
The reason is clear: such algebraic equations are symmet-
ric and are not meant to describe how changes in one fluent
causally influence other fluents in the equation.

AAAI-05 / 630



Causal reasoning with equations has been considered be-
fore in AI. (Iwasaki & Simon 1986) (subsequently IS) con-
siders the problem of making explicit the causal relation
among variables in an equation describing a mechanism—a
component of a device or system. IS assumes each mecha-
nism is described by a single structural equation describing
how variables influence other variables. (Halpern & Pearl
2001) (subsequently HP) also uses structural equations, in
this case with the purpose of representing causal relations
among random variables for modeling counterfactuals.

Our approach to handling indirect effects on additive flu-
ents has been influenced by IS and HP. In order to represent
indirect effects on fluents, we will use equations in a simi-
lar fashion as structural equations are used in the aforemen-
tioned work to describe causal influence among variables.
We use structural equations under certain assumptions some
of which are shared with the work IS and HP and some of
which differ.
1. Similarly to IS and HP, we assume that each equation rep-

resents a single mechanism. That is, an equation describes
the indirect contribution of actions to one fluent in terms
of the contribution to the value of the other fluents in the
equation.

2. Both IS and HP require each variable to be classified as ei-
ther exogenous or endogenous. This is reasonable for the
settings they consider where there is no agent intervening
with the mechanism represented by the equation. All ex-
ternal intervention is fixed a-priori, which allows classify-
ing variables this way. In our case, external intervention6

depends on what particular action is executed. Hence a
fluent may be exogenous (directly affected) with respect
to one primitive action and endogenous with respect to
another primitive action, with both actions occurring con-
currently. Thus, in our approach we do not assume that
fluents can be separated into exogenous and endogenous
classes.

3. We do not intend to derive a causal ordering among flu-
ents as IS does for variables. We assume, as done in HP
and recent work on causality (Lin 1995; McCain & Turner
1995; Thielscher 1997), that the causal relation among
fluents is explicit in the axioms describing the indirect
contributions of actions.

4. We assume, as IS and HP do, that the causal influence
among fluents is acyclic. Lifting this assumption remains
a topic for future work.
Suppose then that in axiomatizing our domain, we provide

an equation describing each causal mechanism. Our equa-
tions will have a similar form as the structural equations in
HP: for a fluent f , the equation would have the form f = E
where E is an expression in terms of the fluents on which
f causally depends. In the case of additive fluents, such
an expression is in fact a linear combination of functions.
Just as the structural equations in HP, an equation such as
f = E is asymmetric in the sense that the equation deter-
mines the value of f but not the value of any of the fluents

6Here, by external intervention we mean external to the mech-
anism represented by an equation.

in the right-hand side. We use such equations, however, not
to compute the value of fluents, but to compute the contri-
bution to the value of the fluents that results from executing
an action. From an equation f = E , we obtain an almost
identical equation but instead of written in terms of fluent
functions, written in terms of functions cContrf and an ab-
breviation iContrf (~x, c, s) for each fluent f that intuitively
denotes the amount that action c indirectly contributes to f
in situation s.

If an equation describing indirect effects on a fluent f is
not given, then

iContrf (~x, c, s) def= 0.

Otherwise, suppose that equation f = E(f1, . . . , fn) is
given, where E(f1, . . . , fn) is a linear combination of fluents
f1(~x1, s), . . . , fn(~xn, s). Then we define iContrf (~x, c, s)
as follows:

iContrf (~x, c, s) def=
E(cContrf1(~x1, c, s), . . . , cContrfn(~xn, c, s))
− cContrf (~x, c, s)

Let us continue with the axiomatization of the water con-
tainer domain described in Example 4.

Example 5 Suppose that the range restrictions on the flu-
ents are as follows:7

Ltotal = Lsmall = Llarge = 0,
Utotal = 6, Usmall = 2, Ularge = 4.

Any concurrent action whose total effect on the fluents re-
sults in a situation where these range restrictions are vio-
lated is impossible, in accordance with our axiom (6) for
Poss(c, s) described earlier, except for restriction Usmall.
If an action’s contribution to small will result in a larger
value than its upper bound Usmall allows, the action is not
rendered impossible, but instead has an indirect effect. The
indirect effect of increasing small too much is expressed
by the following equation which can be obtained from the
underlying equation (7):

iContrlarge(c, s)
def=

cContrtotal(c, s)− cContrsmall(c, s)
− cContrlarge(c, s).

Given the initial values

total(S0) = 2, small(S0) = 1, large(S0) = 1,

and the concurrent action

c = {add(6), releaseS(1), releaseL(2)},

we obtain:

cContrtotal(c, S0) = 4,
cContrsmall(c, S0) = 1,
cContrlarge(c, S0) = −1,

iContrtotal(c, S0) = iContrsmall(c, S0)
def= 0,

iContrlarge(c, S0)
def= 4.

7These must be consistent with the underlying equation (7).

AAAI-05 / 631



Successor state axiom with indirect effects
After defining direct and indirect contributions of actions on
an additive fluent f , there only remains to define the succes-
sor state axiom for such a fluent. We define such an axiom
as follows:

f(~x, do(c, s)) = f(~x, s) + tContrf (~x, c, s).
where

tContrf (~x, c, s) def= cContrf (~x, c, s) + iContrf (~x, c, s).
This axiom replaces (5) in domain axiomatizations.
Example 6 For our container example with the values
from Example 5, we obtain total(c, S0) = 2 + 4 = 6,
small(c, S0) = 1 + 1 = 2, large(c, S0) = 1 + 3 = 4.

By a very simple application of the induction axiom
(∀P )P (S0) ∧ (∀c, s)[P (s) ⊃ P (do(c, s))] ⊃ (∀s)P (s)

with
P (s) def= total(s) = small(s) + large(s)

we can prove that if this equation holds in the initial situa-
tion S0, then it holds in all situations.
Proposition 1 Let D stand for the water container the-
ory presented through out this section and eq(s) stand for
total(s) = small(s) + large(s).

D |= eq(S0) ⊃ (∀s)eq(s).

Conclusion
In this paper we introduced a formalization of additive flu-
ents in concurrent domains that is based on Reiter’s basic
action theories in the concurrent situation calculus. This
formalization allows reasoning about the effect of actions
that increment/decrement integer or even real valued fluents.
Moreover, we presented an approach to reasoning about in-
direct effects through the use of equations that are conceptu-
ally similar to the structural equations of (Iwasaki & Simon
1986; Halpern & Pearl 2001). To the best of our knowledge,
this is the first attempt at formalizing ramifications of con-
current actions on numeric-valued fluents.

Our approach to ramifications on additive fluents based
on equations that express the direction of causal influ-
ence explicitly, is in line with recent work on causality
in theories of action (Lin 1995; McCain & Turner 1995;
Thielscher 1997). In our equations, causal direction is made
explicit by the use of function iContr on one side and the use
of functions cContr on the other side of the equations.

After compiling such ramification constraints in the form
of equations into the action theory, in the spirit of (Lin &
Reiter 1994; Lin 1995; McIlraith 2000), the constraints be-
come logical consequences of the resulting theory (as shown
by Proposition 1 for our example).

Planning with concurrency and resources is currently a
subject of intense research and we believe that a formal,
logic-based account of the problem is an important contribu-
tion. The proposal we have put forward in this paper allows
formalizing a much more general class of domains than cur-
rent planning systems are designed to solve, and thus it is
useful for specifying what is a correct solution to a planning
problem in such generalized domains.

Acknowledgments
We are grateful to Fangzhen Lin for many stimulating dis-
cussions on the subject of this paper, including a variation
of the container example. We are also grateful to Yves
Lespérance for helpful comments on an earlier version of
the paper.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Procs.
of IJCAI’01, 417–424.
Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. Journal of Artificial In-
telligence Research 20:155–194.
Halpern, J., and Pearl, J. 2001. Causes and explanations: a
structural-model approach–Part I: Causes. In Procs. of the
17th Conference on Uncertainty in AI (UAI’01), 194–202.
Iwasaki, Y., and Simon, H. 1986. Causality in device be-
havior. Artificial Intelligence 29:3–32.
Koehler, J. 1998. Planning under resource constraints. In
Procs. of the 13th European Conference on Artificial Intel-
ligence, 489–493.
Kvarnström, J.; Doherty, P.; and Haslum, P. 2000. Extend-
ing TALplanner with concurrency and resources. In Procs.
of the 14th European Conference on Artificial Intelligence.
Lee, J., and Lifschitz, V. 2003. Describing additive fluents
in action language C+. In Procs. of IJCAI’03, 1079–1084.
Lin, F., and Reiter, R. 1994. State constraints revisited.
Journal of Logic and Computation 4(5):655–678.
Lin, F. 1995. Embracing causality in specifying the indirect
effects of actions. In Procs. of IJCAI’95, 1985–1993.
McCain, N., and Turner, H. 1995. A causal theory of ram-
ifications and qualifications. In Procs. of IJCAI’95, 1978–
1984.
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted in Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410–417.
McIlraith, S. 2000. An axiomatic solution to the ramifi-
cation problem (sometimes). Artificial Intelligence 116(1–
2):87–121.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.
Rintanen, J., and Jungholt, H. 1999. Numeric state vari-
ables in constraint-based planning. In ECP, 109–121.
Russel, S., and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Thielscher, M. 1997. Ramification and causalty. Artificial
Intelligence 89(1–2):317–364.

AAAI-05 / 632


