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Abstract

Representing and reasoning about narratives together with the ability to do hypothetical reasoning
is important for agents in a dynamic world. These agents need to record their observations and action
executions as a narrative and at the same time, to achieve their goals against a changing environment,
they need to make plans (or re-plan) from thecurrentsituation. The early action formalisms did one
or the other. For example, while the original situation calculus was meant for hypothetical reasoning
and planning, the event calculus was more appropriate for narratives. Recently, there have been some
attempts at developing formalisms that do both. Independently, there has also been a lot of recent
research in reasoning about actions using circumscription. Of particular interest to us is the research
on using high-level languages and their logical representation using nested abnormality theories
(NATs)—a form of circumscription with blocks that make knowledge representation modular.
Starting from theories in the high-level languageL, which is extended to allow concurrent actions,
we define a translation to NATs that preserves both narrative and hypothetical reasoning. We initially
use the high level languageL, and then extend it to allow concurrent actions. In the process, we study
several knowledge representation issues such as filtering, and restricted monotonicity with respect to
NATs. Finally, we compare our formalization with other approaches, and discuss how our use of
NATs makes it easier to incorporate other features of action theories, such as constraints, to our
formalization. 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A narrative is a possibly incomplete set of observations about the world in terms of
what actions/events occurred and the value of fluents at different instants in the past. Initial
formulations of narratives, such as Kowalski and Sergot’s event calculus [23] and Allen’s
temporal logic [1], were concerned about inferring values of fluents at time instants other
than those explicitly given in the narrative and also possibly “abduce” occurrences of
actions not explicitly mentioned in the narrative. These formulations were not concerned3

with hypothetical and/or counterfactual reasoning about values of fluents in a possible
future world reached by executing a sequence of actions. Such hypothetical reasoning is
important from the point of view of planning, where an agent needs to construct a plan—
normally a sequence of actions, to achieve a particular goal.

The formalism of situation calculus [34] has been normally used for hypothetical
reasoning about actions and forms the basis of classical planning. But in its original form it
does not allow narratives; the only actual observations that can be expressed in it are about
values of fluents in the initial situation.

1.1. Allowing narratives with hypothetical reasoning

Recently, researchers [5,19,33,35,36,39] have realized the importance of having a
formalism that captures both narratives and hypothetical reasoning about effects of actions.
Such a formalism is necessary to formulate planning and execution of actions of an agent
in a dynamic environment, where exogenous actions may occur. The agent has to record
observations about occurrences of actions (both its own action executions, and exogenous
happenings) or fluent values, and sometimes infer them. Also, the agent has to make plans
and more importantly may have to dynamically revise its plans or construct new ones when
faced with exogenous events. These plans are not from the initial situation as in situation
calculus, but from thecurrentsituation. Although the terms “dynamic planning”, “planning
with execution”, and “reactive planning” have been used in the planning community, a
formalism that allows both narratives and hypothetical reasoning is necessary to form the
backbone of such planners—the role situation calculus plays for classical planners.

Miller and Shanahan [35] and Pinto and Reiter [39] were perhaps the first who
considered both narratives and hypothetical reasoning. Both formalisms made many
important contributions: the former showed how situation calculus can be extended to
incorporate narratives, and the latter introduced the concept ofactual situations—those
that were reached by actual occurrences of actions. Still, both formalisms have several
drawbacks. For example, Miller and Shanahan only allow fluent facts about the initial state,
and require that all action occurrences be explicitly stated. Also, Pinto and Reiter’s [39]
solution suffers frompremature minimizationof occurrences, i.e., while minimizing
occurrences of actions the possible existence of new situations—those not specified as

3 It was later shown that some of these formalisms can use abduction in the meta-level to do hypothetical
reasoning and planning. However, Reiter [42] has argued that it is better to do hypothetical reasoning at the object
level. Besides, the action descriptions used in these formalisms were restrictive in the sense that they did not allow
features such as constraints.
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part of the axiomatization or not inferable from it—is ruled out.4 This prevents them from
being able to make plans. As a result, both approaches lack the re-planning ability of an
agent who, for instance, after making a plan of packing his suitcase and driving the car to
the airport and doing the packing, observes his car with demobilizing damage. The agent
did not see the exogenous action that caused the damage so it cannot put a corresponding
action occurrence to its narrative, but it should be able to infer such an occurrence from its
observation that the car is damaged.

1.2. Expressiveness of our formalism

In this paper we focus on a more general formalism that allows both narratives and
hypothetical reasoning and overcomes many of the limitations of the earlier proposals.
In particular, besides being able to express fluent values at the initial state, and effects
of actions on fluents—as allowed inA [12], the precursor ofL—we can also express
observationssuch as:

– fluent facts about non-initial states,
– actual occurrence of actions at different time points (labeled by actual-situation

constants), and
– ordering among actual situations.
Given such descriptions, which includes observations, we can:
– plan from the current situation by doing hypothetical reasoning,
– explain observations through inferring action occurrences (not explicitly mentioned),
– infer new fluent facts (that are not in the narrative) about the various situations that

explain the observations or are implied by them,
– do counterfactual reasoning about action occurrences [36,39].

Moreover, our formalism allows a clear distinction between observations and hypothesis,
and makes it clear why the situation calculus atomholds(f, [a1, . . . , an]) is a hypothesis
and not an observation.

Our formulation is done using a novel form of circumscription calledNested Abnormal-
ity Theories(NATs) [24]. One important aspect of our approach is that unlike most of the
earlier formalizations of narratives [35,39] that were done directly in a logical language,
our formalization is grounded to the high-level languageL developed by Baral et al. [7]. In
the first half of the paper we give a translation of descriptions inL to nested abnormality
theories and show their equivalence. Later, we extendL to allow concurrent actions and
give a translation of descriptions in this extended language to nested abnormality theo-
ries.L is one of a family of high-level action languages recently proposed in the literature
[12,19,45].

1.3. High-level language approach vs direct formalization approach

In general, researchers that use a high level language to formalize reasoning about
actions have normally followed the methodology of:

4 This term was coined by Reiter in [42] where he discussed this drawback. The later papers of Reiter and
Pinto [38,42] avoid this drawback but to prevent it they abandon minimization of action occurrences. We further
explain “premature minimization” and do a detailed comparison of our approach with theirs in Section 11.5.
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– developing a high-level language—a fairly restricted language with English-like
syntax that can be easily followed, but with a precise semantics (that makes common-
sense assumptions used in the formulation precise), often defined using an automata
that makes it easier to incorporate notions such as the “frame”, “qualification” and
“ramification” that are otherwise difficult to encode in a logical language, and

– defining correct (sometimes complete) translations of high-level language theories
into classical logic or logic programming so as to apply existing query-answering
systems and compare different approaches within a well known setting.

The approaches that directly formalize reasoning about actions in a logical language,
which we will refer to as thedirect formalization approach,also often require the initial
descriptions to be given in a particular form and in a restricted subset of the logical
language. Unlike high-level language approaches, where queries are also required to have
a restricted syntax, the direct formalization approach allows queries to be any sentence
in the logical language. Even though this may seem like a big plus point for following
the direct formalization approach, often by restricting the query language faster querying
mechanisms can be developed. This is the reality in most systems, such as databases and
knowledge bases (including expert systems).

The other main difference between the two approaches is that in the direct formalization
approach the semantics is directly defined in a standard logical language without grounding
it to an independent semantics. Although having an extra semantics may seem superfluous
at first sight, it forms the basis to which the logical formalization can be grounded
and their correctness becomes a precise mathematical question. In the absence of this
extra semantics, the correctness of a direct formalization approach becomes an empirical
question where different examples (in English) are formalized and the adequacy of the
formalization is decided on whether the formalization of the examples matches our
intuition or not. When examples are given in English, the assumptions surrounding them
are often partially stated, thus opening up the possibility for multiple interpretations and
as a result the adequacy and correctness of a direct formalization approach can never be
precisely settled. A new example, often with different underlying assumptions than used in
the original formalization, starts a debate about the adequacy of the formalization.This is
partially what happened during the debate about the Yale-shooting problem.Also, the extra
semantics in the high-level language approach is defined using automata and structures
(such as a state being a collection of fluents) that make notions, difficult to express in
a logical language, easy to formalize. By having this semantics we can later precisely
determine if a logical formulation of a difficult notion (such as the frame problem) is correct
or not. Not having this extra semantics, and the inherent difficulty (even for experts) of the
mathematics of the logical languages, make it hard to evaluate the appropriateness of a
formulation in the direct approach. (In contrast, the simplicity of the high level semantics
often makes it easier to evaluate its appropriateness with respect to examples.)

Two anecdotal examples make this point. The first is the formalization of the frame
problem in the various logical languages that were the subject of debate in the Yale-
shooting issues. The formulation of this in the high level languageA is extremely simple;
thus, for any example that can be expressed inA, the correctness of a particular logical
formulation can easily be settled once and for all by checking whether it matches the
semantics of the formulation inA. The second anecdotal example is the case of “premature
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minimization” mentioned earlier. This feature was not intended by researchers working
directly in situation calculus. In fact, their goal was to capture narratives together with
planning. Unfortunately, their direct logical formalization, which was not verified with
respect to an independent semantics, had this unintended consequence. Perhaps the high-
level language approach could have reduced the debate in the former anecdote and
prevented the oversight in the latter.

We would like to add that the high-level language approach facilitates the comparison of
different theories of action. The best example is Kartha’s [20] comparison of three action
languages by translating them intoA and proving their equivalence. Finally, in this paper
by having high-level descriptions with an independent semantics and a corresponding
circumscriptive theory, we agree with Hoare’s view [17]:

For specifications of the highest quality and importance I would recommend complete
formalization of requirements in two entirely different styles, together with a proof that
they are consistent or even equivalent to each other.[. . .] A language for which two
consistent and complementary definitions are provided may be confidently taken as a
secure basis for software engineering.

1.4. Advantages of using nested abnormality theories

One major advantage of using nested abnormality theories in our work is that it allows
easy incorporation of additional features, such as constraints, which already have been
formalized—in the absence of narratives, with NATs [15,22]. Also, although the nesting
of blocks in NATs may at first glance suggest loss of declarativeness and elaboration
tolerance [31], we believe it makes it easier to represent knowledge, particularly in the
action domain (see [15,22,24] for more on this). This is because we can develop blocks that
represent meaningful structural units and use the blocks in other units without worrying
about undesired interactions. Besides, a sub-theory, e.g., a predicate definition, can be
elaborated by just changing the appropriate block, without any nonlocal surgery on the
rest of the theory. (In Section 9 we show how we can add constraints to our theory by
only changing the block that encodes the transition function.) To some extent, using “flat”
circumscription to formalize a large body of knowledge is like writing a large program
without using subroutines. We believe that the simplicity of our translation ofL (as
presented in this paper) demonstrates the usefulness of NATs for knowledge representation.

1.5. Other contributions

An additional and important contribution of this work is that the formalization presented
here constitutes a full, nontrivial example of the use ofvalue minimization,a technique
developed by Baral et al. [6] for minimizing the value of a function in a circumscriptive
theory. Value minimization is used in our formalization to capture the assumption that the
only action occurrences which can be derived from a set of observations are those which
are necessary to explain the observations themselves.

In reasoning with narratives, since we allow facts about noninitial states and partial
knowledge about action occurrences, we need some form of abduction to entail the
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occurrence of such actions and values of fluents at time points that are not explicitly
stated in the narrative. Unlike [19], where a particular kind of abductive reasoning (through
explanations to restore consistency) is done at the meta-level, we use filtering [44,45] at
the object-level.

To sum up, our formalization seems to be of independent interest from the point of view
of knowledge representation and nonmonotonic logics, since it illustrates the usefulness of
NATs in terms of ease of representation and restricted monotonicity [26], the use of value
minimization of functions in knowledge representation and the formalization of filtering in
NATs.

1.6. Organization of the rest of the paper

We start with an overview of the high-level languageL from [7,8] in Section 2 and an
overview of NATs in Section 3. We then give a translation of domain descriptions inL into
NATs in Section 4 and illustrate the NAT characterization with respect to some examples
in Section 6. In Section 5 we discuss value minimization of functions and its role in our
translation described in Section 4. In Section 7 we formally relate the entailment inL to
the entailment in our translation. In Section 8 we extendL to allow concurrent actions,
give a translation of domain descriptions in this extended language to NATs and relate
their entailment relation. In Section 9 we show how our formulation in terms of NATs
can be easily extended to take into account constraints and in Section 10 we discuss the
restricted monotonicity property of our NAT formulation and show the relation between
abductive reasoning, filtering and restricted monotonicity. In Section 11 we compare our
work with earlier work on combining narratives and hypothetical reasoning—particularly
by Miller, Shanahan, Pinto, Reiter and McCarthy. Finally, all the proofs are given in the
Appendixes A and B.

2. Overview ofL

The high-level languageL was developed by Baral et al. [7,8] to allow representation of
and reasoning with narratives together with hypothetical reasoning.

Beside the syntax and semantics ofL, [8] defines a translation to logic programs
and Prolog for a subclass of this language. Here, we start with a translation of domain
descriptions inL to NATs, and then extend it to allow concurrent actions.Let us make
it clear that the contribution of this paper is not the development ofL but rather the
formalization ofL in NATs, which allows easy integration of additional features such as
constraints; and the study of our NAT formalization in terms of its impact to knowledge
representation in general.

Let us now give a brief overview of the syntax and semantics ofL. To make this paper
self-contained, we present motivations for the choice of constructs in this language and
give several examples. Additional detailed motivations and examples can be found in [8].

The alphabet ofL consists of three disjoint nonempty sets of symbolsF ,A andS, called
fluents, actions, andactual situations. Elements ofA andS will be denoted by (possibly



C. Baral et al. / Artificial Intelligence 104 (1998) 107–164 113

indexed) lettersA andS, respectively. We will also assume thatS contains two special
situationsS0 andSN calledinitial andcurrentsituation, respectively.

A fluent literalis a fluent possibly preceded by¬. Fluent literals will be usually denoted
by lettersF,P andQ with indexes.¬¬F will be equated toF . For a fluentF , by¬F we
meanF , and byF we mean¬F .

There are two kinds of propositions inL called causal laws and facts. Causal laws are
the same as effect propositions inA [12], i.e., acausal lawis an expression of the form:

A causesF if P1, . . . ,Pn, (1)

whereA is an action, andF,P1, . . . ,Pn (n > 0) are fluent literals.P1, . . . ,Pn are called
preconditionsof (1). We will read (1) as “F is guaranteed to be true after the execution of
an actionA in any state of the world whereP1, . . . ,Pn are true”. Ifn = 0, we write the
causal law asA causesF .

An atomicfluent factis an expression of the form

F at S, (2)

wereF is a fluent literal andS is a situation.5 The intuitive reading of (2) is “F was
observed to be true in situationS”. An agent in a dynamic world can update its knowledge
about the world by adding such fluent facts (based on its observations) to its database.

An atomicoccurrence factis an expression of the form

α occurs_atS, (3)

whereα is a sequence of actions, andS is a situation. It states that “the sequenceα
of actions was observed to have occurred in situationS”. (We assume that actions in a
sequence follow each other immediately.) An agent in a dynamic world can update its
knowledge about action occurrences—both exogenous actions, and actions executed by
the agent itself, by adding such occurrence facts to its database.

An atomicprecedence factis an expression of the form:

S1 precedesS2, (4)

whereS1 andS2 are situations. It states that the domain was in situationS2 after being
in situationS1. The agent can use such precedence facts to record the temporal ordering
between its observations about fluent facts and occurrence facts. Precedence facts saying a
situation precedes the initial one, e.g.,

S1 precedesS0,

are of course forbidden.
Since propositions of type (1) express general knowledge about effects of actions, they

are referred to aslaws. Propositions (2), (3) and (4) are calledatomic factsor observations.
A fact is a propositional combination of atomic facts. A collection of laws and facts is
called domain description; the sets of laws and facts of a domain descriptionD will
be denoted byDl andDf , respectively. Domain descriptions are required to satisfy the
following properties:

5 Unless otherwise stated, by situations we will mean actual situations.
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– its propositions do not contain the situation constantSN , and
– for every situation there is at most one occurrence fact.

The first property is very important and allows the nonmonotonic interpretation of the
situation constantSN , which represents the current situation. The purpose of the second
property is to prohibit concurrent actions inL.

An important feature of an agent associated with anL theory is the ability to reason
with incomplete narratives and make revisable and nonmonotonic conclusions about
observations it might have missed.6 The following example further illustrates our point.

Example 1 (Discovering occurrences). Consider the following version of the stolen-car
example: We know that initially we have a car (in the garage). However, at a later instance
of time we observe that we no longer have the car. We also know that after our car gets
stolen then we will no longer have the car. The following is a description of this story
in L:

D1=



steal(car) causes¬has(car),

has(car) at S0,

¬has(car) at S1,

S0 precedesS1.

Intuitively, from this description we as smart agents would like to conclude that action
steal(car) must have occurred in situationS0 thus explaining the fact that in that situation
we had a car but in situationS1 we no longer have it. In other words, weabducethat action
steal(car) occurred in the initial situation causinghas(car) to become false. The semantics
of the languageL as defined in Section 2.2, indeed ensures thatD1 entails

steal(car) occurs_atS0.

It is clear that in reaching this conclusion we are making some assumptions about the
domain. We are, for example, assuming that actionsteal(car) is the only action that may
causehas(car) to become false. Otherwise, the conclusion would be unsustained as it could
be explained by the occurrence of another action. All the assumptions embodied in domain
descriptions inL are discussed in the subsection below.

Note that fluent facts about situations other thanS0 are allowed and, as it is shown in
this example, a semantics ofL must be able to capture some form ofabductive reasoning
to be able to abduce the explanations to these observations.

2.1. Assumptions embodied inL domain descriptions

Domain descriptions inL are used in conjunction with the following informal
assumptions which restrict the language so that the agent can perform intelligent (perhaps
hasty, and thus revisable) reasoning:

6 Unlike in [19,35] we would like our agent to make this conclusion in the object language itself, not through
meta-level reasoning.
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(a) changes in the values of fluents can only be caused by execution of actions;
(b) there are no actions except those from the language of the domain description;
(c) there are no effects of actions except those specified by the causal laws;
(d) no actions occur except those needed to explain the facts in the domain description,

and
(e) actions do not overlap or happen simultaneously.

These assumptions give an intuitive understanding of domain descriptions inL. We now
present the semantics of domain descriptions inL as defined in [8], which precisely
specifies the sets of acceptable conclusions which can be reached from such descriptions
and assumptions (a)–(e).

2.2. Semantics ofL

In L, states of the world are represented by sets of fluents. A fluent belongs to the set
iff it holds in the state. Actions executed in a particular state may add/remove such fluents
according to causal laws. Thus, the set of all possible evolutions of the world described
by the causal laws can be represented by a transition diagram with states corresponding
to states of the world and transitions labeled by actions. Satisfying the facts in a domain
description intuitively consists of selecting a state as the initial one, and a path in the
diagram describing the actual evolution of the domain.

A state is a set of fluent names. Acausal interpretationis a partial functionΨ from
sequences of actions to states such that: (i) the empty sequence,[ ], belongs to the domain
of Ψ ; and (ii)Ψ is prefix-closed.7

Ψ ([ ]) is called the initial state ofΨ . A partial functionΨ serves as an interpretation8 of
the laws ofD. If a sequenceα belongs to the domain ofΨ , we say thatα is possiblein the
initial state ofΨ .

Given a fluentF and a stateσ , we say thatF holdsin σ (F is true in σ ) if F ∈ σ ; ¬F
holdsin σ (F is falsein σ ) if F /∈ σ . Thetruth of a propositional formula with respect to
σ is defined as usual.

To better understand the roleΨ plays in interpreting domain descriptions let us define
modelsof descriptions consisting entirely of causal laws. To this goal, we will attempt to
carefully define effects of actions as determined by such a descriptionD and our informal
assumptions (a)–(c) and (e).

A fluentF is animmediate effectof (executing)A in σ if there is a causal law (1) inD
whose preconditions hold inσ . Let us define the following sets:

E+A(σ)= {F : F is an immediate effect ofA in σ },

7 By “prefix closed” we mean that for any sequence of actionsα and actionA, if α ·A is in the domain ofΨ
then so isα, whereα ·A means the sequence of actions whereA follows α.

8 In A [12], laws are interpreted using a transition function from states and actions to states, and this function
together with the interpretation of the initial state form the interpretation of the domain description. Because of
our restricted syntax, we could use this formulation, but decided to stick to the original semantics ofL, which
at that time was chosen to accommodate future extensions involving triggers and actions with nondeterministic
effects.
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E−A(σ)= {F : ¬F is an immediate effect ofA in σ },
Res(A,σ)= σ ∪E+A(σ) \E−A(σ).

The following definition captures the meaning of causal laws ofD.

Definition 1 (Causal interpretation). A causal interpretationΨ satisfiescausal laws ofD
if for any sequenceα ·A from the language ofD,

Ψ (α ·A)=
{

Res(A,Ψ (α)), if E+A(Ψ (α)) ∩E−A(Ψ (α))= ∅,
undefined, otherwise.

We say thatΨ is acausal modelof D if it satisfies all the causal laws ofD.

Causal models are uniquely determined by their initial values, i.e., for any two causal
modelsΨ1 andΨ2 of a domain descriptionD, if Ψ1([ ])=Ψ2([ ]) thenΨ1=Ψ2.

We are now ready to discuss how observations are interpreted inL. Let D be an
arbitrary domain description and let a causal interpretationΨ be a causal model ofD. To
interpret the observations ofD we first need to define the meaning of situation constants
S0, S1, S2, . . . fromS. To do that we consider a mappingΣ fromS to sequences of actions
from the language ofD.

Definition 2 (Situation assignment). A mappingΣ from S to sequences of actions is
calleda situation assignment ofS if it satisfies the following properties:

(i) Σ(S0)= [ ];
(ii) ∀si ∈ S. Σ(si ) is a prefix ofΣ(SN).

Intuitively, the first condition ensures thatS0 is indeed the initial situation. The second
condition ensures that all the situation constants inS refer to actual situations—situations
that have happened so far. Hence,Σ maps them to action sequences that are prefix of the
action sequence that has happened until now, which is denoted byΣ(SN).

Definition 3 (Interpretation). An interpretationM of L is a pair(Ψ,Σ), whereΨ is a
causal model ofD,Σ is a situation assignment ofS andΣ(SN) belongs to the domain of
Ψ .Σ(SN) will be called theactual pathof M.

Now we can define the truth of facts ofD with respect to an interpretationM. Facts
which are not true inM will be calledfalsein M.

Definition 4. For any interpretationM = (Ψ,Σ),
(i) (F at S) is true in M (or satisfied byM) if F is true inΨ (Σ(S));
(ii) (α occurs_atS) is true inM if Σ(S) · α is a prefix of the actual path ofM;
(iii) (S1 precedesS2) is true inM if Σ(S1) is a proper prefix ofΣ(S2).

Truth of nonatomic facts inM is defined as usual. Of course, a set of facts is true in
interpretationM if all its members are true inM.

To complete the definition of model we need only to formalize assumption (d) on domain
descriptions: “no actions occur except those needed to explain the facts in the domain
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description”. (A similar assumption is used by Pinto and Reiter in [37,39].) This is done
by imposing a minimality condition on situation assignments ofS, which leads to the
following definition.

Definition 5 (Model). An interpretationM = (Ψ,Σ) is amodelof a domain description
D in L if the following conditions are satisfied:

(i) Ψ is a causal model ofD;
(ii) facts ofD are true inM;
(iii) there is no other interpretationN = (Ψ,Σ ′) such thatN satisfies condition (ii) and

Σ ′(SN) is a subsequence9 of Σ(SN).

It is important to note that we are only minimizing the actual action occurrences
between the initial situation and the current situation. No such minimization is done about
the future. This is instrumental for our formalization to avoid the trap of “premature
minimization” [42], which we will further discuss in Section 11.5. The final definition
is matter of course.

Definition 6. A domain descriptionD is said to beconsistentif it has a model. A domain
descriptionD entails a factφ (writtenD |= φ) iff φ is true in all models ofD.

2.2.1. Hypotheses and their entailment inL
Planning from the current situation is necessary for an agent in a dynamic environment

where exogenous events may occur; our agent may need to revise its plan and construct
new ones starting from the current situation. In fact, once the agent realizes—during the
execution of the plan—that the changed conditions make it not effective any more, it no
longer makes sense for the agent to make a plan from the initial situation. That is because
the agent cannot wish away what has already happened. Hence, it needs to make a plan
from the situation it currently is in. To describe such plans and also to be able to do
counterfactual reasoning,L has a construct calledhypotheseswhich is of the following
form:

(¬)F after [A1, . . . ,An] at Si . (5)

Intuitively, the above hypothesis means thatF holds (does not hold) after actions
A1, . . . ,An are executed inSi . Note, thatA1, . . . ,An may not be the sequence of actions
that actually followed fromSi , thus making this a counterfactual statement. WhenSi is
SN , we just write:

(¬)F after [A1, . . . ,An]. (6)

Statements like (6) denote reasoning about plans starting from the current situation.
Intuitively, the above hypothesis means thatF holds (does not hold) after actions
A1, . . . ,An are executed inSN . Note that the above construct has a different meaning

9 Recall thatα =A1, . . . ,Am is a subsequence ofβ =B1, . . . ,Bn if there exists a strictly increasing sequence
i1, . . . , im of indices ofβ such that for allj = 1, . . . ,m, we haveAj = Bij .
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in the languageA. There, it means thatF holds (does not hold) after actionsA1, . . . ,An
are executed in the initial situationS0.

If n= 0, then we write the hypothesis as

currently (¬)F. (7)

Hypotheses are not part of a domain description, rather they are part of the query
language.

We say a hypothesis of the form (5) is true in a model(Ψ,Σ) of a domain description
D if (¬)F holds in

Ψ (Σ(Si) ·A1 · · ·An)
and,D entails a hypotheses if it is true in all models ofD. Truth of hypotheses of the
forms (6) and (7) is defined accordingly.

We can now define a notion of a plan from the current situation.

Definition 7 (Bara, Gelfond and Provetti[8]). Let D be a domain description andG be
a set of fluent literals. A sequenceα of actions is aplan from the current situation for
achieving a goalG if D |= f after α for every fluent literalf ∈G.

We now describe several examples that illustrate the expressibility of the languageL, as
earlier mentioned in Section 1.2.

2.3. Examples illustrating expressibility ofL

2.3.1. Explaining observations
First let us formally show how the intuition discussed in Example 1 are captured by the

semantics ofL. In that example an observation is explained by discovering missing action
occurrences,

Example 2 (Inferring missing action occurrences). Consider domain descriptionD1 from
Example 1. By the fact

has(car) at S0

we have thathas(car) ∈ Ψ (Σ(S0)). By the causal law

steal(car) causes¬has(car)

we havehas(car) /∈ Ψ ([steal(car), . . . ,steal(car)]) for any sequence of one or more
steal(car). It is easy to see thatΣ(SN) = Σ(S1) = [steal(car)] is the minimal sequence
satisfying the facts in the domain description. Thus,Σ(S0) ·steal(car) is a prefix ofΣ(SN).
Therefore,D1 entailssteal(car) occurs_atS0.

Let us now discuss another example where observations are explained by discovering
both missing action occurrences and new fluent facts (that were not known before).
Suppose our agent has the following domain description consisting of some laws and some
observations:
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shootcauses¬loaded

shootcauses¬alive if loaded

unloadcauses¬loaded

alive at S0

¬alive at S1

S0 precedesS1


=D2.

Using the entailment relation ofL we can make the following conclusions that illustrate
some of the features ofL.

– Missing action occurrences:
D2 |= shootoccurs_atS0.

Thus, while explaining the observation thatalive is false inS1 we conclude that the
actionshoot must have occurred atS0.

– Discovering new fluent facts about the past:
D2 |= loadedat S0.

Thus while explaining the observation thatalive is false inS1 we conclude thatloaded
must have been true atS0.

– Discovering new fluent facts about the current situation:
D2 |= currently ¬loaded.
Explaining observations not only allow us to discover new facts about the past but
also to make new conclusions about the current situation. In this case, we are able to
conclude that the gun is not loaded in the current situation.

– Counterfactual reasoning:
D2 |= aliveafter unload,shootat S0.
Earlier we concluded thatshootoccurred atS0. If we were now to reason about what
would have happened if the gun was unloaded atS0 and thenshoothad happened, we
would conclude thatalive would be true in the resultant situation. This is the type of
counterfactual reasoning that is possible inL.

Since this reasoning is counter to what really happened, this is a form of counterfactual
reasoning, and we can do such reasoning inL.

2.3.2. Planning from the current situation
In the following example we useL to show the planning and re-planning done by an

agent in a dynamic world. This is very important from the point of view of an agent
architecture where the agent continuously observes the world and adds the observation
to its domain description, makes a new plan—from the current situation—to reach its goal
and executes part of the plan, records its actions in its domain description, before going
back to observe again. The planning in each cycle needs to be done from the situation
the agent is in at that moment (referred to as the current situation) rather than the initial
situation. In fact, the agent can not wish away what has happened—be it performed by the
itself or by the environment—since the initial situation.10

10 Note that, given the complexity of planning [11] such an architecture may not be useful for agents such as
mobile robots that need to react in real time—a reactive architecture would be more appropriate in that case—but
it may still be useful for Internet agents where there is more time to plan.
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Example 3. Suppose our agent has the following initial knowledge, in terms of the various
actions and their effects and the values of fluents in the initial situation.

load causesloaded

unloadcauses¬loaded

set_targetcausestarget_set

shootcausestarget_hit if loaded, target_set

loadedat S0

¬target_setat S0


=Dhyp0.

Given the agent’s goal to have thetarget_hit, it develops the plan[set_target,shoot] by
checking that indeed

Dhyp0 |= target_hit after [set_target,shoot]
holds. Then, the agent proceeds to execute the first action:set_target, and adds
set_target occurs_atS1 andS0 precedesS1 to the domain description. (Let us call the
updated domain descriptionDhyp1.) At this point, the agent’s domain description,Dhyp1,
entails:

currently loaded,

currently target_set.

Before executing the next action, however, it observes that the gun is no longer loaded, and
updates its domain description by adding¬loadedat S2 andS1 precedesS2. (Let us call
the updated domain descriptionDhyp2.) It concludes that:

Dhyp2 |= currently target_set,

Dhyp2 |= currently ¬loaded,

Dhyp2 |= [set_target,unload] occurs_atS0

∨[unload,set_target] occurs_atS0.

The agent then notices that it can no longer continue with its original plan, since

Dhyp2 6|= target_hit after shoot.

Hence, the agent proceeds to re-planning from the current situationSN , rather than from
the initial situation,S0. While the initial plan starting fromS0 is still [set_target,shoot],
the new plan is[load,shoot] since

Dhyp2 |= target_hit after [load,shoot].
Assuming that no other untoward incident takes place, the agent can proceed with its
current plan to reach the goal.
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3. Overview of nested circumscription

Nested Abnormality Theories (NATs) is a novel circumscription [25,30] technique
introduced by Lifschitz [24]. With NATs it is possible to circumscribe several predicates
each with respect to only parts of the theory of interest, as opposed to previous techniques
where the circumscription must be done with respect to all of the axioms in the
underlying theory. Furthermore, all the complications arising from the interaction of
multiple circumscription axioms in a theory are avoided in NATs with the introduction
of blocks. Ablock is characterized by a set of axiomsA1, . . . ,An—possibly containing
the abnormality predicateAb—which “describe” a set of predicate/function constants
C1, . . . ,Cm. The notation for such a theory is

{C1, . . . ,Cm : A1, . . . ,An}, (8)

where eachAi may itself be a block of form (8). The “description” ofC1, . . . ,Cm by a
block may depend on other descriptions in embedded blocks.

Interference between circumscription in different blocks is prevented by replacing a
predicateAb with an existentially quantified variable. Lifschitz’s idea is to makeAb
“local” to the block where it is used, since abnormality predicates play only an auxiliary
role, i.e., the interesting consequences of the theory are those which do not containAb.
The next section contains the formal definitions of this concepts.

3.1. Syntax and semantics of NATs

The following definitions are from [24]. LetL be a second-order language which does
not includeAb. For every natural numberk, letLk be the language obtained by adding the
k-ary predicate constantAb toL. {C1, . . . ,Cm : A1, . . . ,An} is ablockif eachC1, . . . ,Cm
is a predicate or a function constant ofL, and eachA1, . . . ,An is a formula ofLk or a block.

A Nested Abnormality Theoryis a set of blocks. The semantics of NATs is characterized
by a mappingϕ from blocks into sentences ofL. If A is a formula of languageLk , ϕA
stands for the universal closure ofA, otherwise

ϕ{C1, . . . ,Cm : A1, . . . ,An} = (∃ab)F(ab),
where

F(Ab)=CIRC[ϕA1∧ · · · ∧ ϕAn;Ab;C1, . . . ,Cm].
Recall that CIRC[T ;P ;Q], means circumscription of the theoryT , by minimizing the
predicates inP , and varying the objects inQ.

For any NATT , ϕT stands for{ϕA | A ∈ T }. A modelof T is a model ofϕT in the
sense of classical logic. Aconsequenceof T is a sentenceφ of languageL that is true in
all models ofT . In this paper, as suggested in [24], we use the abbreviation

{C1, . . . ,Cm, minP :A1, . . . ,An}
to denote blocks of the form

{C1, . . . ,Cm,P : P(x)⊃Ab(x),A1, . . . ,An}.
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As the notation suggests, this type of block is used when it is necessary to circumscribe
a particular predicateP in a block. In [24] it is shown that

ϕ{C1, . . . ,Cm, minP :A1, . . . ,An}
is equivalent to the formula

CIRC[A1∧ · · · ∧An;P ;C1, . . . ,Cm]
when eachAi is a sentence.

4. From domain descriptions inL to NATs

We are now ready to present our translation fromL to NATs. We will start by formally
describing some rather typical relations on sequences which we will use later in our proofs.

4.1. Relations on sequences

The relations we are interested in are prefix, subsequence and concatenate. These rela-
tions are captured by the NAT blocksBprefix_eq, Bsubsequence, andBconcatenate, respectively,
which are presented in a later section. Given the formal description of these relations, it is
important to ensure that all and only the intended instances of these relations are included
in models of the theory described in the following sections. Let us start by defining the
prefix relation which will be denoted by�:

An ◦ · · · ◦A1� Bm ◦ · · · ◦B1⇔∀i, i 6 n. Ai = Bi,
where above and in the rest of this section by “=” we mean syntactic identity. The second
relation we need to describe is subsequence:

An ◦ · · · ◦A1�Bm ◦ · · · ◦B1⇔∃µ ∀i,Ai =Bµ(i) ∧ [i 6 j ⇒µ(i)�µ(j)].
Relation� formalizes the notion ofsubsequence:if α� β then intuitivelyβ contains all
the elements ofα, in the same order, but it may contain more elements. This relation is
defined by blockBsubsequencein the theory.

The third relation needed for dealing with sequences is concatenation. We will
concatenatesequences of actions in reverse, i.e.,α · β = βα:

(An ◦An−1 ◦ · · · ◦A1) · (Bm ◦Bm−1 ◦ · · · ◦B1)

=Bm ◦Bm−1 ◦ · · · ◦B1 ◦An ◦An−1 ◦ · · · ◦A1.

BlockBconcatenatedefines this relation.

4.2. The target language

The language of the theoryT is many-sorted and borrows much notation from the
standard situation calculus. The sorts are:actions, fluents, situationsandsequences. The
variables for the first three sorts will be denoted by possibly indexed lettersa, f ands,
respectively, unless otherwise stated. Variables for sequences will be denoted by possibly
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indexed Greek lettersα, β and γ . The language includes the elements ofA as action
constants, ofF as fluent constants, andS as situation constants. It also includes the
sequence constantε which stands for the empty sequence.

Sequences of actions are defined by means of a function◦ from sequences and actions
to sequences. Sequences of actions are then constructed by multiple application of the
function◦. We will use infix notation for◦—given its similarity to theResfunction widely
used in situation calculus—and ignore parenthesis without ambiguity. The following is an
example of a sequence:

An ◦An−1 ◦ · · · ◦A1 ◦ ε.
In addition to◦, we have the following function and predicate constants:

– Sit_map: a function that maps situations into sequences;
– Prefix_eq(α,β): both arguments of sort situation, this predicate captures relation�

on sequences, i.e.,α � β ;
– Subsequence(α,β): captures relation�, i.e.,α� β ;
– Holds(f,α): with sorts fluent and sequence, meaning thatf is true in the state

resulting from executingα in the initial situation;
– Concatenate(α,β, γ ): captures relation· on sequences, i.e.,γ = α · β ;
– Causes+(−)(a, f,α): with sorts action, fluent and sequence, meaning that executinga

in the state resulting from executingα in the initial situation makesf true(false).

4.3. Framework axioms

To yield the expected results, the theory includes a set of extra axioms which represent
the domain-closure assumption ofL theories, and in particular assumption (b): “there are
no actions except those from the language of the domain description”. Also unique-name
assumptions for actions, fluents and situations are in the theory.

(∀a).a =A1∨ · · · ∨ a =Al,
(∀f ).f = F1 ∨ · · · ∨ f = Fm,
(∀s).s = S0∨ · · · ∨ s = SN,
UNA[actions], UNA[fluents], UNA[situations],
(∀a,α).ε 6= a ◦ α,
(∀a,b,α,β).a ◦ α = b ◦ β ⊃ a = b∧ α = β,

whereUNA(sort) is the standard set of inequalities between each distinct pair of constants
from sort, e.g.,UNA[situations] stands forS0 6= S1, S1 6= S2, . . . etc. In the rest of the paper
we will refer to the above sentences asFramework axioms.

4.4. Translation of facts

Atomic facts are translated as follows:

(¬)F at S ⇒ (¬)Holds
(
F,Sit_map(S)

)
α occurs_atS ⇒ (∃β).Concatenate

(
Sit_map(S),α,β

)∧
Prefix_eq

(
β,Sit_map(SN )

)
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S1 precedesS2 ⇒ Prefix_eq
(
Sit_map(S1),Sit_map(S2)

)∧
¬Prefix_eq

(
Sit_map(S2),Sit_map(S1)

)
.

Nonatomic facts are translated in the obvious way. For any factφ, we will useτ(φ) to
denote its translation. For the collection of factsDf in a domain descriptionD, the set of
formulaeτ(φ) for eachφ ∈Df will be denoted byτ(Df ).

4.5. The resulting NAT

We now present our translation of domain descriptions inL into NATs (universal
quantification with the highest scope is implicit on free variables):

T (D)=
{ Sit_map:

(a)Sit_map(S0)= ε
(b) Prefix_eq(Sit_map(s),Sit_map(SN ))

(c) Subsequence(α,Sit_map(SN))⊃Ab(α)
τ(Df ), SC(Dl)

Bprefix_eq, Bsubsequence, Bconcatenate

Framework axioms

}
where:

SC(Dl)=

¬Causes+(a,f,α)∧¬Causes−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
Causes+(a,f,α)⊃Holds(f, a ◦ α)
Causes−(a,f,α)⊃¬Holds(f, a ◦ α)
{ min Causes+ :
H(P1, α)∧ · · · ∧H(Pn,α)⊃Causes+(A,F,α)

(for eachA causesF if P1, . . . ,Pn ∈D)
}
{ min Causes− :
H(P1, α)∧ · · · ∧H(Pm,α)⊃Causes−(A,F,α)

(for eachA causes¬F if P1, . . . ,Pm ∈D)
}
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In the above translation, for a positive fluent literalF ,H(F,α) denotesHolds(F,α); while
for a negative fluent literal¬G, H(¬G,α) denotes¬Holds(G,α). PredicateCauses+(−)
in the form used above comes originally from Lifschitz [24].

Bprefix_eq=
{min Prefix_eq:

Prefix_eq(α,α)

Prefix_eq(α,β)⊃ Prefix_eq(α, a ◦ β)
}
Bsubsequence=
{min Subsequence:

Subsequence(α,α)

Subsequence(α,β)⊃ Subsequence(α, a ◦ β)
Subsequence(α,β)⊃ Subsequence(a ◦ α,a ◦ β)

}

Bconcatenate=
{min Concatenate:

Concatenate(α, ε,α)

Concatenate(α,β, γ )⊃Concatenate(α, a ◦ β,a ◦ γ )
}

Let us now compare the axioms ofT (D) with the definitions in the section on semantics.
– The blocksBprefix_eq, BsubsequenceandBconcatenatedefine the predicatesPrefix_eq,

SubsequenceandConcatenate, respectively. The axioms inside each of these blocks
are definite clauses and in the appendix we use results from [25,29] to show that
indeed they are a correct representation of their corresponding relations.

– SC(Dl) is the part ofT (D) most similar to standard situation calculus and captures
the meaning of causal laws. Models ofSC(Dl) correspond to the causal models of
D. (We show this in Section 7.) InsideSC(Dl) we have two blocks that minimize the
predicatesCauses+ andCauses−. Intuitively, they encode the informal assumption (c)
in Section 2.1, saying that there are no effects of actions except those specified by the
causal laws. The first axiom ofSC(Dl) encodes the frame axiom—the assumption (a)
in Section 2.1, as a first order statement while the second and the third axioms in
SC(Dl), encode the effect of actions on fluents.

– The axioms (a) and (b) encode Definition 2 in a straightforward manner.
– The axioms inτ(Df ) encode Definition 4 in a straightforward way.
– Finally, the minimality in condition (iii) of Definition 5 (which corresponds to the

assumption (d) of Section 2.1) is encoded by axiom (c) plus circumscription ofAb.
Intuitively, here minimization of thevalue of the term Sit_map(SN ) is accomplished
through axiom (c) by minimizingAb while varyingSit_map. A discussion on this
axiom and the technique it exemplifies follows in Section 5.
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– Before moving on, let us quickly review how the various informal assumptions
described in Section 2.1 are encoded in our NAT. We already discussed the
assumptions (a), (c) and (d); assumption (b) is captured through the “Frame-
work axioms”. Verifying that assumption (e) is captured by the translation is
slightly more involved: suppose that there is a situationS s.t. A occurs_atS
and B occurs_atS, are in D, i.e.,A and B occurred concurrently at situa-
tion S. As a result,Concatenate(Sit_map(S), A,α), Prefix_eq(α,Sit_map(SN)),
Concatenate(Sit_map(S),B,β) andPrefix_eq(β,Sit_map(SN)) hold for someα and
β . It is not hard to prove that this impliesA=B.

4.6. Translation of hypotheses

Even though hypotheses do not appear in domain descriptions, we define a translation
so that we can check whether they are entailed by the NAT theory. For hypotheses of the
form (5), the translation,τ((¬)F after [A1, . . . ,Am] at Si), is defined as follows:

(∃β).Concatenate(Sit_map(Si),An ◦ · · · ◦A1 ◦ ε,β)⊃ (¬)Holds(F,β). (9)

5. Value minimization of functions

In [6], we introduced the concept of value minimizing a function. That is, forcing a
function to map the elements of its domain onto minimal elements of its range, where the
minimality criterion is with respect to an arbitrary partial order defined on the range. This
is completely different from all earlier formulations of circumscription where function and
predicates (or formulas) were allowed to vary but only the latter could be minimized.

As we mentioned in the introduction, our formalization of narrative applies this
technique. In order to capture condition (iii) of Definition 5, we minimize the value of
function Sit_mapon termSN , with respect to the partial order on sequences defined by
predicateSubsequence.Therefore, this is an instance of “term minimization”. Intuitively,
this forcesSit_map to mapSN onto the “minimal” possible sequence such that the facts
and all the axioms remain satisfied.

By using the syntactic definition of value minimization with respect our application, we
can express the minimization ofSit_map(SN) as follows: letTsubseqstand forT (D) minus
axiom (c), and letTsubseq(α) denoteTsubseq∧Sit_map(SN)= α, for an arbitrary sequence
α. TermSit_map(SN) is minimized with respect toSubsequenceby postulating:

(∀α).Tsubseq(α)⊃(∀α′).(Tsubseq(α
′)∧Subsequence(α′, α)

)⊃ Subsequence
(
α,α′

)
.

(10)

In [6] we show that value minimization of a functionφ in a theoryT with respect to an
orderingR (which itself is defined in a block insideT ) while varying the predicate/function
constantsZ, can be achieved by the following NAT:

{φ,Z :
(∀x,y).R(y,φ(x))⊃Ab(x,y)
T

}
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Moreover, to minimizeφ at only one termσ , the corresponding NAT characterization
becomes:

{φ,Z :
(∀y).R(y,φ(σ))⊃Ab(y)
T

}
By applying this result and observing that in our caseφ is the functionSit_map, R is

the predicateSubsequence,andσ is SN , we obtain the following NAT characterization of
the Formula (10).

{Sit_map:
(∀y). Subsequence

(
y,Sit_map(SN)

)⊃Ab(y)
Tsubseq

}
This is exactly our translationT (D).

6. NAT characterization of some simple domain descriptions

In this section we illustrate our NAT characterization of domain description inL through
some examples.

Example 4. Consider again the domain descriptionD1 from Example 1, the translation
corresponds to

τ(Df )=



Holds
(
has(car),Sit_map(S0)

)
¬Holds

(
has(car),Sit_map(S1)

)
Prefix_eq

(
Sit_map(S0),Sit_map(S1)

) ∧
¬Prefix_eq

(
Sit_map(S0),Sit_map(S1)

)
and the sub-block ofSC(D1l ) definingCauses−:

{min Causes−:
Causes−(steal(car),has(car),α)

}
which is equivalent to

(∀a,f,α).Causes−(a,f,α)≡ a = steal(car)∧ f = has(car). (11)

The sub-block definingCauses+ is empty, i.e.,Causes+(a,f,α) is false for alla,f,α.
From this, (11), the axiomCauses−(a,f,α) ⊃ ¬Holds(f, a ◦ α), and the fact that
steal(car) is the only action in our language; it follows that for every sequenceβ ,

¬Holds(has(car),β) iff β = steal(car) ◦ α, for someα.
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From ¬Holds(has_car,Sit_map(S1)) we haveSit_map(S1) = steal(car) ◦ α for some
sequenceα. By value minimization and axiom (b),

Sit_map(SN )= Sit_map(S1)= steal(car) ◦ ε
and from this and the blocksBconcatenateandBprefix_eq we get that

Concatenate(Sit_map(S0),steal(car) ◦ ε,steal(car) ◦ ε)
and

Prefix_eq
(
steal(car) ◦ ε,Sit_map(SN )

)
.

Hence,τ(steal(car) occurs_atS0) holds.

We now consider a slightly different example where by using the observations we can
“abduce” new truth values of fluents.

Example 5 (Abduction of fluent-values). Consider another scenario where there is a gun
that causes Fred to die if fired at him when loaded. Suppose we know that Fred had been
observed to be alive at some moment of time and to be dead at a later moment. Description
D2 below captures this scenario:

D2=



shootcauses¬alive if loaded,

aliveat S0,

¬aliveat S1,

S0 precedesS1.

Let us consider the corresponding NAT,T (D2), starting from the inner blocks. Since the
sub-block definingCauses+ is empty we have

(∀a,f,α).¬Causes+(a,f,α). (12)

The sub-block definingCauses− contains only the axiom

Holds(loaded, α)⊃Causes−(shoot,alive, α).

By minimization ofCauses− in this block we obtain.

(∀a,f,α).Causes−(a,f,α)≡ (a = shoot∧ f = alive∧Holds(loaded, α)
)
. (13)

Now, τ(Df ) includesHolds(alive,Sit_map(S0)) and¬Holds(alive,Sit_map(S1)). Let us
reason about the value of the fluentloadedin the initial state. There are two cases:

(a) Loadedwas initially false (¬Holds(loaded, ε)) and since there is no action that
affects this fluent, i.e., for alla,α, ¬Causes+(a, loaded, α) and ¬Causes−(a,
loaded, α), we have that

(∀α)¬Holds(loaded, α). (14)

From this and (13) it follows that

(∀a,f,α)¬Causes−(a,f,α). (15)
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From the factτ(alive at S0) and axiom (a) we obtainHolds(alive, ε). From this,
(12), (15), and axiom

¬Causes+(a,f,α)∧¬Causes−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
we conclude that(∀α)Holds(alive, α). However, from fact¬alive at S1 we
have¬Holds(alive,Sit_map(S1)). This is a contradiction, therefore the initial
assumption of loaded being initially false is ruled out.

(b) The other possibility is thatloadedwas initially true, i.e.,Holds(loaded, ε) holds.
From (13) this implies thatCauses−(shoot,alive, ε) and by axiom

Causes−(a,f,α)⊃¬Holds(f, a ◦ α)
we obtain¬Holds(alive,shoot◦ ε). Clearly, an interpretation ofSit_mapsuch that
S1 andSN are mapped into sequenceshoot◦ ε satisfiesτ(Df ) and minimization of
Sit_map(SN ). It remains easy to prove that this interpretation is the only model of
the theory and that it entailsτ(shootoccurs_atS0).

7. Correctness of the NAT formalization

In this section we formulate the results about the correctness of our NAT formalization
of domain descriptions inL. In the process, for a domain descriptionD, we show the
equivalence between models ofSC(Dl) and causal models ofD. This illustrates the
modularity of our NAT formulation; later, (in Section 9) we discuss how this allows
us to easily extend the language with additional features, such as constraints, by only
replacingSC(Dl). The proofs of the lemmata and the theorem of this section are given
in the appendix.

Throughout the paper, we will useα,β to denote sequences both in the context of the
semantics ofL and its NAT formalization. For instance, ifα stands for a sequence with
actionsA1, . . . ,Am, we may writeHolds(F,α)⇔ F ∈Ψ (α)meaningHolds(F,Am ◦ · · ·◦
A1 ◦ ε)⇔ F ∈ Ψ ([A1, . . . ,Am]).

The equivalence ofSC andΨ is first proved under the assumption thatΨ is defined
for every sequence of actions.11 This restriction is removed in Section 8 when concurrent
actions are considered.

Proposition 1 (Causal equivalence).
(1) For every causal modelΨ of Dl there exists a modelMSC of SC(Dl) ∪

Framework Axioms such that for allF ,α:

F ∈Ψ (α)⇔MSC |=Holds(F,α). (16)

(2) For every modelMSC of SC(Dl) there exists a causal modelΨ ofDl such that(16)
holds.

11 This conditions is satisfied by disallowing contradictory causal laws; two axiomsA causesF if P1, . . . ,Pn
andA causes¬F if Q1, . . . ,Qm are said to be contradictory if{P1, . . . ,Pn} ∩ {Q1, . . . ,Qm} = ∅.
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Proposition 2 (Equivalence of models).For any domain descriptionD, if the interpreta-
tion (Ψ,Σ) is a model ofD then there exists a modelM of T (D) such that for every fact
φ in the language ofD:

(Ψ,Σ) |=L φ⇔M |= τ(φ) (17)

and ifM is a model ofT (D) then there exists a model(Ψ,Σ) ofD such that(17)holds.

Proposition 3 (Equivalence).For any domain descriptionD and factφ in the language
ofD:

D |=L φ⇔ T (D) |= τ(φ).

The following proposition shows the correctness of our theory with respect to
hypotheses.

Proposition 4. For any domain descriptionD and hypothesisφ in the language ofD:

D |=L φ⇔ T (D) |= τ(φ).

8. Narratives with concurrent actions

In this section we consider reasoning about concurrent actions together with narra-
tives.This means that the informal assumption (e) of Section 2.1 is weakened to allow
concurrent contemporaneous actions. Still, we do not allow noncontemporaneous overlap-
ping actions. The semantics ofL is extended to allow concurrent actions. We will only
consider concurrent actions consisting of the simultaneous execution of a finite number of
basic actions with noncontradictory effects. For a more sophisticated treatment of concur-
rent actions in a nonnarrative setting see, e.g., [3] and [28]. We will refer to the language
with the extended semantics asLc.

8.1. Extended semantics

Concurrent actions will be characterized by finite nonempty sets of basic actions. Let
us consider the changes that are required in the semantics ofL to account for concurrent
actions. First, we need to redefine what the effect of an action is since we now have a more
general notion of action. Since a singleton concurrent action{A} is basically the same as
basic actionA, from now on by action we will mean concurrent action.

We say that a fluentF is aneffectof an actionA in a stateσ if there is an actionB ∈A
such thatF is an immediate effect ofB in σ . Furthermore, we replace the definitions of
setsE+A(σ) andE−A(σ) with the following:

E+A (σ)= {F : F is an effect ofA in σ },
E−A (σ)= {F : ¬F is an effect ofA in σ }.

We will also need the following notions. Letα = [A1, . . . ,Ak] andβ = [B1, . . . ,Bk]. We
sayβ is embeddedin α (written asβ ⊆ α) if Bi ⊆Ai for eachi. Intuitively, β ⊆ α means
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that we can obtainβ fromα by removing some basic actions from each (concurrent) action
in the action sequenceα.

Furthermore, we say thatβ is anembedded-subsequenceof γ if there is a subsequence
α of γ such thatβ is embedded inα. The definitions of causal interpretation, situation
assignment, interpretation, and consistent domain description remain the same. We only
need to modify Definitions 4 and 5.

Definition 8. For any interpretationM = (Ψ,Σ):
(i) (F at S) is true in M (or satisfied byM) if F is true inΨ (Σ(S));
(ii) (α occurs_atS) is true inM if there isβ such thatΣ(S) ·β is a prefix of the actual

path ofM andα ⊆ β .
(iii) (S1 precedesS2) is true inM if Σ(S1) is a proper prefix ofΣ(S2)

The above definition differs from its counterpart Definition 4 on point (ii), where truth
of action occurrences is defined for concurrent actions.

Definition 9. An interpretationM = (Ψ,Σ)will be called amodelof a domain description
D in L if the following conditions are satisfied:

(i) Ψ is a causal model ofD;
(ii) facts ofD are true inM;
(iii) there is no other interpretationN = (Ψ,Σ ′) such thatN satisfies condition (ii) and

Σ ′(SN) is an embedded-subsequence ofΣ(SN).

This definition differs from Definition 5 on point (iii) where the minimality condition is
now in terms of the relation embedded-subsequence.

8.2. Translation into NATs

Let us now modify the NAT translation of Section 4 to accommodate the semantics
of Lc.

In our translation, we will use sets to represent concurrent actions. We will not, however,
axiomatize sets and their operations but assume their standard interpretation.12 For
concurrent actions we introduce a new sort calledc-actions. Function◦ will now be of
sortsc-action× sequence7→ sequence. Some new predicates will be introduced below.

We need to change the sub-theorySC(Dl) to capture the effects of concurrent actions.
The kind of concurrent actions considered here are such that theyinherit the effects of their
constituent actions. Thus, we include two blocks, one defining predicateInherits+(a,f,α)
and one defining predicateInherits−(a,f,α), both with arguments of the sorts, c-action,
fluent and sequence, respectively:

{min Inherits+ :
b ∈ a ∧Causes+(b,f,α)⊃ Inherits+(a,f,α)

}
12 For a formulation ofLc in NAT without set theory, please see http://cs/utep/edu/chitta/papers/L-NAT-ext.ps.
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The block forInherits− is defined similarly. The intuitive meaning ofInherits+(−)(a, f,α)
is that concurrent actiona inherits the effectf (¬f ), from its sub-actions, in the situation
afterα is executed.

We also add the following block defining the predicateUndef characterizing action
sequences where the causal interpretationΨ is undefined.

{min Undef :
Inherits+(a,f,α)∧ Inherits−(a,f,α)⊃Undef(a ◦ α)
Undef(α)⊃Undef(a ◦ α)

}
Next, we replace the first three axioms ofSC(Dl) with the following axioms:

¬Inherits+(a,f,α)∧¬Inherits−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)],
¬Undef(a ◦ α)∧ Inherits+(a,f,α)⊃Holds(f, a ◦ α),
¬Undef(a ◦ α)∧ Inherits−(a,f,α)⊃¬Holds(f, a ◦ α).

Next, we add a new block,Bembedded, at the same level of nesting as blocks defining
Bprefix_eq etc., which definesEmbedded, with two arguments of sort sequence:

Bembedded=
{min Embedded:

Embedded(ε, ε)

[a ∈ b⊃ a ∈ c] ⊃ Embedded(b ◦ ε, c ◦ ε)
[Embedded(b ◦ ε, a ◦ ε)∧Embedded(β,α)] ⊃ Embedded(b ◦ β,a ◦ α)

}
The new orderingembedded-subsequenceis captured by predicateEmbsubseq,defined in
terms of the relationsEmbeddedandSubsequencein the following block:

Bembsubseq=
{min Embsubseq:

Embedded(α,β)∧Subsequence(β, γ )⊃ Embsubseq(α, γ )

}
At the top level of nesting we add the following axiom

¬Undef(Sit_map(SN ))

which restricts actual situations to be mapped onto defined states. (We did not need this in
T (D), because our restriction onD not to allow contradictory causal laws guaranteed that
the causal interpretationΨ was defined for all action sequences.)
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Finally, Sit_map(SN) is now minimized with respect to the partial orderEmbsubseqby
replacing axiom (c) with axiom

Embsubseq(α,Sit_map(SN))⊃Ab(α). (18)

We will denote the new theory byTc and the modified blockSCby SCc.

Tc(D)=
{ Sit_map:
¬Undef(Sit_map(SN))

(a)Sit_map(S0)= ε
(b) Prefix_eq(Sit_map(s),Sit_map(SN))

(c′) Embsubseq(α,Sit_map(SN))⊃Ab(α)
τ(Df ), SCc(Dl)

Bprefix_eq, Bsubsequence, Bconcatenate, Bembedded, Bembsubseq

Framework axioms

}
where:

SCc(Dl)=

¬Inherits+(a,f,α)∧¬Inherits−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
¬Undef(a ◦ α)∧ Inherits+(a,f,α)⊃Holds(f, a ◦ α)
¬Undef(a ◦ α)∧ Inherits−(a,f,α)⊃¬Holds(f, a ◦ α)
{ min Causes+(−) :
H(P1, α)∧ · · · ∧H(Pn,α)⊃Causes+(−)(A,F,α)

(for eachA causes(¬)F if P1, . . . ,Pn ∈D)
}
{min Inherits+(−) :

b ∈ a ∧Causes+(−)(b, f,α)⊃ Inherits+(−)(a, f,α)

}
{min Undef :

Inherits+(a,f,α)∧ Inherits−(a,f,α)⊃Undef(a ◦ α)
Undef(α)⊃Undef(a ◦ α)

}
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The translation of facts fromD is the same except for occurrence facts; let

τ(α occurs_atS)

stand for:

(∃β,γ ).Embedded(α,β)∧Concatenate
(
Sit_map(S),β, γ

)
∧ Prefix_eq

(
γ,Sit_map(SN)

)
.

We now state the correctness of our NAT formulation ofLc with propositions similar to
those in Section 7. The proofs are given in the Appendixes A and B.

Proposition 5 (Causal equivalence).
(1) For every causal modelΨ of Dl there exists a modelMSCc of SCc(Dl) such that

for all F,α:

F ∈ Ψ (α)⇔MSC |=L Holds(F,α) and

Ψ (α) is undefined⇔MSC |=Undef(α).
(19)

(2) For every modelMSC of SCc(Dl) there exists a causal modelΨ of Dl such that
(19)holds.

Proposition 6. For any domain descriptionD, if interpretation(Ψ,Σ) is a model ofD
then there exists a modelM of Tc(D) such that for every factφ in the language ofD:

(Ψ,Σ) |=L φ⇔M |= τ(φ) (20)

and ifM is a model ofTc(D) then there exists a model(Ψ,Σ) ofD such that(20)holds.

Proposition 7. For any domain descriptionD and factφ in the language ofD:

D |= φ⇔ Tc(D) |= τ(φ).

Example 6. Consider a scenario where there are two guns which cause Fred to die if fired
at him when loaded. Suppose all we know is that initially either gun was loaded and that
both were fired at him. The following domain description captures this story:

shoot(1) causes¬alive if loaded(1)

shoot(2) causes¬alive if loaded(2)

alive at S0

(loaded(1) at S0)∨ (loaded(2) at S0)

{shoot(1),shoot(2)} occurs_atS0


=Dguns.

It is easy to see thatDgunsentails¬alive at SN .
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9. Further extension ofL—allowing actions with indirect effects

In this section we discuss how the NAT formalization ofL can be easily extended
to allow ramification constraints, and axioms about executability of actions.Giunchiglia
et al. [15,22] introduced the high-level languageAR with the above mentioned features
(and some additional ones, such as actions with nondeterministic effects) with nonpropo-
sitional fluents, but in the absence of narratives. They then give a formulation of temporal
projection problems inAR using NATs. Essentially, if we restrict their formulation to
boolean fluents, then we can say that their NAT characterization corresponds to a causal
modelΨ for an extended language that allows ramification constraints, executability con-
ditions and non-deterministic effects.

Since NATs are nestings of independent blocks, we can replace theSC(Dl) part of the
NAT T (D) of Section 4.5—that characterizes the causal model of our original but restricted
language, by a new theory that captures the causal model of the extended language.
Moreover, the resultant NAT gives a characterization of an extension ofLwhere constraints
and executability conditions are allowed.

We now present the syntax of (ramification) constraints, and executability conditions
and touch upon how their addition toL necessitates some changes in the semantics.

Constraint are of the form

alwaysC, (21)

whereC is a propositional fluent formula. Intuitively, a constraint

always(in_lake⊃wet)

asserts that if someone is in the lake then he/she is wet.
The semantics ofL extended with constraints is defined by requiringRes(A,σ) to be

the set of valid statesclosest(in the sense of set difference) toσ which containE+A(σ)
and do not contain any element ofE−A(σ))—where valid states are states that satisfy all
the constraints; and requiringΨ (α ·A) to be an element ofRes(A,Ψ (α)). This guarantees
that for allα, eitherC holds inΨ (α) orΨ (α) is undefined and captures the indirect effect
of actions due to constraints.

An executability condition is of the form

impossibleA if Q1, . . . ,Qn, (22)

whereQ1, . . . ,Qn are fluent literals. From the semantics point of view, a proposition of
this type is satisfied by a causal interpretationΨ if Ψ (α ·A) is undefined whenQ1, . . . ,Qn
are satisfied byΨ (α). For instance,

impossibleget_out_of_the_lake if ¬in_lake

means that it is impossible to execute the actionget_out_of_the_lake in a state where
in_lake is false.
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We are now ready to discuss the theory,T + obtained fromT (of Section 4.5) by
replacingSC with SC+ which encodes the transition functionΨ in the presence of
constraints and executability conditions. We now present the theorySC+:

SC+ =
(h) γαC (for each constraint (21))

(i) Holds∗ (f, a ◦ α)≡Holds(f, a ◦ α)
{Holds∗ :

(j) ¬Undef(a ◦ α)∧¬Ab(f,a,α)⊃
[Holds(f,α)≡Holds∗(f, a ◦ α)]

{Holds∗, min Undef :
(k) H(P1, α)∧ · · · ∧H(Pm,α) ∧

¬Undef(A ◦ α)⊃H ∗(F,A ◦ α)
(for each causal law (1))

(l) H(Q1, α)∧ · · · ∧H(Qn,α)⊃Undef(A ◦ α)
(for each proposition (22))

(m) Undef(α)⊃Undef(a ◦ α)
(n) γ ∗a◦αC (for each constraint (21))

}
}

where,γαC stands for the universally closed formula obtained from a constraint (21) by
replacing each fluent literalF byH(f,α). Note also that:

– SC+ is a slightly modified and simplified version of the main part of the NAT in
[15,21]. The main differences are: our use of boolean fluents instead of nonboolean
ones as in [21] and our use of conjunction of fluent literals in theif part of (1) and
(22) and in thecausespart of (1) instead of fluent formulas, as in [21]. We make these
restrictions for simplicity, and to stay as close toL as possible, while still being able
to make our point about easy incorporation of constraints and executability conditions
intoL.

– The outer block ofSC+ encodesRes(a,σ ), for all actionsa, and for all statesσ that
are mapped to by some action sequence. Whileσ is encoded usingHolds, Res(a,σ )
is encoded usingHolds∗. The inner block defines which actions are undefined (or not
executable) in which state.
The reason behind having two different predicatesHoldsandHolds∗ and only varying
the latter when minimizingAb is to individually minimize the difference betweenσ
andRes(a,σ ) without globally minimizing all such differences as a whole. The latter
precludes many models and may result in intuitive interpretations being ruled out.
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Consider the example where we havea causesf if p and always¬f in our domain
description. If we had replacedHolds∗ in SC+ by Holds. Then minimizingUndef
while varyingHolds in the inner block would result in¬Holds(p,α) being true in all
models of the inner block. This is prevented by using separateHoldsandHolds∗.

– Although at first glance it seems that only (l) and (m) are necessary in the inner block,
(k) and (n) are needed to specify undefined action sequences that may arise because
of the possible interaction between effect axioms and constraints, as it might happen
when the domain is constrained to haveP initially true.
Note that our constraints are meant for ramifications; i.e., if we havealways¬(f ∧g)
anda causesf , then application ofa in a state whereg is true (directly) makesf true
in the resulting situation and (indirectly, because of ramifications) makesg false in the
resulting state. On the other hand, if we have
always¬(f ∧ g), a causesf anda causesg if p,
thena is not executable in any situation wherep is true. To capture this we need (k)
and (n) in the inner block.

– Axiom (j) encodes the law of inertia.
– Axiom (h) restricts all states to be valid, making sure they satisfy all the constraints.
– Axiom (i) relatesHoldsandHolds∗. Once the minimizations are done appropriately

in the inner and outer blocks, axiom (i) selects only those models whereHolds and
Holds∗ agree.

– Another difference betweenSC+ and the corresponding theory in [21,22] is that in
our case the second argument ofHolds is a sequence of actions while in the other
ones it is a state. This is because all situation constants in our language are mapped
onto a sequence of actions; there is no such requirement in [21,22].

– Finally, although we did not discuss allowing indeterminate propositions [21], they
can be easily incorporated. An indeterminate proposition of the form
A possibly_changesF if P1, . . . ,Pk may be incorporated intoSC+ by adding

H(P1, α)∧ · · · ∧H(Pk,α)⊃Ab(F,A,α)
just before (j) inside the outer block definingHolds∗.

Although we do not formally state and prove the equivalence between the causal
interpretationΨ of a domain descriptionD with constraints and executability conditions
and the correspondingSC+, the equivalence directly follows from [21]. Moreover, the
correspondence between domain descriptions in the extendedL (with constraints and
executability conditions) and the corresponding NATs, withSCreplaced bySC+, follows
(with slight modifications) from [21] and the proof of Lemma 2.

We would like to stress that the ability of NATs to allow us to treat blocks in a similar
way as subroutines in structured programming makes NATs a strong tool for knowledge
representation. This allowed us to take a block from the formalization of actions of
Giunchiglia et al. and “insert” it into our theory with practically no complications.

10. Filtering and restricted monotonicity in T and T +

To the best of our knowledge,T andT + are among the largest circumscriptive theories
in the literature, in terms of the number of levels of minimization and filtering [44].
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They are thus good testbed examples for analyzing the expressibility of NATs (and
circumscription in general) in terms of the various KR features they incorporate. In
Section 5 we already discussed howvalue minimization[6] of functions was expressed
using NATs in the theoryT . In this section we focus on two additional aspects—filtering
and restricted monotonicity with respect toT andT +.

10.1. Filtering

The notion of filtering was first introduced by Sandewall in [44]. We define it as follows:

Definition 10. Let T be a (possibly nonmonotonic) theory andQ (an observation) be a set
of sentences in first-order logic. ByFilter(T ,Q), we refer to the theory whose models are
the models ofT that are first-order models ofQ.

Proposition 8. Filter(T ,Q) is monotonic with respect toQ.

Proof. Follows directly from the definition ofFilter(T ,Q); adding sentences toQ can
only decrease the models ofFilter(T ,Q). 2

10.2. Restricted monotonicity in filtering

The concept of restricted monotonicity was introduced by Lifschitz [26]. In this
subsection we first recall some of his definitions and then show how filtering and restricted
monotonicity are related and how restricted monotonicity is captured in NATs.

Definition 11 (Lifschitz [26]). A declarative formalismis defined by a setS of symbolic
expressions calledsentences, a setP of symbolic expressions calledpostulates, and a map
Cn from sets of postulates to sets of sentences.

A set of postulates is referred to as atheory; and a sentenceA is a consequence of a
theoryT isA ∈Cn(T ).

Definition 12 (Lifschitz [26]). Let 〈S,P,Cn〉 be a declarative formalism. Let a subsetS0
of S be designated as the set of assertions, and a setP0 of P as the set of parameters.
A theoryT is said to satisfy the restricted monotonicity condition with respect toS0 and
P0 if, for any setsp,q ⊂ P0,

p ⊂ q⇒Cn(T ∪ p)∩ S0⊂Cn(T ∪ q)∩ S0.

In [26], Lifschitz gives several examples of restricted monotonicity and in [16,22] Kartha
et al. prove restricted monotonicity inAR andAR0. Here we generalize some of the above
results and discuss the restricted monotonicity associated with filtering in general.

In case of filtering, we can say that the theoryFilter(T ,Q) has the restricted
monotonicity property with respect toQ. This follows directly by considering parameters
as statements of the language of observations, definingCn(T ∪ p) to be the set{f | f is
true in all models ofFilter(T ,Q)} and consideringS0 to be the set of all sentences.
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Filtering is easily achieved in NATs by means of two blocks representingQ andT ; thus
making it easy13 to express restricted monotonicity in NATs. This is exactly what happens
in T andT +, respectively.

Before moving on to analyze blocks ofT and T +, let us say a few more words
about NATs as a knowledge representation language. Besides the issue of recent advances
of automated circumscriptive reasoning [10] that benefit NATs,NATs are good for
representing knowledge because they allow us to encode nonmonotonicity about certain
aspects, and at the same time guarantee encoding of restricted monotonicity with respect
to others.Moreover, nesting allows several levels of filtering. Prima facie, the equivalence
of Filter(Filter(T ,Q),Q′) and Filter(T ,Q ∪ Q′) may suggest that several levels of
filtering are not needed. On the other hand, often (as in [44]), we need to compute
Filter(Min(Filter(T ,Q),6),Q′), where we minimizeFilter(T ,Q) with respect to an
ordering6 before filtering the result byQ′. Assuming that6 can be encoded by
varyingP1, . . . ,Pk and minimizingPk+1, . . . ,Pm, andT itself is a NAT, we can represent
Filter(Min(Filter(T ,Q),6),Q′) by the following:

{
Q′

{ P1, . . . ,Pk, minPk+1, . . . ,Pn

Q

T

}
}

10.3. Analyzing blocks and sub-blocks ofT andT +

– Consider the inner block ofSC+. Let us call itBinner. Intuitively, this block (among
other things) encodes a function fromHoldsliterals toUndef literals. The axioms (k),
(l), (m), and (n) partially define this function, which is further refined by the
minimization of Undef while varying Holds∗. This leaves open the possibility to
add observations about the successful execution of sequences. So, if sequenceβ has
succeeded, we can add¬Undef(β) as a new blockB1 consisting only of¬Undef(β),
added at the same level of axiom (j).
In the NAT B2 consisting ofBinner andB1 we are basically filteringBinner by B1
and the resultant models are the models ofBinner that are also models ofB1. Thus
B2 is monotonic with respect to addition of observations toB1 but nonmonotonic
with respect to addition of causal laws, constraints, or executability conditions, which
changeBinner.

– Let us callBouter the outer block ofSC+, which intuitively encodes a function from
Holdsliterals toUndefandHolds∗ literals. Observations aboutHolds∗ are put outside

13 Among other knowledge representation languages, filtering is easily done in logic programming by
representing observations as integrity constraints. On the other hand, logic programs do not easily allow a
hierarchy of integrity constraints. Thus, multiple levels of filtering are not easily represented in logic programs.
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of Bouter, as axioms (h) and (i) inSC+, and axiomsFACTSand (e) inT +. Here
also, the observations filter the NATBouter. The resulting theory has the restricted
monotonicity property about the observations.

– The block T (D), represents a function from literals of predicatesAt , Occurs,
Precceds, Holds, Subsequence, Prefix_eq, Concatenateto mappings of the function
Sit_map. Observations about the value ofSit_map can be incorporated by putting
them outsideT (D). These observations will then filter the models ofT (D) and keep
only those that agree with them.

– In [8] hypothesis of the formF after α at S were treated as observations on top of the
domain description inL. We can incorporate them to our NAT consisting ofT (D),
by adding∀βConcatenate(Sit_map(S),α,β) ⊃ Holds(F,β) to the NAT—not inside
T (D). These observations will filterT (D), and select only those models ofT (D) that
agree with the observations. The theoryFilter(T (D),Obs) will thus be monotonic
with respect to the hypotheses, while it is nonmonotonic with respect to facts, which
are incorporated by changingT (D).

11. Related work

Until recently there were two distinct directions in reasoning about actions; one based
on situation calculus which did hypothetical reasoning and planning, and normally consid-
ered simple actions (i.e., no continuous actions, no actions with durations, etc.), while the
other (in particular, Allen’s temporal logic [1], Kowalski and Sergot’s event calculus [23])
focused on reasoning with narratives and often allowed actions with durations, and con-
tinuous actions, but did not consider hypothetical reasoning. In the late eighties and early
nineties several influential works [12,13,41,45] have had a big impact in this field, and trig-
gered a flurry of new research. Some of these appear in the special journal issues [14,27],
in the workshops AAAI-96 Workshop on Reasoning about actions and AAAI-95 Spring
symposium on Extending Theories of Action, and in the recent AAAI, IJCAI and KR con-
ferences.

In general, our work has been influenced by the approach of using high-level action
description languages [3,8,12,16], and their formalization (particularly ofAR [16])
using nested circumscription. In the previous sections we argued why we believe nested
circumscription is an excellent KR language, and listed some of its features. Also, we
acknowledge Sandewall’s idea of filtering [44] with which NATs has much in common.

In this section we first compare NATs with Sandewall’s filter preferential entailment and
then give a detailed comparison of our work with other proposals that do both narrative
and hypothetical reasoning; particularly, those by McCarthy [33], Kakas and Miller [19],
Miller and Shanahan [35], and Pinto and Reiter [38,39].

11.1. Sandewall’s filter preferential entailment

The notion of filtering was first introduced by Sandewall [44] to be able to formally
obtain explanations in terms of action occurrencesgiven action descriptions (in terms
of conditions and effects), physical laws, and observations about values of fluents at
specific time instants. He argued that his approach can also be used to obtain a plan for
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a specific goal, by considering the goal as an observation which needs to be explained, and
considering an explanation as a plan that achieves the goal.

Sandewall’s notion of filtering is a general one. The NATs formalism that we use in
this paper is an instance of it, where circumscription is used for minimizations, with local
abnormal predicates.

He motivates the intuition behind using filtering of the models of a theory containing
action descriptions and natural laws (no observations) by observations, instead of the
models of the theory containing action descriptions, natural laws and observations, by
appealing to an example involving a moving object.We give a different justification
in Section10; we show that by using filtering the resulting theory has the restricted
monotonicity property with respect to the observations.

Although Sandewall’s formalism [44] considers one of the important aspects of narra-
tives (i.e., explaining values of fluents at different time instants by action occurrences), it
does not cover the whole issue of hypothetical reasoning in presence of narratives and un-
like ours it does not have a notion of planning from the current situation, which we have
in this paper. On the other hand, Sandewall considers actions with durations, which are not
considered in this paper.

11.2. McCarthy’s formulation of situation calculus with concurrent events and narratives

In this section we relate our work with McCarthy’s draft titled “Situation Calculus with
concurrent events and Narrative” [33] available through his Web page. In our comparison
we make several quotes from his draft.

– McCarthy says:

Situations in a narrative are partially ordered in time. The real situations are totally
ordered, but the narrative does not include full information about this ordering.

We agree with the above statement, but in our formalization of a narrative description
with partially ordered situations, rather than having models encoding this partial
ordering, each model encodes a possible total ordering of the situations.

– He also writes:

In a narrative, it is not necessary that what is said to hold in a situation be a
logical consequence (even nonmonotonically) of what was said to hold about a
previous situation and known common sense facts about the effects of events.. . .

Nevertheless, some narratives are anomalous.. . . We want to introduce a concept
of proper narrative, but it is not clear exactly what it should be. The fluents holding
in a new situation should be reasonable outcomes of the events that have been
reported, except for those fluents that are newly asserted, e.g.,[. . .]

In our formulation, if something is said to hold in a situation, it may not logically
follow from the rest of the description itself, though we incorporate the assumption
that it must have an explanation. Since this assumption is part of our formulation,
when something is said to hold in a situation, it is a logical consequence of action
occurrences leading up to this situation. Yet, these action occurrences need not
be all explicitly stated in the original description, some may be abduced from the
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observations that are made. Of course, a description may have several models, each
suggesting a different action occurrence.
We believe that our formulation suggests a definition forproper narrative, which is
not defined in [33], and in our formulation we require that models of the description
encode proper narratives, and lack of information leading to not having a unique
proper narrative results in multiple models of the description.

– McCarthy goes on writing:

Perhaps narrative seems easy, since it is not yet clear what facts must be included
in a narrative and what assertions should be inferable from a narrative.

We hope that in the previous sections we have given a satisfactory answer to this.
– McCarthy also discusses elaborations of actions in a narrative by finer actions and

sub-narratives; we do not consider them here.
– McCarthy informally discusses an interesting example involving narratives. The

example has two versions, one consisting of two narratives occurring concurrently
and independently, and another where the same two narratives have a few points of
interaction. In the following example, we show how the second version of the example
can be represented inL. (The representation of the first version is a subset of the
representation of the second version.)

Example 7 (Glasgow, London, Moscow and New York[33]). The story is the following:
there is a person called Daddy in New York who is stacking blocks. At the same time,
there is a person called Junior who is in Glasgow and has tickets for and is traveling from
Glasgow to Moscow via London. Arriving into London, Junior loses his ticket and sends a
telegram to Daddy asking for money. Daddy then sells one of his blocks to get the money
and sends it to Junior. Junior then gets the money, buys a London–Moscow ticket and
finishes his trip.

Part of a domain description inL which captures this story would be the following:
Causal law schemata:

Flies(Prsn,X,Y ) causesAt(Prsn, Y ) if AtPprsn,X),Has(Prsn, tkt(X,Y ))

Flies(Prsn,X,Y ) causes¬At(Prsn,X) if At(Prsn,X),Has(Prsn, tkt(X,Y ))

Lose(Prsn,X) causes¬Has(Prsn,X)

Buys(Prsn,X) causesHas(Prsn,X) if Has(Prsn,money)

Sells(Prsn,blk1) causesHas(Prsn,money)

Sells(Prsn,blk2) causesHas(Prsn,money)

Sends(Prsn1,Prsn2,X) causesSent(Prsn1,Prsn2,X) if Has(Prsn1,X)

Receives(Prsn1,Prsn2,money) causesHas(Prsn1,money) if

Sent(Prsn2,Prsn1,money)

Receives(Prsn1,Prsn2, tlgrm) causesRcvd(Prsn1, tlgrm) if

Sent(Prsn2,Prsn1, tlgrm)

Stack(Prsn,X,Y ) causesOn(X,Y ) if Clear(X),Clear(Y )
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Fluent facts about the initial situation:

Junior: Daddy:

At(jr ,gw) at S0 At(ddy, ny) at S′0
Has(jr , tkt(gw, ldn)) at S0 ¬Has(ddy,money) at S′0
Has(jr , tkt(ldn,mscw)) at S0 Has(ddy,blk1) at S′0

Has(ddy,blk2) at S′0
On(blk1, tbl) at S′0
On(blk2, tbl) at S′0

Occurrences of actions:

Junior: Daddy:

Flies(jr ,gw, ldn) occurs_atS0 Stacks(ddy,blk2,blk1) occurs_atS′0
Lose(jr , tkt(ldn,mscw)) occurs_atS1

Sends(jr ,ddy, tlgrm) occurs_atS2

Receives(ddy, jr , tlgrm) occurs_atS′1
Sells(ddy,blk1) occurs_atS′2
Sends(ddy, jr ,money) occurs_atS′3

Receives(jr ,ddy,money) occurs_atS3

Buys(jr , tkt(ldn,mscw)) occurs_atS4

Flies(jr , ldn,mscw) occurs_atS5

Ordering on situations:

S0 precedesS1 S′0 precedesS′1
S1 precedesS2

S2 precedesS′1
S′1 precedesS′2

S2 precedesS3

S′2 precedesS′3
S′3 precedesS3

S3 precedesS4

S4 precedesS5
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For this domain description, the semantics ofL tells us among other things that
Has(ddy,money) at S′3, Has(jr ,money) at S4, currently At(jr ,mscw); and that neither
S1 precedesS′0 norS′0 precedesS1 are entailed by the domain description. Intuitively, we
have two sub-narratives occurring simultaneously with few points of interaction. Although
in reality there is a total order of all the events, the domain description does not entail such
an order because it contains only partial information about it.

11.3. Miller and Shanahan’s circumscriptive approach

In [35] Miller and Shanahan introduced a formalization of narratives using the situation
calculus and circumscription. Their formalization of narrative has many similarities to
our work. Their functionState which maps time points (real numbers) to situations
(constructed using the functionRes, an initial situationS0 and action constants) is similar
to ourΣ which maps situation constants to sequences of actions.

However, their formalization requires14 that the domain description include all occur-
rences of actions and fluent facts are restricted to be about the initial situation only.

Our approach is then more general with respect to the above restrictions. And further,
propositional combinations of fluent facts, occurrence facts and precedence facts are
also allowed in our formalization. Our semantics incorporates the abductive reasoning
necessary to make conclusions regarding occurrences of actions and values of fluents in
different situations, even if they are not explicitly stated in the domain description. On the
other hand, [35] contains discussions on allowing divisible and overlapping actions, which
we do not discuss in this paper.

11.4. Kakas and Miller’sE

Kakas and Miller [19] have introduced a high-level languageE based on event-calculus.
A domain description in their language consists of c-propositions, h-propositions and
i-propositions, which are similar to causal laws, atomic occurrence facts, and atomic fluent
facts in our language. Their time points correspond to situation constants in our language.
The major differences between their work and that of ours are:

– In our language the ordering between situation constants is part of the domain
description while in their language it is rather part of the domain language.

– Hypothetical reasoning inE is done by defining∆-sequences (which are hypothetical
time points) corresponding to each hypothetical situation, and for a time point
between two consecutive hypothetical situations; and then defining the ordering
between these∆-sequences. These definitions are included in the domain language.
In addition hypothetical action occurrences are added to the domain description. The
following example illustrates how we can reason about the hypothetical situation
Res(Shoot,Res(Load, S0)) in E .
– First the domain language will contain the∆-sequences:

(i) 〈〈〉〉,
(ii) 〈〈|load|〉〉,

14 They do point out that these restrictions can be weakened using abduction.
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(iii) 〈〈|load|, load〉〉,
(iv) 〈〈|load|, load, |shoot|〉〉, and
(v) 〈〈|load|, load, |shoot|,shoot〉〉.

The∆-sequences (i), (iii) and (v) above correspond to the situationsS0, Res(Load,
S0), andRes(Shoot,Res(Load, S0)), respectively. The∆-sequences (ii), and (iv)
above correspond to the time point between the situationsS0 andRes(Load, S0),
andRes(Load, S0) andRes(Shoot,Res(Load, S0)), respectively. The∆-sequences
(ii), and (iv) are necessary to be able to specify that the actionLoad happened in
the∆-sequences (ii) and that the actionShoothappened in the∆-sequences (iv).

– Next the domain language will also contain the following ordering between the∆

sequences:
〈〈〉〉 precedes〈〈|load|〉〉 precedes〈〈|load|, load〉〉 precedes〈〈|load|, load, |shoot|〉〉
precedes〈〈|load|, load, |shoot|,shoot〉〉.

– Finally, the domain description will contain action occurrences
load happened at〈〈|load|〉〉, and
shoothappened at〈〈|load|, load, |shoot|〉〉.

It should be noted that the number ofδ sequences is infinite, thus making the domain
language infinite; also the number of action occurrences will be infinite. However,
both can be finitely expressed in a logical language such as logic programming.
It seems to us—and hopefully the above example illustrates it—that the additional
formulation inL (as opposed toA) that is used for incorporating narratives into
hypothetical reasoning (i.e., going fromA to L) is much less than that necessary in
simulating hypothetical reasoning in the narrative based languageE . Nevertheless, it
is important to know, and Kakas and Miller [19] show us, how hypothetical reasoning
can be done in a narrative-based language.

– Unlike in L, in E information about action occurrences (called h-propositions) is
assumed to be complete. Although this seems very restrictive, they later simulate
incompleteness by introducing a notion of explanation that restores inconsistency in a
theory where the completeness assumption makes it contradictory. They first start with
an explanation consisting of action occurrences (h-explanation), and then incorporate
an explanation consisting of c-propositions (our causal laws).In our formalization we
assume our set of causal laws to be complete.
Kakas and Miller then consider projection domain descriptions, i.e., those where
t-propositions (our atomic fluent facts) are only allowed about the initial situation
(such t-propositions are referred to as i-propositions), and discuss how to incorporate
observations about fluent values at noninitial time points (such t-propositions are
referred to as o-propositions). They incorporate observations by first explaining
in terms of additional i-propositions (called i-explanations) and then explaining in
terms of both i-propositions and h-propositions (called ih-explanations), where the
h-propositions are used to restore consistency.
In contrast, our domain descriptions allow incomplete information about action
occurrences, values of fluents at both initial and noninitial situations, and a partial
specification of the ordering between the situation constants.Our formulation is such
that each model of the domain description fills in the missing actionoccurrences,
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and has a total ordering between the situation constants. (The ordering between time-
points inE cannot be total as it also orders the hypothetical time-points.)
Thus, we incorporate the concept of ih-explanation, i-explanation and h-explanation
in the object language itself without resorting to restoring consistency or meta-level
explanation. Still, we do not allow explanations through c-propositions/causal laws,
which we consider as fixed.

– Finally, we believe that our notions ofcurrent situationandplanning from the current
situationto be very important. These notions are not considered in [19].

11.5. Pinto and Reiter’s actual and legal situations

Pinto and Reiter in [39] were among the first ones to introduce a time line into situation
calculus, allowing not only the hypothetical reasoning inherent of situation calculus but
also the expression of event occurrences and values of fluents at different time instants.
Their approach, based on Reiter’s[41] solution to the frame problem, was restricted to
nonconcurrent actions, and appealed to circumscription to minimize occurrences.In their
formalization, they introduced a predicateactual on situations to characterize situations
that lie on the path that describes the world’s real evolution. Similar toL their formalism
allows the possibility of inferring action occurrences that explain observations but that
are not explicitly specified as part of the axiomatization. To avoid inferring occurrence of
superfluous actions they minimize the predicate occurs.

Unlike the formalism inL [8], they do not have the notion of acurrent situation and
of planning from the current situation.Their notion of planning15 then boils down to
finding actual situations that satisfy a given goal. Because of the minimization ofoccursin
the actual line, the possible existence of new situations—ones not specified as part of the
axiomatization or not inferable from it, is ruled out; this results in not being able to find new
situations where the goal is satisfied. Reiter refers to this as the “premature minimization
problem” [42] and points out that Miller and Shanahan’s formalism also suffers from it.
Even though we also minimize action occurrences,our formalism does not suffer from
this problem, because the minimization is only used to define the current situation while
planning (by hypothetical reasoning) is still possible from the current situation.

Pinto in his thesis [37] builds up on the work in [39], and discusses many new issues
including concurrent actions, continuous actions and natural events; since the core of
the approach: the use of Reiter’s solution to the frame problem, definition of actual, and
minimization of occurs, remains unchanged from [39], his work also suffers from the same
problem of premature minimization and inability to make executable plans.

In their later work [38,40,42], Pinto and Reiterabandon minimization of occurrences,
and in [42] and [38] they allow the possibility of several “hypothetical actual branches”—
whose situations are now referred to as “legal” instead of “actual”, thatrestores the
capability of making plans.But even here, their approach to planning is based on finding a
legal situation where the goal is satisfied. It is not clear to us if this notion of planning is
useful in the scenario of an agent in a dynamic world. The agent does not need a plan from

15 The issue of planning is not directly mentioned in [39], but based on the discussion in [42] on “premature
minimization” and the notion of planning there, it seems that this is what Pinto and Reiter had in mind.
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the initial situation—as Pinto and Reiter’s approach would give us; rather, it needs a plan
from the current one.

Let us now try to list the major differences between our approach and that of Pinto and
Reiter’s.

– Our approach is based on a high-level language,L, which is restrictive compared
to that of Pinto and Reiter’s. For example, our domain description does not allow
statements that have both holds and occurs in them. Moreover, we do not allow
triggers, and natural events, which are considered in [37,38,42].

– In our formalism the only restriction on the legality of actions in a branch is due to
the executability conditions. Thus our branches consist of “legal” situations and are
“hypothetical actual branches” in their sense.

– In [38,42] “legal situation” replaces the notion of “actual situation”. Such is not the
case in our formalism. While all situations in our branches are legal, only a finite set of
situations in a finite line—called theactual line,from the initial situation and ending
at the “current” situation are considered to be “actual”.We minimize the occurrences
of actions in this actual line.In contrast, Pinto and Reiter in [37,39] face the problem
of premature minimization while minimizing occurs, while in later work [38,42] they
abandon16 minimization of occurrences. Also, it seems17 that Pinto in [38]does
not allow statements about values of fluents at noninitial situations; allowing such
statements and abducing additional information from them in the object language
itself is an important aspect of our work.
We believe—and so do Pinto and Reiter in [37,39]—on the intuitiveness of
minimizing action occurrences on the description of the evolution of the world up
until the current situation. We avoid the problem of “premature minimization” because
of carefully minimizing only the action occurrences in the “actual line”, while they
minimize action occurrences without restraint. Our notion of current situation comes
in handy.

– Pinto and Reiter stay within first-order logic as much as possible. In [37,39] all their
axiomatization except the induction axiom, and the minimization of occurs at the end,
is in first-order logic; and later [38,42] all their axiomatization except the induction
axiom is in first-order logic.
Our formalization here is based on circumscription, and seemingly makes it easier to
allow constraints and even actions with uncertain effects together with effect axioms.
Pinto concurs and in [38] says:

An important advantage of the circumscriptive approach is that the solution to the
frame problem is more general and can be applied to theories that include state
constraints as well as effect axioms. However, the correctness of solutions based
on circumscription is hard to assess.

16 In [38], Pinto shows how to characterize within the first-order logical language preferences between action
sequences based on some minimality criteria. Although, as he shows, such a characterization can be used to
define particular kind of minimal plans, it is not clear how such minimizations can be used to minimize action
occurrences in the actual line.
17 This is based on the remark Pinto makes in the Conclusion section of [38], where he says he would like to

extend his work to study the effect of adding statements regarding the value of fluents at different points in time.
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In our case since we show our circumscriptive formulation to be correct with respect to
the semantics of the high-level languageL; it makes it easier to assess the correctness
of solutions based on our approach.

12. Conclusion and future work

In this paper we discussed the necessity of allowing both narratives and hypothetical
reasoning and presented a sound and complete translation of domain descriptions in the
action description languageL into nested abnormality theories. Our translation uses a
new formulation of circumscription where values of functions are minimized. We then
extended the languageL to allow concurrent execution of actions and showed that the
earlier NAT translation can be easily elaborated for this case. We continued further by
adding actions with indirect effects, and discussing the relation between filtering, NATs
and restricted monotonicity. Finally, we give a detailed comparison of our approach with
other approaches in the literature.

In the future, we would like to continue on several fronts. In particular, we would like to:
– Develop algorithms that will allow us to discover missing action occurrences based on

our observations. Also, we would like to explore learning of environment interaction
patterns based on the past occurrences and use that information to make future plans.

– Carefully extend our language to allow additional constructs such as natural
events, explicit time, continuous actions, and various kinds of action occurrences
beyond the simple ones that we have—such as non preventable occurrences,
conditional occurrences, eventual occurrences, and triggered occurrences. One of
us [9] has already participated in extendingL to allow triggers so as to formulate
active databases; but this high-level formulation has not been axiomatized using
circumscription.

– Introduce the notion of “current situation” and “planning from the current situation”
to Pinto and Reiter’s formalism; and have separate notions of “legal” and “actual”
situations, and allow minimization of occurrences of actions in the actual line.
With these additional notions we would then like to compare their axiomatization
and our circumscriptive axiomatization on domain descriptions inL, similar to the
comparison in [20].

– Finally, in Section 10 we discussed the relation between filtering and restricted
monotonicity in general and instances of filtering and restricted monotonicity inT

and T +. We believe that each filtering step inT and T + also encodes abductive
reasoning, i.e., abductive reasoning is done inT andT + through filtering. We need
to further study this issue and identify all instances of abduction inT andT +, and
discuss under what circumstances abduction can be done through filtering.
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Appendix A. Correctness of translationT

In proofs we will use the following notation:

M[[π]]
will stand for the set of tuples which belong to the extent of predicateπ in interpretation
M. With functions we use

M[[ϕ]](τ )
to denote the object which functionϕ mapsτ into in interpretationM.

In what follows, by a model of a single block or a sub-theory we will mean a model of
a block or sub-theory plus theFramework Axioms.

Readers who are familiar with logic programming might have noticed that the blocks
defining Prefix_eq and the other relations on sequences are very similar to the typical
definition of these relations in logic programming. The following lemma, and those which
are similar, are analogous to a lemma due to Marek and Subrahmanian [29] which is very
useful in logic programming. Our lemmata consider only particular predicates, though.

Lemma 1. LetM be a model ofBprefix_eq. Then, for alla,α,β , 18

〈α, ε〉 ∈M[[Prefix_eq]] ⇒ α = ε, (23)

[α 6= a ◦ β, 〈α,a ◦ β〉 ∈M[[Prefix_eq]] ] ⇒ [〈α,β〉 ∈M[[Prefix_eq]] ]. (24)

Proof. Note that the axioms inBprefix_eq are definite clauses,19 so their conjunction, which
we will denote byA(Prefix_eq), is a definite formula [25, Section 3.5] inPrefix_eq. By
Corollary 3.5.3 from [25],

Bprefix_eq≡CIRC[A(Prefix_eq);Prefix_eq] (25)

is equivalent to

(∀α,β).Prefix_eq(α,β)≡ (∀p).A(p)⊃ p(α,β). (26)

Let us show that (23) holds. Assume that there is a modelM of (25) s.t.M |=
Prefix_eq(α, ε) for someα. Suppose thatα 6= ε. It is easy to see that the modelM′
differing from M only in that 〈α, ε〉 /∈M[[Prefix_eq]] satisfiesA(Prefix_eq) and is
therefore preferable toM. But this contradicts our assumption thatM is a model of (25).
Therefore,α = ε.
Let us show that (24) holds. Assume that there is a modelM of (25) s.t.M |=
Prefix_eq(α, a ◦ β) for some sequencesα 6= a ◦ β . Suppose thatM |= ¬Prefix_eq(α,β).
Consider a predicateP with extentM[[Prefix_eq]] \ 〈α,a ◦ β〉. Clearly, A(P) is
satisfied whileA(P) ⊃ P(α,a ◦ β) is not. Hence our assumption is wrong andM |=
Prefix_eq(α,β). Therefore, (24) is satisfied by all models of (25).2

18 Recall that constantε denotes the empty sequence.
19 A clause is said to bedefiniteif exactly one of its literals is positive.
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Lemma 2. Let M be a model ofBprefix_eq and α, β be sequences of actions. Then
M |= Prefix_eq(α,β) iff α � β .

Proof. (⇒) Let M be a model ofBprefix_eq. We will show that for allα,β , if M |=
Prefix_eq(α,β) thenα � β by induction on the length ofβ . Let n> 0 be the length ofα
andm> 0 be the length ofβ .

Base case: m= 0. Then,β = ε. Suppose thatn >m. Then,α 6= ε and by (23) we get a
contradiction. Thus,n 6m. Sincem= 0 andn> 0, we have thatn = 0, i.e.,α = β = ε.
Therefore,α � β .

Inductive hypothesis: for all β of lengthm 6 k and for allα, if M |= Prefix_eq(α,β)
thenα � β .

Induction: let a ◦ β be an arbitrary sequence of lengthk + 1. Let us show that if
M |= Prefix_eq(α, a ◦ β) thenα � a ◦ β . FromM |= Prefix_eq(α, a ◦ β) and (24) we
have thatM |= Prefix_eq(α,β). By the inductive hypothesis, this implies thatα � β . By
definition of�, α � a ◦ β follows fromα � β .
(⇐) LetM be a model ofBprefix_eq. For all α,β , if α � β then, by definition of�,

β = Bn ◦ · · · ◦B1 ◦ α for someB1, . . . ,Bn andn> 0.
Now, let us show by induction onn thatM |= Prefix_eq(α,Bn ◦ · · · ◦B1 ◦ α) for all α.
Base case: n = 0. We need to showM |= Prefix_eq(α,α). But this is an axiom of

Bprefix_eq.
Induction hypothesis: for anyn6 k andα,M |= Prefix_eq(α,Bn ◦ · · · ◦B1 ◦ α).
Induction step: we need to show thatM |= Prefix_eq(α,Bk+1 ◦Bk ◦ · · ·◦B1 ◦α). By the

induction hypothesis we have thatM |= Prefix_eq(α,Bk ◦ · · · ◦B1 ◦ α). Then, by axiom

(∀α,β,a).Prefix_eq(α,β)⊃ Prefix_eq(α, a ◦ β)
of Bprefix_eq, we have thatM |= Prefix_eq(α,Bk+1 ◦Bk ◦ · · · ◦B1 ◦ α). 2

Lemma 3. LetM be a model ofBsubsequence. Then for allα,β ,

a 6= b, 〈a ◦ α,b ◦ β〉 ∈M[[Subsequence]] ⇒ 〈a ◦ α,β〉 ∈M[[Subsequence]], (27)

〈a ◦ α,a ◦ β〉 ∈M[[Subsequence]] ⇒ 〈α,β〉 ∈M[[Subsequence]]. (28)

Proof. Similar to the proof of Lemma 1.2

Lemma 4. LetM be a model ofBsubsequence. Then, for allα,β ,M |= Subsequence(α,β)
iff α� β .

Proof. This can be proved by induction on the lengths ofα andβ in a manner similar to
the proof of Lemma 2. 2

Lemma 5. LetM be a model ofBconcatenate. Then, for allα,β,γ ,

[〈α, ε, γ 〉 ∈M[[Concatenate]] ] ⇒ α = γ, (29)

[〈α,a ◦ β,b ◦ γ 〉 ∈M[[Concatenate]] ]⇒
[〈α,β,γ 〉 ∈M[[Concatenate]] ∧ a = b].

(30)
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Proof. Similar to proof of Lemma 1. 2

Lemma 6. LetM be a model ofBconcatenate. Then, for allα,β ,γ ,

M |=Concatenate(α,β, γ )

iff γ = α · β .

Proof. By induction on the length of the second argument in a manner similar to the proof
of Lemma 2. 2

In the lemma below we will use the following notation: letA be an action andF be a
fluent, formulaH+(−)A,F (α) will stand for the disjunction of all the premises of axioms of the
form:

H(p1, α)∧ · · · ∧H(pn,α)⊃Causes+(−)(a, f,α)
such thata =A andf = F . For instance, if axiomsHolds(P,α)⊃Causes+(A,F,α) and
Holds(Q,α) ⊃ Causes+(A,F,α) are all the axioms with consequentCauses+(A,F,α),
thenH+A,F (α) stands forHolds(P,α) ∨Holds(Q,α).

Lemma 7. LetD be a domain description. Block

{min Causes+(−) :
H(P1, α)∧ · · · ∧H(Pn,α)⊃Causes+(−)(A,F,α)

(for eachA causesF if P1, . . . ,Pn ∈D)
}

(31)

is equivalent to the conjunction of formulas of the form:

(∀α).H+(−)A,F (α)≡Causes+(−)(A,F,α) (32)

one for each pair of action-fluent constants that appear in(31).

Proof. Follows from Proposition 3.1.1 of [25] which shows under what conditions a
circumscription formula can be simplified bypredicate completion. 2

Proposition 1.
(1) For every causal modelΨ ofDl there exists a modelMSC of SC(Dl) such that for

all F,α:

F ∈Ψ (α)⇔MSC |=Holds(F,α). (33)

(2) For every modelMSC of SC(Dl) there exists a causal modelΨ ofDl such that(33)
holds.

Proof. (1) Let Ψ be a causal model ofDl and let us consider an interpretationMSC of
SC(Dl) such that,

MSC[[Holds]] = {〈F,α〉: F ∈Ψ (α)}
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and

MSC[[Causes+(−)]] = {〈A,F,α〉: F ∈E+(−)A (Ψ (α))
}
.

We will show thatMSC is a model ofSC(Dl). First, let us show that the blocks defining
Causes+(−) are satisfied. By Lemma 7 it is sufficient to show that

H
+(−)
A,F (α)≡Causes+(−)(A,F,α).

SupposeH+(−)A,F (α) holds inMSC for arbitraryA,F ,α. Then, by construction ofMSC,
there is a causal lawA causesF if P1, . . . ,Pn ∈ D such thatH(Pi,α) holds for i =
1, . . . , n. Again, by construction ofMSC, this implies thatPi ∈ Ψ (α) for i = 1, . . . , n,
which in turn implies thatF ∈E+(−)A (Ψ (α)). By construction ofMSC, F ∈E+(−)A (Ψ (α))

implies thatCauses+(−)(A,F,α) holds inMSC.
Suppose now thatCauses+(−)(A,F,α) holds inMSC for arbitraryA,F , α. Then,

by construction ofMSC, F ∈ E+(−)A (Ψ (α)). This implies that there is a causal law
A causesF if P1, . . . ,Pn ∈D such thatPi ∈Ψ (α) for i = 1, . . . , n. Again, by construction
of MSC, it follows thatH(Pi,α) holds for i = 1, . . . , n. Therefore,H+(−)A,F (α) holds in
MSC.

Now, let us show that axiom

¬Causes+(a,f,α)∧¬Causes−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
is satisfied byMSC. Let A,F,α be an arbitrary action, fluent and sequence inD,
respectively, such that LHS of the axiom holds inMSC. By construction ofMSC,
we have thatF /∈ E+A(Ψ (α)) ∪ E−A(Ψ (α)). By definition of causal model, this implies
that F ∈ Ψ (α) iff F ∈ Ψ (α · A). Therefore, by construction ofMSC, Holds(F,α) ≡
Holds(F,A ◦ α) holds inMSC.

Now, consider the axioms

Causes+(a,f,α)⊃Holds(f, a ◦ α),
Causes−(a,f,α)⊃¬Holds(f, a ◦ α).

Suppose thatCauses+(A,F,α) holds inMSC for arbitraryA,F,α. Then, by construction
of MSC, F ∈ E+A(Ψ (α)). Given our assumption thatΨ is defined on all sequences
(Section 7), we have thatF /∈ E+A (Ψ (α)) ∩ E−A(Ψ (α)), thus by definition ofΨ , F ∈
Ψ (α ·A). Therefore, by construction ofMSC, Holds(F,A ◦ α) holds.

A similar argument holds for the second axiom.
(2) LetMSC be a model ofSC(Dl). Let us consider a transition functionΨ such that

(33) holds. We showΨ to be a causal model ofDl , i.e., for eachA,α

Ψ (α ·A)=Ψ (α) ∪E+A
(
Ψ (α)

) \E−A (Ψ (α)).
We show this is indeed the case by induction on the length of the sequence.

Base case: the length ofα is 0. We need to show that for anyA,

Ψ
([A])=Ψ ([ ])∪E+A (Ψ ([ ])) \E−A (Ψ ([ ]))

whereF ∈ Ψ ([ ]) iff Holds(F, ε) by construction ofΨ .
(a)Ψ ([A])⊇Ψ ([ ])∪E+A (Ψ ([ ])) \E−A (Ψ ([ ])).
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Let F and A be an arbitrary fluent and action inD respectively, such thatF ∈
Ψ ([ ])∪E+A (Ψ ([ ]))\E−A(Ψ ([ ])). Let us show thatF ∈Ψ ([A]). Clearly,F /∈E−A (Ψ ([ ])),
hence there is no causal lawA causes¬F if Q1, . . . ,Qm ∈Dl such that the preconditions
hold inΨ ([ ]). By construction ofΨ this means thatMSC |=H(Qi, ε) does not hold for
some 16 i 6m, for all such causal laws. By Lemma 7, this implies that

MSC |= ¬Causes−(A,F, ε). (34)

There are two cases of interest
(i) F ∈E+A (Ψ ([ ])),
(ii) F /∈E+A (Ψ ([ ])).

If (i) is the case, then there must be a causal lawA causesF if P1, . . . ,Pn ∈ Dl such
that the preconditions hold inΨ ([ ] ). By construction ofΨ , this implies thatMSC |=
H(Pi, ε) for each i = 1, . . . , n. Therefore,MSC |= Causes+(A,F, ε) and by axiom
Causes+(a,f,α) ⊃ Holds(f, a ◦ α) we have thatMSC |= Holds(F,A ◦ ε). Thus, by
construction ofΨ , F ∈ Ψ ([A]).

If (ii) is the case, thenF ∈ Ψ ([ ]) which implies, by construction ofΨ , that
MSC |= Holds(F, ε). Furthermore,F /∈ E+A(Ψ ([ ])) implies there is no causal law
A causesF if P1, . . . ,Pn ∈Dl such that the preconditions hold inΨ ([ ] ). Hence,MSC |=
H(Pi, ε) does not hold for some 16 i 6 n, for all causal laws of this form andMSC |=
¬Causes+(A,F, ε). From this, (34) and axiom

¬Causes+(a,f,α)∧¬Causes−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
we conclude thatMSC |=Holds(F,A ◦ ε), and by construction ofΨ thatF ∈ Ψ ([A]).

(b)Ψ ([A])⊆Ψ ([ ])∪E+A(Ψ ([ ])) \E−A(Ψ ([ ])).
Let F andA be an arbitrary fluent and action inD, respectively, such thatF ∈ Ψ ([A]).

By construction ofΨ ,MSC |= Holds(F,A ◦ ε). Thus,MSC |= ¬Causes−(A,F, ε), and
by Lemma 7, for every causal lawA causes¬F if Q1, . . . ,Qm ∈ Dl we haveMSC |=
H(Qi, ε) does not hold for some 16 i 6 m. By construction ofΨ , for every causal law
its preconditions do not hold inΨ ([ ]) either. Thus,F /∈ E−A(Ψ ([ ] )). We again have two
cases:

(i) MSC |=Causes+(A,F, ε),
(ii) MSC |= ¬Causes+(A,F, ε).
If (i) is the case, then by Lemma 7 there is a causal lawA causesF if P1, . . . ,Pn ∈

Dl such thatMSC |= H(Pi, ε) for each i = 1, . . . , n. By construction ofΨ , all the
preconditions of such a causal law hold inΨ ([ ]). Therefore,F ∈ E+A (Ψ ([ ] )), and since
we assume thatΨ is defined on every sequence (Section 7),F /∈ E−A (Ψ ([ ] )). Thus,
F ∈ Ψ ([ ] )∪E+A (Ψ ([ ] )) \E−A(Ψ ([ ])).

If (ii) is the case then by virtue of the first axiom ofSC(Dl),MSC |=Holds(F, ε). This
implies, by construction ofΨ , thatF ∈ Ψ ([ ]). We showed above thatF /∈ E−A(Ψ ([ ] )).
Therefore,F ∈Ψ ([ ])∪E+A(Ψ ([ ])) \E−A(Ψ ([ ] )).

Induction hypothesis: for eachA,α

Ψ (α ·A)=Ψ (α) ∪E+A
(
Ψ (α)

) \E−A (Ψ (α)).
Inductive case: it can be proved by following the same steps as in the proof of the base

case. 2
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Proposition 2. For any domain descriptionD, if interpretation(Ψ,Σ) is a model ofD
then there exists a modelM of T (D) such that for every factφ in the language ofD:

(Ψ,Σ) |= φ⇔M |= τ(φ) (35)

and ifM is a model ofT (D) then there exists a model(Ψ,Σ) ofD such that(35)holds.

Proof. (⇒) LetM = (Ψ,Σ) be a model ofD. LetMM be an interpretation ofT (D) such
that

(i) The universe ofactions, fluents, andsituationsconsist of the symbols in the setsA,
F andS of D, respectively. The universe ofsequencesconsists of a unique object
for each possible sequence of actions fromA.

(ii) HoldsandCauses+(−) are interpreted as follows:

MM [[Holds]] = {〈F,α〉: F ∈Ψ (α)},
MM [[Causes+(−)]] = {〈A,F,α〉: F ∈E+(−)A (α)

}
.

(iii) All action, fluent and situation constants are interpreted as themselves. Predicates
Prefix_eq, Subsequenceand Concatenateare interpreted as the corresponding
intended relation.

(iv) Sit_mapis interpreted as follows: for eachS in D,MM [[Sit_map]](S)=Am ◦ · · · ◦
A1 ◦ ε if Σ(S)= [A1, . . . ,Am].

We will show thatMM is a model ofT (D).
First, note that the framework axioms are trivially satisfied. The blocks defining prefix,

subsequence and concatenate have already been proven to correctly capture the intended
relations.

Axioms (a) and (b) are satisfied by definition ofΣ , condition (iii) and correctness of
Bprefix_eq (Lemma 2).

Note that condition (ii) onHolds andCauses+(−) is the same condition used to show
that such an interpretation of these predicates is a model ofSC(Dl) (see the proof of
Proposition 1), thus axiomsSC(Dl) are satisfied.

It remains to be shown thatMM satisfies axiomsτ(D) and is a minimal model with
respect to the circumscription policy.
F at S ∈D: τ(D) includes the axiomHolds(F,Sit_map(S)).

By the same fact fromD, F ∈ Ψ (Σ(S)). By condition (iv) onSit_mapand condition (ii),
F ∈ Ψ (Σ(S)) implies thatMM |=Holds(F,α), whereα is the same sequence asΣ(S).
α occurs_atS ∈D: τ(D) includes the axiom

(∃β).Concatenate
(
Sit_map(S),α,β

)∧Prefix_eq
(
β,Sit_map(SN )

)
.

By the same fact fromD, α concatenated withΣ(S) is a prefix ofΣ(SN). By condition (iv)
on Sit_map, Sit_map(S) andSit_map(SN) are the same sequences asΣ(S) andΣ(SN).
By correctness ofBconcatenateandBprefix_eq the axiom is satisfied.
S1 precedesS2 ∈D: τ(D) includes the axiom

Prefix_eq
(
Sit_map(S1),Sit_map(S2)

) ∧
¬Prefix_eq

(
Sit_map(S2),Sit_map(S1)

)
.
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By the same fact fromD, Σ(S1) is a proper prefix ofΣ(S2). By condition (iv) and
correctness ofBprefix_eq, the axiom is satisfied.

Finally, the value minimization axiom (c) captures exactly the minimality condition (see
Section 5 for a detailed discussion), with respect to orderingsubsequence, imposed on
Σ(SN) by the definition of models of domain descriptions inL.

(⇐) LetM be a model ofT (D). By Proposition 1 there is a causal modelΨ such that
for all F,α,

Ψ (α)= {F : M |=Holds(F,α)}. (36)

LetΨ be such a causal model and letΣ be a situation assignment such that for eachS,

Σ(S)= [A1, . . . ,An]⇔M[[Sit_map]](S)=An ◦ · · · ◦A1 ◦ ε. (37)

Let us showM = (Ψ,Σ) is a model ofD.
First of all, by axiom

Sit_map(S0)= ε
we haveΣ(S0)= [ ], and by axiom

Prefix_eq
(
Sit_map(s),Sit_map(SN)

)
we have that, for all situationsS in the language ofD,Σ(S) is a prefix ofΣ(SN); thus,Σ
is a situation assignment. Since we assume thatΨ is defined on all sequences,Ψ (Σ(SN))
is defined and thereforeΨ andΣ form an interpretation ofD.

It only remains to be shown that facts inD are true inM and that there is no
N ′ = (Ψ,Σ ′) such thatΣ ′(SN)�Σ(SN) andN ′ is a model ofD.
(F at S) ∈D.

Then,M |= Holds(F,Sit_map(S)). By (37), Sit_map(S) in M is the same sequence as
Σ(S), thus, by (36),F ∈ Ψ (Σ(S)). Therefore,(F at S) is true inM. The same argument
holds for negated fluent facts.
(α occurs_atS) ∈D.

Then,M |= (Concatenate(Sit_map(S),α,β) ∧ Prefix_eq(β,Sit_map(SN)), for someβ .
Let αS and αN be the same sequences asSit_map(S) and Sit_map(SN) in M. By
correctness ofBconcatenate(Lemma 6),β is the same sequence asαS concatenated withα.
By correctness ofBprefix_eq (Lemma 2),β is a prefix of sequenceαN . By Condition (37)
on Σ , β is equal toΣ(S) concatenated withα andβ is a prefix ofΣ(SN). Therefore,
(α occurs_atS) is true inM.
(S1 precedesS2) ∈D: then,

M |= Prefix_eq
(
Sit_map(S1),Sit_map(S2)

)∧
¬Prefix_eq

(
Sit_map(S2),Sit_map(S1)

)
.

By correctness ofBprefix_eq and (37),Σ(S1) is a proper prefix ofΣ(S2). Therefore,
(S1 precedesS2) is true inM.

Finally, we need to show there is no interpretationN ′ = (Ψ,Σ ′) of D such thatΣ ′(SN)
is a subsequence (not equal) ofΣ(SN) andN ′ is a model ofD. Assume that there is such
a modelN ′. Then, by part (⇒) of this lemma, there would be a modelM′ of T (D) which
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differs fromM only on the interpretation of functionSit_map and such that sequence
M′[[Sit_map]](SN) is subsequence (not equal) ofM[[Sit_map]](SN). This contradicts
our assumption thatM is a model ofT (D) sinceT (D) includes value minimization of
Sit_map(SN ) with respect to ordering subsequence (see Section 5).2

Proposition 3. For any domain descriptionD and hypothesisφ in the language ofD:

D |=L φ⇔ T (D) |= τ(φ).

Proof (Sketch). LetF after α be an arbitrary hypothesis in the language ofD. We need to
show that for all models(Ψ,Σ) of D, F ∈ Ψ (Σ(SN) · α) iff for all modelsM of T (D),
(∃β).Concatenate(Sit_map(SN ),α,β)⊃H(F,β).

This can be proved by following the proof of Proposition 2 where we show how to
construct a modelM of T (D) from a model(Ψ,Σ) of D, and vice versa, such that the
following holds: for allF,α

F ∈ Ψ (α)⇔M |=Holds(F,α),

Σ(SN )= α⇔M |= (Sit_map(SN)= α). 2

Appendix B. Correctness of translationTc

Lemma 8. LetM be a model ofBembedded. Then, for alla1, a2,α andβ ,

〈a1 ◦ ε, a2 ◦ ε〉 ∈M[[Embedded]] ⇒ (∀a).a ∈ a1⇒ a ∈ a2, (38)

〈a1 ◦ β,a2 ◦ α〉 ∈M[[Embedded]] ⇒
[〈β,α〉 ∈M[[Embedded]], 〈a1 ◦ ε, a2 ◦ ε〉 ∈M[[Embedded]]].

(39)

Proof. Similar to the proof of Lemma 1.2

Lemma 9. LetM be a model ofBembedded. Then, for allα,β ,M |= Embedded(α,β) iff
α ⊆ β .

Proof. This can be proved by induction on the length of the sequences and Lemma 8.2

Lemma 10. LetM be a model ofBembsubseq. Then, for allα,β ,

〈α,β〉 ∈M[[Embsubseq]] ⇒
(∃γ ).〈α,γ 〉 ∈M[[Embedded]] ∧ 〈γ,β〉 ∈M[[Subsequence]].

(40)

Proof. Similar to the proof of Lemma 1.2

Lemma 11. LetM be a model ofBembsubseq. Then, for allα,β ,M |= Embsubseq(α,β)
iff α is an embedded-subsequence inβ .
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Proof. (⇒) LetM be a model ofBembsubseqand letα,β be sequences such thatM |=
Embsubseq(α,β). Then, by (40) we haveM |= Embedded(α, γ )∧Subsequence(γ,β) for
some sequenceγ . By correctness ofBembedded(Lemma 9) we have thatα is embedded in
γ , and by correctness ofBsubsequence(Lemma 4) thatγ is a subsequence ofβ . Therefore,
α is an embedded-subsequence ofβ .

(⇐) Let M be a model ofBembsubseqand letα, β be sequences such thatα is an
embedded-subsequence ofβ . Then, by definition of embedded-subsequence, there is a
sequenceγ such thatγ is a subsequence ofβ andα is embedded inγ . By correctness
of Bsubsequence(Lemma 4) we have thatM |= Subsequence(γ,β) and by correctness of
Bembedded(Lemma 9) thatM |= Embedded(α, γ ). Therefore, by axiom

Embedded(α,β)∧Subsequence(β, γ )⊃ Embsubseq(α, γ )

of Bembsubseq,M |=Embsubseq(α,β). 2

Lemma 12. The block which defines Inherits+(−):

{min Inherits+(−) :
b ∈ a ∧Causes+(−)(b, f,α)⊃ Inherits+(−)(a, f,α)

}
is equivalent to the following formula

(∀a,f,α).[(∃b).b ∈ a ∧Causes+(−)(b, f,α)] ≡ Inherits+(−)(a, f,α). (41)

Proof. It follows from Proposition 3.1.1 of [25] which shows under what conditions a
circumscription formula can be simplified bypredicate completion. 2

Lemma 13. LetM be a model of

{min Undef :
Inherits+(a,f,α)∧ Inherits−(a,f,α)⊃Undef(a ◦ α)
Undef(α)⊃Undef(a ◦ α)

}

(42)

Then, for alla,α,

〈a ◦ α〉 ∈M[[Undef]] ⇒
[((∃f ).〈a,f,α〉 ∈M[[Inherits+]] ∧ 〈a,f,α〉 ∈M[[Inherits−]]) ∨
〈α〉 ∈M[[Undef]] ]. (43)

Proof. Similar to proof of Lemma 1. 2
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Proposition 4.
(1) For every causal modelΨ ofDl there exists a modelMSC of SCc(Dl) such that for

all F,α,

F ∈ Ψ (α)⇔MSC |=Holds(F,α), and

Ψ (α) is undefined⇔MSC |=Undef(α).
(44)

(2) For every modelMSC of SCc(Dl) there exists a causal modelΨ of Dl such that
(44)holds.

Proof. (1) LetΨ be a causal model ofDl . LetMSC be an interpretation ofSCc(Dl) such
that

(i) MSC[[Undef]] = {α: Ψ (α) is undefined},
(ii) MSC[[Causes+(−)]] = {〈A,F,α〉: F is an immediate effect ofA in Ψ (α)},
(iii) MSC[[Inherits+(−)]] = {〈A,F,α〉: F ∈E+(−)A (Ψ (α))} 20 ,
(iv) MSC[[Holds]] = {〈F,α〉: F ∈ Ψ (α)}.

Note, that (i) and (iv) correspond to condition (44). We will showMSC is a model of
SCc(Dl).

We showed in Proposition 1 that a model built as above satisfies the blocks which define
predicatesCauses+ andCauses−.

Given the definition ofE+(−)A , it is clear that condition (iii) corresponds exactly to
formula (41), therefore the blocks defining predicatesInherits+ andInherits− are satisfied.

Let us show the block definingUndef is satisfied. Assume that there areA,F,α such
that Inherits+(A,F,α) ∧ Inherits−(A,F,α) holds inMSC. Then by condition (iii) we
have thatF ∈ E+A(α) ∩ E−A(α) and thus this intersection is not empty. This implies that
Ψ (α) is undefined. By this and condition (i) we have thatM |=Undef(A ◦ α). Therefore
the first axiom in the block is satisfied byM. Now, supposeΨ (α) is undefined for some
α. Then, sinceΨ is prefix closed, for every actionA, Ψ (α · A) is also undefined and
the second axiom is satisfied. It is easy to see that the extent ofUndef is not minimal
only if there existA,α such thatUndef(A ◦ α) holds while there is noF such that
Inherits+(A,F,α) ∧ Inherits−(A,F,α) holds, norUndef(α) holds inM. This however
contradicts Lemma 13, thus the extent ofUndef must be minimal and therefore this block
is satisfied byM.

It is easy to see that the axioms

¬Inherits+(a,f,α)∧¬Inherits−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)],
¬Undef(a ◦ α)∧ Inherits+(a,f,α)⊃Holds(f, a ◦ α),
¬Undef(a ◦ α)∧ Inherits−(a,f,α)⊃¬Holds(f, a ◦ α),

of SCc(Dl) are satisfied byMSC.
(2) LetMSC be a model ofSCc(Dl). LetΨ be a transition function such that (44) holds.

We showΨ to be a causal model ofDl .

20 Recall that the meaning ofE+(−)
A

(σ) is now different from that in previous proofs. It stands for the set of
fluents that become true (false) after executing a concurrent actionA.
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Consider the axioms in the block forUndef. Note, that the consequences of both axioms
necessarily involve a nonempty sequence. Hence for any interpretation ofUndef that
containsε and satisfies the axioms we can obtain another interpretation that satisfies
the axioms and is a subset. Since the block chooses a minimal interpretation ofUndef,
Undef(ε) does not hold inMSC. Thus,Ψ ([ ]) is defined.

Let us show thatΨ is prefix-closed. Assume the contrary and letα andβ be sequences
such thatα is a prefix ofβ andΨ (β) is defined whileΨ (α) is undefined. By construction
of Ψ , it follows thatUndef(α) and¬Undef(β) hold inMSC. However, from axiom

(∀α,a).Undef(α)⊃Undef(a ◦ α)
and the fact thatα is a prefix ofβ , we conclude thatUndef(β) holds inMSC, which
contradicts our assumption. Therefore,Ψ is prefix-closed.

Now, let us show that for allA,α, if E+A (α) ∩ E−A(α) 6= ∅ thenΨ is undefined on
sequenceA ◦ α.

SupposeF ∈E+A(α) andF ∈E−A(α) for fluentF , actionA and sequenceα. This means
thatF and¬F are effects ofA in Ψ (α), i.e., there exist causal laws

B causesF if P1, . . . ,Pk

B ′ causes¬F if Q1, . . . ,Ql
(45)

in Dl , whereB ∈ A andB ′ ∈ A and such thatPi (i = 1, . . . , k) andQi (i = 1, . . . , l)
are true inΨ (α). From this and construction ofΨ it follows thatMSC |= H(Pi,α)
(i = 1, . . . , k) andMSC |=H(Qi,α) (i = 1, . . . , l), for any pair of causal laws of the form
(45). This implies thatCauses+(B,F,α) andCauses−(B ′,F,α) hold inMSC. By axiom

b ∈ a ∧Causes+(−)(b, f,α)⊃ Inherits+(−)(a, f,α)
we have thatInherits+(A,F,α) andInherits−(A,F,α) hold inMSC, and by axiom

Inherits+(a,f,α)∧ Inherits−(a,f,α)⊃Undef(a ◦ α)
we have thatUndef(A ◦ α) holds inMSC. Therefore, by construction ofΨ , Ψ (α · A) is
undefined.

Now, let us show that for allA,α, if E+A(α) ∩ E−A(α) = ∅, thenΨ (α · A) = Ψ (α) ∪
E+A(α) \E−A(α). This proof is very similar to that of Proposition 1. We will prove the base
case only.
Base case: length ofα is 0. We will show

Ψ ([A])=Ψ ([ ])∪E+A
(
Ψ ([ ] )) \E−A (Ψ ([ ])

)
.

(a)Ψ ([A])⊇Ψ ([ ] )∪E+A (Ψ ([ ] )) \E−A(Ψ ([ ] )).
Assume thatF ∈ Ψ ([ ] ) ∪ E+A(Ψ ([ ])) \ E−A(Ψ ([ ] )). Let us showF ∈ Ψ ([A]). Clearly,
F /∈ E−A(Ψ ([ ] )). This implies that there does not exist an atomic actionB in A such that
¬F is an immediate effect ofB. Again, this implies thatMSC |= ¬Causes−(B,F, ε). And
since this holds for allb such thatb ∈A,MSC |= ¬Inherits−(A,F, ε).

Now, there are two cases of interest:
(i) F ∈E+A (Ψ ([ ] )),

(ii) F /∈E+A (Ψ ([ ] )).
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Consider case (i). There must be an actionB in A such that

B causesF if P1, . . . ,Pn ∈Dl
and the preconditions hold inΨ ([ ] ). As shown in the first part of this proof, this implies
thatMSC |=Causes+(B,F, ε) and by axiom

b ∈ a ∧Causes+(b,f,α)⊃ Inherits+(a,f,α)
MSC |= Inherits+(A,F, ε). Since we are considering the case when¬Undef(A ◦α) holds
inMSC for all α, by axiom

¬Undef(a ◦ α)∧ Inherits+(a,f,α)⊃Holds(f, a ◦ α)
we get thatMSC |=Holds(F,A◦ ε), which by construction ofΨ implies thatF ∈ Ψ ([A]).

Now consider case (ii). SinceF /∈E+A (Ψ ([ ] )), we haveF ∈Ψ ([ ]), which by construc-
tion of Ψ implies thatMSC |=Holds(F, ε). We showed above that fromF /∈ E−A(Ψ ([ ]))
it follows thatMSC |= ¬Inherits−(A,F, ε). The same can be shown for positive effects,
i.e., that fromF /∈E+A(Ψ ([ ] )) it follows thatMSC |= ¬Inherits+(A,F, ε).

Thus, we have thatHolds(F, ε), ¬Inherits+(A,F, ε), and¬Inherits−(A,F, ε) hold in
MSC. Then, by the axiom

¬Inherits+(a,f,α)∧¬Inherits−(a,f,α)⊃ [Holds(f,α)≡Holds(f, a ◦ α)]
it follows thatMSC |=Holds(F,A ◦ ε) and—by construction ofΨ—F ∈ Ψ ([a]).
(b)Ψ ([a])⊆Ψ ([ ] )∪E+a (Ψ ([ ] )) \E−a (Ψ ([ ] )).

Let F ∈ Ψ ([A]). Let us show thatF ∈ Ψ ([ ] ) ∪ E+A (Ψ ([ ] )) \ E−A(Ψ ([ ])). By
construction ofΨ , MSC |= Holds(F,A ◦ ε). Since we are considering the case when
MSC |= ¬Undef(A ◦ ε),MSC |= ¬Inherits−(A,F, ε) would imply, by the axiom

¬Undef(a ◦ α)∧ Inherits−(a,f,α)⊃¬Holds(f, a ◦ α)
that MSC |= ¬Holds(F,A ◦ ε). Therefore,MSC |= ¬Inherits−(A,F, ε). Then, by
Lemma 12, we have that for everyB ∈A,MSC |= ¬Causes−(B,F, ε). Consequently, for
everyB ∈A such thatB causes¬F if Q1, . . . ,Qm ∈Dl , the preconditions do not hold in
Ψ ([ ] ). From this it follows thatF /∈E−A(Ψ ([ ])). Now, there are two cases of interest:

(i) MSC |= Inherits+(A,F, ε),
(ii) MSC |= ¬Inherits+(A,F, ε).

Consider case (i). By Lemma 12 we have that there exists an actionB ∈ A such that
MSC |=Causes+(B,F, ε) and by Lemma 7 that there is a causal lawB causesF if P1, . . . ,

Pn ∈ Dl such thatMSC |= H(Pi, ε) for i = 1, . . . , n. By construction ofΨ , all Pi must
hold inΨ ([ ] ). Therefore,F ∈E+A (Ψ ([ ] )). From this andF /∈E−A (Ψ ([ ] )), shown above,
we conclude thatF ∈ Ψ ([ ] )∪E+A (Ψ ([ ] )) \E−A (Ψ ([ ] )).

Now consider case (ii). By virtue of the first axiom ofSCc(Dl), Holds(F, ε). By
construction ofΨ , F ∈ Ψ ([ ] ). SinceF /∈ E−A(Ψ ([ ] )) was shown above,F ∈ Ψ ([ ]) ∪
E+A(Ψ ([ ] )) \E−A (Ψ ([ ] )). 2

Proposition 5. For any domain descriptionD, if interpretation(Ψ,Σ) is a model of D
then there exists a modelM of Tc(D) such that for every factφ in the language ofD:

(Ψ,Σ) |=Lc φ⇔M |= τ(φ) (46)

and ifM is a model ofTc(D) then there exists a model(Ψ,Σ) of D such that(46)holds.
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Proof. (⇒) LetM = (Ψ,Σ) be a model ofD. LetMM be an interpretation ofTc(D) such
that:

(i) The universe offluentsandsituationsconsist of the symbols in the setsF andS of
D, respectively. The universe ofc-actionsis 2A − {∅}. The universe ofsequences
consists of a unique object for each possible sequence ofc-actions.

(ii) MM [[Undef]] = {α: Ψ (α) is undefined}.
(iii) MM [[Causes+(−)]] = {〈A,F,α〉: F is an immediate effect ofA in Ψ (α)}.
(iv) MM [[Inherits+(−)]] = {〈A,F,α〉: F ∈E+(−)A (Ψ (α))}.
(v) MM [[Holds]] = {〈A,F,α〉: F ∈ Ψ (α)}.
(vi) All action, fluent and situation constants are interpreted as their corresponding

universe element. PredicatesPrefix_eq, Subsequence, Concatenate, Embeddedand
Embsubseqare interpreted as the intended relation.

(vii) For eachS,MM [[Sit_map]](S)=Am ◦ · · · ◦A1 ◦ ε if Σ(s)= [A1, . . . ,Am].
We will show thatMM is a model ofTc(D).
The blocks defining relations on sequences (Prefix_eq, etc.) have been shown to capture

the intended relations. The framework axioms are trivially satisfied.
By definition of models ofD, Ψ is defined onΣ(SN), thus by conditions (ii) and (vii)

onMM , axiom¬Undef(Sit_map(SN )) is satisfied.
By definition of situation assignment,Σ(S0) = [ ] and for eachS, Σ(S) is a prefix of

Σ(SN). Thus, by condition (vii) onMM , axioms

Sit_map(S0)= ε,
Prefix_eq(Sit_map(s),Sit_map(SN))

are satisfied.
Note, that conditions (ii), (iii), (iv) and (v) on predicatesUndef, Causes+(−), Inherits+(−)

andHolds, are the same as those used to show that such an interpretation of these predicates
is a model ofSCc(Dl) (see the proof of Proposition 4), thereforeSCc(Dl) is satisfied.

Fluent facts and precedence facts are translated into the same sentences as inT and can
be shown to be satisfied as in the proof of Proposition 2.
α occurs_atS ∈D: τ(D) includes an axiom:

(∃β,γ ).Embedded(α,β)∧Concatenate(Sit_map(S),β, γ )∧
Prefix_eq

(
γ,Sit_map(SN)

)
.

By the same fact inD, there isβ s.t. Σ(S) · β is a prefix ofΣ(SN) and α ⊆ β .
Let γ stand for the sequenceΣ(S) · β . By condition (vii) if Σ(S) = αS andΣ(SN ) =
αN then Sit_map(S) = αS and Sit_map(SN) = αN hold in MM . By correctness of
Bembedded(Lemma 9),Embedded(α,β) holds and by correctness ofBconcatenate(Lemma 6),
Concatenate(αS,β, γ ) holds. Moreover, by correctness ofBprefix_eq (Lemma 2),Prefix_eq
(γ,αN) holds. Therefore, axiom (f ′) is satisfied byMM .

Finally, value minimization axiom (c′) exactly captures the minimality condition, with
respect to orderingembedded-subsequence, imposed on sequenceΣ(SN) by the definition
of models of domain descriptions inLc.
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(⇐) LetM be a model ofTc(D). By Proposition 4 there exists a causal modelΨ such
that for allF,α,

F ∈Ψ (α) iff M |=Holds(F,α), and

Ψ (α) is undefined iffMSC |=Undef(α).
(47)

LetΨ be such a causal model andΣ be a situation assignment such that for everyS,

Σ(S)= αS ⇔ M[[Sit_map]](S)= αS. (48)

We will showM = (Ψ,Σ) is a model ofD. As before, by (48) and axiom

Sit_map(S0)= ε
we haveΣ(S0)= [ ], and by axiom

Prefix_eq
(
Sit_map(s),Sit_map(SN)

)
we haveΣ(S) is a prefix ofΣ(SN) for any situation symbolS in the language ofD. Thus,
Σ is a situation assignment. By (47) and axiom

¬Undef
(
Sit_map(SN)

)
of Tc(D) we have thatΣ(SN) belongs to the domain ofΨ . Therefore,Σ andΨ form an
interpretation ofD.

It only remains to be shown that facts inD are true inM and that there is no
N ′ = (Ψ,Σ ′) such thatΣ ′(SN) is an embedded-subsequence ofΣ(SN) andN ′ is a model
of D.

Fluent and precedence facts are translated into the same sentences as inT and it can be
shown as in the proof of Proposition 2 thatM satisfies these types of fact.

We need to showM satisfies facts of the formα occurs_atS. Suppose

(α occurs_atS) ∈D.
ThenM entails

(∃β,γ ).Embedded(α,β)∧Concatenate
(
Sit_map(S),β, γ

)∧
Prefix_eq

(
γ,Sit_map(SN)

)
.

Let β,γ be sequences such that the above sentence holds and considerαS,αN s.t.
Sit_map(S) = αS andSit_map(SN) = αN hold inM. Then, by correctness ofBembedded
(Lemma 9), we have thatα ⊆ β , by correctness ofBconcatenate(Lemma 6),γ is equal to
αS concatenated withβ , and by correctness ofBprefix_eq (Lemma 2),γ is a prefix ofαN .
By (48),Σ(S)= αS andΣ(SN)= αN . HenceΣ(S) · β is a prefix ofΣ(SN). By this and
α ⊆ β ,M satisfies(α occurs_atS).

Finally, we need to show there is no interpretationN ′ = (Ψ,Σ ′) of D such that
Σ ′(SN) is an embedded-subsequence (not equal) ofΣ(SN) andN ′ is a model ofD.
Suppose there is such a modelN ′. Then, by part (⇒) of this lemma, there is a model
M′ of Tc(D) which differs fromM only on the interpretation of functionSit_map
and such that sequenceM′[[Sit_map]](SN) is an embedded-subsequence (not equal) of
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M[[Sit_map]](SN). This contradicts our assumption thatM is a model ofTc(D), since
Tc(D) includes value minimization ofSit_map(SN) with respect to orderingembedded-
subsequence(see Section 5). 2
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