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Abstract

Representing and reasoning about narratives together with the ability to do hypothetical reasoning
is important for agents in a dynamic world. These agents need to record their observations and action
executions as a narrative and at the same time, to achieve their goals against a changing environment,
they need to make plans (or re-plan) from therentsituation. The early action formalisms did one
or the other. For example, while the original situation calculus was meant for hypothetical reasoning
and planning, the event calculus was more appropriate for narratives. Recently, there have been some
attempts at developing formalisms that do both. Independently, there has also been a lot of recent
research in reasoning about actions using circumscription. Of particular interest to us is the research
on using high-level languages and their logical representation using nested abnormality theories
(NATs)—a form of circumscription with blocks that make knowledge representation modular.
Starting from theories in the high-level languagewhich is extended to allow concurrent actions,
we define a translation to NATs that preserves both narrative and hypothetical reasoning. We initially
use the high level languag® and then extend it to allow concurrent actions. In the process, we study
several knowledge representation issues such as filtering, and restricted monotonicity with respect to
NATs. Finally, we compare our formalization with other approaches, and discuss how our use of
NATs makes it easier to incorporate other features of action theories, such as constraints, to our
formalization.O 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A narrative is a possibly incomplete set of observations about the world in terms of
what actions/events occurred and the value of fluents at different instants in the past. Initial
formulations of narratives, such as Kowalski and Sergot’s event calculus [23] and Allen’s
temporal logic [1], were concerned about inferring values of fluents at time instants other
than those explicitly given in the narrative and also possibly “abduce” occurrences of
actions not explicitly mentioned in the narrative. These formulations were not conéerned
with hypothetical and/or counterfactual reasoning about values of fluents in a possible
future world reached by executing a sequence of actions. Such hypothetical reasoning is
important from the point of view of planning, where an agent needs to construct a plan—
normally a sequence of actions, to achieve a particular goal.

The formalism of situation calculus [34] has been normally used for hypothetical
reasoning about actions and forms the basis of classical planning. But in its original form it
does not allow narratives; the only actual observations that can be expressed in it are about
values of fluents in the initial situation.

1.1. Allowing narratives with hypothetical reasoning

Recently, researchers [5,19,33,35,36,39] have realized the importance of having a
formalism that captures both narratives and hypothetical reasoning about effects of actions.
Such a formalism is necessary to formulate planning and execution of actions of an agent
in a dynamic environment, where exogenous actions may occur. The agent has to record
observations about occurrences of actions (both its own action executions, and exogenous
happenings) or fluent values, and sometimes infer them. Also, the agent has to make plans
and more importantly may have to dynamically revise its plans or construct new ones when
faced with exogenous events. These plans are not from the initial situation as in situation
calculus, but from theurrentsituation. Although the terms “dynamic planning”, “planning
with execution”, and “reactive planning” have been used in the planning community, a
formalism that allows both narratives and hypothetical reasoning is necessary to form the
backbone of such planners—the role situation calculus plays for classical planners.

Miller and Shanahan [35] and Pinto and Reiter [39] were perhaps the first who
considered both narratives and hypothetical reasoning. Both formalisms made many
important contributions: the former showed how situation calculus can be extended to
incorporate narratives, and the latter introduced the concepttofl situations—those
that were reached by actual occurrences of actions. Still, both formalisms have several
drawbacks. For example, Miller and Shanahan only allow fluent facts about the initial state,
and require that all action occurrences be explicitly stated. Also, Pinto and Reiter’s [39]
solution suffers frompremature minimizatiorof occurrences, i.e., while minimizing
occurrences of actions the possible existence of new situations—those not specified as

31t was later shown that some of these formalisms can use abduction in the meta-level to do hypothetical
reasoning and planning. However, Reiter [42] has argued that it is better to do hypothetical reasoning at the object
level. Besides, the action descriptions used in these formalisms were restrictive in the sense that they did not allow
features such as constraints.
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part of the axiomatization or not inferable from it—is ruled duThis prevents them from

being able to make plans. As a result, both approaches lack the re-planning ability of an
agent who, for instance, after making a plan of packing his suitcase and driving the car to
the airport and doing the packing, observes his car with demobilizing damage. The agent
did not see the exogenous action that caused the damage so it cannot put a corresponding
action occurrence to its narrative, but it should be able to infer such an occurrence from its
observation that the car is damaged.

1.2. Expressiveness of our formalism

In this paper we focus on a more general formalism that allows both narratives and
hypothetical reasoning and overcomes many of the limitations of the earlier proposals.
In particular, besides being able to express fluent values at the initial state, and effects
of actions on fluents—as allowed id [12], the precursor ofZ—we can also express
observationsuch as:

— fluent facts about non-initial states,

— actual occurrence of actions at different time points (labeled by actual-situation

constants), and

— ordering among actual situations.

Given such descriptions, which includes observations, we can:

— plan from the current situation by doing hypothetical reasoning,

— explain observations through inferring action occurrences (not explicitly mentioned),

— infer new fluent facts (that are not in the narrative) about the various situations that

explain the observations or are implied by them,

— do counterfactual reasoning about action occurrences [36,39].

Moreover, our formalism allows a clear distinction between observations and hypothesis,
and makes it clear why the situation calculus atooidq f, [a1, ..., a,]) iS a hypothesis
and not an observation.

Our formulation is done using a novel form of circumscription caNexdted Abnormal-
ity Theories(NATSs) [24]. One important aspect of our approach is that unlike most of the
earlier formalizations of narratives [35,39] that were done directly in a logical language,
our formalization is grounded to the high-level langudg#eveloped by Baral et al. [7]. In
the first half of the paper we give a translation of description§ o nested abnormality
theories and show their equivalence. Later, we exténd allow concurrent actions and
give a translation of descriptions in this extended language to nested abnormality theo-
ries. L is one of a family of high-level action languages recently proposed in the literature
[12,19,45].

1.3. High-level language approach vs direct formalization approach

In general, researchers that use a high level language to formalize reasoning about
actions have normally followed the methodology of:

4 This term was coined by Reiter in [42] where he discussed this drawback. The later papers of Reiter and
Pinto [38,42] avoid this drawback but to prevent it they abandon minimization of action occurrences. We further
explain “premature minimization” and do a detailed comparison of our approach with theirs in Section 11.5.
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— developing a high-level language—a fairly restricted language with English-like
syntax that can be easily followed, but with a precise semantics (that makes common-
sense assumptions used in the formulation precise), often defined using an automata
that makes it easier to incorporate notions such as the “frame”, “qualification” and
“ramification” that are otherwise difficult to encode in a logical language, and

— defining correct (sometimes complete) translations of high-level language theories
into classical logic or logic programming so as to apply existing query-answering
systems and compare different approaches within a well known setting.

The approaches that directly formalize reasoning about actions in a logical language,
which we will refer to as thelirect formalization approachalso often require the initial
descriptions to be given in a particular form and in a restricted subset of the logical
language. Unlike high-level language approaches, where queries are also required to have
a restricted syntax, the direct formalization approach allows queries to be any sentence
in the logical language. Even though this may seem like a big plus point for following
the direct formalization approach, often by restricting the query language faster querying
mechanisms can be developed. This is the reality in most systems, such as databases and
knowledge bases (including expert systems).

The other main difference between the two approaches is that in the direct formalization
approach the semantics is directly defined in a standard logical language without grounding
it to an independent semantics. Although having an extra semantics may seem superfluous
at first sight, it forms the basis to which the logical formalization can be grounded
and their correctness becomes a precise mathematical question. In the absence of this
extra semantics, the correctness of a direct formalization approach becomes an empirical
guestion where different examples (in English) are formalized and the adequacy of the
formalization is decided on whether the formalization of the examples matches our
intuition or not. When examples are given in English, the assumptions surrounding them
are often partially stated, thus opening up the possibility for multiple interpretations and
as a result the adequacy and correctness of a direct formalization approach can never be
precisely settled. A new example, often with different underlying assumptions than used in
the original formalization, starts a debate about the adequacy of the formaliZetisris
partially what happened during the debate about the Yale-shooting proBlsm.the extra
semantics in the high-level language approach is defined using automata and structures
(such as a state being a collection of fluents) that make notions, difficult to express in
a logical language, easy to formalize. By having this semantics we can later precisely
determine if a logical formulation of a difficult notion (such as the frame problem) is correct
or not. Not having this extra semantics, and the inherent difficulty (even for experts) of the
mathematics of the logical languages, make it hard to evaluate the appropriateness of a
formulation in the direct approach. (In contrast, the simplicity of the high level semantics
often makes it easier to evaluate its appropriateness with respect to examples.)

Two anecdotal examples make this point. The first is the formalization of the frame
problem in the various logical languages that were the subject of debate in the Yale-
shooting issues. The formulation of this in the high level langudge extremely simple;
thus, for any example that can be expressedljrihe correctness of a particular logical
formulation can easily be settled once and for all by checking whether it matches the
semantics of the formulation id. The second anecdotal example is the case of “premature
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minimization” mentioned earlier. This feature was not intended by researchers working
directly in situation calculus. In fact, their goal was to capture narratives together with
planning. Unfortunately, their direct logical formalization, which was not verified with
respect to an independent semantics, had this unintended consequence. Perhaps the high-
level language approach could have reduced the debate in the former anecdote and
prevented the oversight in the latter.

We would like to add that the high-level language approach facilitates the comparison of
different theories of action. The best example is Kartha’s [20] comparison of three action
languages by translating them intband proving their equivalence. Finally, in this paper
by having high-level descriptions with an independent semantics and a corresponding
circumscriptive theory, we agree with Hoare’s view [17]:

For specifications of the highest quality and importance | would recommend complete
formalization of requirements in two entirely different styles, together with a proof that
they are consistent or even equivalent to each ofhei. A language for which two
consistent and complementary definitions are provided may be confidently taken as a
secure basis for software engineering.

1.4. Advantages of using nested abnormality theories

One major advantage of using nested abnormality theories in our work is that it allows
easy incorporation of additional features, such as constraints, which already have been
formalized—in the absence of narratives, with NATs [15,22]. Also, although the nesting
of blocks in NATs may at first glance suggest loss of declarativeness and elaboration
tolerance [31], we believe it makes it easier to represent knowledge, particularly in the
action domain (see [15,22,24] for more on this). This is because we can develop blocks that
represent meaningful structural units and use the blocks in other units without worrying
about undesired interactions. Besides, a sub-theory, e.g., a predicate definition, can be
elaborated by just changing the appropriate block, without any nonlocal surgery on the
rest of the theory. (In Section 9 we show how we can add constraints to our theory by
only changing the block that encodes the transition function.) To some extent, using “flat”
circumscription to formalize a large body of knowledge is like writing a large program
without using subroutines. We believe that the simplicity of our translatiof q&s
presented in this paper) demonstrates the usefulness of NATs for knowledge representation.

1.5. Other contributions

An additional and important contribution of this work is that the formalization presented
here constitutes a full, nontrivial example of the usevalue minimizationa technique
developed by Baral et al. [6] for minimizing the value of a function in a circumscriptive
theory. Value minimization is used in our formalization to capture the assumption that the
only action occurrences which can be derived from a set of observations are those which
are necessary to explain the observations themselves.

In reasoning with narratives, since we allow facts about noninitial states and partial
knowledge about action occurrences, we need some form of abduction to entail the
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occurrence of such actions and values of fluents at time points that are not explicitly

stated in the narrative. Unlike [19], where a particular kind of abductive reasoning (through

explanations to restore consistency) is done at the meta-level, we use filtering [44,45] at
the object-level.

To sum up, our formalization seems to be of independent interest from the point of view
of knowledge representation and nonmonotonic logics, since it illustrates the usefulness of
NATs in terms of ease of representation and restricted monotonicity [26], the use of value
minimization of functions in knowledge representation and the formalization of filtering in
NATSs.

1.6. Organization of the rest of the paper

We start with an overview of the high-level languagjérom [7,8] in Section 2 and an
overview of NATs in Section 3. We then give a translation of domain descriptiofgrito
NATs in Section 4 and illustrate the NAT characterization with respect to some examples
in Section 6. In Section 5 we discuss value minimization of functions and its role in our
translation described in Section 4. In Section 7 we formally relate the entailmehtan
the entailment in our translation. In Section 8 we extéhtb allow concurrent actions,
give a translation of domain descriptions in this extended language to NATs and relate
their entailment relation. In Section 9 we show how our formulation in terms of NATs
can be easily extended to take into account constraints and in Section 10 we discuss the
restricted monotonicity property of our NAT formulation and show the relation between
abductive reasoning, filtering and restricted monotonicity. In Section 11 we compare our
work with earlier work on combining narratives and hypothetical reasoning—particularly
by Miller, Shanahan, Pinto, Reiter and McCarthy. Finally, all the proofs are given in the
Appendixes A and B.

2. Overview of £

The high-level languagé was developed by Baral et al. [7,8] to allow representation of
and reasoning with narratives together with hypothetical reasoning.

Beside the syntax and semantics ©f [8] defines a translation to logic programs
and Prolog for a subclass of this language. Here, we start with a translation of domain
descriptions inC to NATs, and then extend it to allow concurrent actiobst us make
it clear that the contribution of this paper is not the development dfut rather the
formalization of£ in NATSs, which allows easy integration of additional features such as
constraints; and the study of our NAT formalization in terms of its impact to knowledge
representation in general.

Let us now give a brief overview of the syntax and semantic§.dfo make this paper
self-contained, we present motivations for the choice of constructs in this language and
give several examples. Additional detailed motivations and examples can be found in [8].

The alphabet of consists of three disjoint nonempty sets of symifglsAd andsS, called
fluents actions andactual situationsElements of4 andS will be denoted by (possibly
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indexed) lettersA and S, respectively. We will also assume th&itcontains two special
situationsSp and Sy calledinitial andcurrentsituation, respectively.

A fluent literalis a fluent possibly preceded by Fluent literals will be usually denoted
by lettersF, P and Q with indexes——F will be equated taF. For a fluentF, by —F we
meanF, and byF we mean-F.

There are two kinds of propositions i called causal laws and facts. Causal laws are
the same as effect propositionsi[12], i.e., acausal lawis an expression of the form:

A causesF if Py, ..., P, 1)

whereA is an action, and-, P1, ..., P, (n > 0) are fluent literalsPy, ..., P, are called
preconditionsof (1). We will read (1) as F is guaranteed to be true after the execution of
an actionA in any state of the world whergy, ..., P, are true”. Ifn = 0, we write the
causal law asA causesF'.

An atomicfluent factis an expression of the form

F ats, (2)

were F is a fluent literal andS is a situation®> The intuitive reading of (2) is “F was

observed to be true in situatidti. An agent in a dynamic world can update its knowledge

about the world by adding such fluent facts (based on its observations) to its database.
An atomicoccurrence facts an expression of the form

a occurs_ats, 3)

wherew« is a sequence of actions, agdis a situation. It states that “the sequence
of actions was observed to have occurred in situaitn(\We assume that actions in a
sequence follow each other immediately.) An agent in a dynamic world can update its
knowledge about action occurrences—both exogenous actions, and actions executed by
the agent itself, by adding such occurrence facts to its database.

An atomicprecedence fads an expression of the form;

S1 precedess, (4)

where §1 and S2 are situations. It states that the domain was in situasipafter being

in situationS1. The agent can use such precedence facts to record the temporal ordering
between its observations about fluent facts and occurrence facts. Precedence facts saying a
situation precedes the initial one, e.g.,

S1 precedesSy,

are of course forbidden.

Since propositions of type (1) express general knowledge about effects of actions, they
are referred to daws Propositions (2), (3) and (4) are callatbmic factor observations
A factis a propositional combination of atomic facts. A collection of laws and facts is
called domain descriptionthe sets of laws and facts of a domain descripti@rwill
be denoted byD; and D, respectively. Domain descriptions are required to satisfy the
following properties:

5 Unless otherwise stated, by situations we will mean actual situations.
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— its propositions do not contain the situation conssantand

— for every situation there is at most one occurrence fact.
The first property is very important and allows the nonmonotonic interpretation of the
situation constan§y, which represents the current situation. The purpose of the second
property is to prohibit concurrent actionsfh

An important feature of an agent associated withZatheory is the ability to reason
with incomplete narratives and make revisable and nonmonotonic conclusions about
observations it might have missédThe following example further illustrates our point.

Example 1 (Discovering occurrencgsConsider the following version of the stolen-car
example: We know that initially we have a car (in the garage). However, at a later instance
of time we observe that we no longer have the car. We also know that after our car gets
stolen then we will no longer have the car. The following is a description of this story
in L:

stealcar) causes—hagqcar),

hagcar) at Sp,

D1 =
—hagcar) at S1,

So precedesS;.

Intuitively, from this description we as smart agents would like to conclude that action
stealcar) must have occurred in situatidfy thus explaining the fact that in that situation
we had a car but in situatia$y we no longer have it. In other words, wabducethat action
stealcar) occurred in the initial situation causiiggcar) to become false. The semantics
of the languagé& as defined in Section 2.2, indeed ensures ihaéntails

stealcar) occurs_atSp.

It is clear that in reaching this conclusion we are making some assumptions about the
domain. We are, for example, assuming that acsi@alcar) is the only action that may
causehagcar) to become false. Otherwise, the conclusion would be unsustained as it could
be explained by the occurrence of another action. All the assumptions embodied in domain
descriptions inC are discussed in the subsection below.

Note that fluent facts about situations other tt$grare allowed and, as it is shown in
this example, a semantics 6fmust be able to capture some formadifductive reasoning
to be able to abduce the explanations to these observations.

2.1. Assumptions embodiedfndomain descriptions
Domain descriptions inL are used in conjunction with the following informal
assumptions which restrict the language so that the agent can perform intelligent (perhaps

hasty, and thus revisable) reasoning:

6 Unlike in [19,35] we would like our agent to make this conclusion in the object language itself, not through
meta-level reasoning.
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(a) changes in the values of fluents can only be caused by execution of actions;

(b) there are no actions except those from the language of the domain description;

(c) there are no effects of actions except those specified by the causal laws;

(d) no actions occur except those needed to explain the facts in the domain description,

and

(e) actions do not overlap or happen simultaneously.
These assumptions give an intuitive understanding of domain descriptighs/ife now
present the semantics of domain descriptionsims defined in [8], which precisely
specifies the sets of acceptable conclusions which can be reached from such descriptions
and assumptions (a)—(e).

2.2. Semantics of

In L, states of the world are represented by sets of fluents. A fluent belongs to the set
iff it holds in the state. Actions executed in a particular state may add/remove such fluents
according to causal laws. Thus, the set of all possible evolutions of the world described
by the causal laws can be represented by a transition diagram with states corresponding
to states of the world and transitions labeled by actions. Satisfying the facts in a domain
description intuitively consists of selecting a state as the initial one, and a path in the
diagram describing the actual evolution of the domain.

A stateis a set of fluent names. gausal interpretatioris a partial function from
sequences of actions to states such that: (i) the empty seqgiiénbelongs to the domain
of ¥; and (ii) ¥ is prefix-closed’

¥ ([ 1) is called the initial state of . A partial function& serves as an interpretatidnof
the laws ofD. If a sequence belongs to the domain af , we say thatr is possiblein the
initial state ofy.

Given a fluentF and a state, we say thatF holdsin o (F istruein o) if F € o; —F
holdsin o (F isfalsein o) if F ¢ o. Thetruth of a propositional formula with respect to
o is defined as usual.

To better understand the role plays in interpreting domain descriptions let us define
modelsof descriptions consisting entirely of causal laws. To this goal, we will attempt to
carefully define effects of actions as determined by such a descriptamd our informal
assumptions (a)—(c) and (e).

A fluent F is animmediate effeadf (executing)A in o if there is a causal law (1) iD
whose preconditions hold . Let us define the following sets:

Ef(0)={F: Fis animmediate effect of in o},

7 By “prefix closed” we mean that for any sequence of actiersd action4, if « - A is in the domain of
then so isx, wherex - A means the sequence of actions wher®llows .

81n A [12], laws are interpreted using a transition function from states and actions to states, and this function
together with the interpretation of the initial state form the interpretation of the domain description. Because of
our restricted syntax, we could use this formulation, but decided to stick to the original semanfics/oich
at that time was chosen to accommodate future extensions involving triggers and actions with nondeterministic
effects.
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E, (o) ={F: —F is animmediate effect of in o'},
RegA,0) =0 UES(0)\ E;(0).
The following definition captures the meaning of causal law® of

Definition 1 (Causal interpretatioh A causal interpretatiow satisfiescausal laws oD
if for any sequence - A from the language oD,

RegA, ¥ (w), if EY(W(a)NE; (¥ () =0,
undefined otherwise.
We say that? is acausal modebf D if it satisfies all the causal laws @.

ll/(a-A):{

Causal models are uniquely determined by their initial values, i.e., for any two causal
models¥; andy, of a domain descriptio®, if ¥1([ ]) = ¥2([ ]) thenwy = ¥y,

We are now ready to discuss how observations are interpreted et D be an
arbitrary domain description and let a causal interpretafidoe a causal model @b. To
interpret the observations @ we first need to define the meaning of situation constants
So, 81, S2, ... from S. To do that we consider a mappiggfrom S to sequences of actions
from the language ob.

Definition 2 (Situation assignmeptA mapping X from S to sequences of actions is
calleda situation assignment & if it satisfies the following properties:

(i) Z(So) =11,

(iiy Vs; € S. X(s;) is a prefix of X (Sy).

Intuitively, the first condition ensures th&g is indeed the initial situation. The second
condition ensures that all the situation constantS nefer to actual situations—situations
that have happened so far. Hengemaps them to action sequences that are prefix of the
action sequence that has happened until now, which is denot&d fy).

Definition 3 (Interpretation). An interpretation M of L is a pair(¥, X), whereV is a
causal model oD, X is a situation assignment 8fand X' (Sy) belongs to the domain of
¥, X (Sy) will be called theactual pathof M.

Now we can define the truth of facts @f with respect to an interpretatiaid. Facts
which are not true i will be calledfalsein M.

Definition 4. For any interpretatioM = (¥, X),
(i) (F atS)istruein M (or satisfied byM) if F is true in¥ (X(S));
(i) (o occurs_atS) istrue inM if X(S) - « is a prefix of the actual path of;
(i) (S1 precedesSy) is true inM if X (S1) is a proper prefix o' (S2).
Truth of nonatomic facts inV is defined as usual. Of course, a set of facts is true in
interpretationM if all its members are true iM.

To complete the definition of model we need only to formalize assumption (d) on domain
descriptions: “no actions occur except those needed to explain the facts in the domain



C. Baral et al. / Artificial Intelligence 104 (1998) 107-164 117

description”. (A similar assumption is used by Pinto and Reiter in [37,39].) This is done
by imposing a minimality condition on situation assignmentsSofwhich leads to the
following definition.

Definition 5 (Mode). An interpretationM = (¥, X) is amodelof a domain description
D in L if the following conditions are satisfied:
(i) v is acausal model ab;
(ii) facts of D are true inM,;
(iii) there is no other interpretatioN = (¥, X’) such thatV satisfies condition (ii) and
’(Sy) is a subsequenéeof X (Sy).

It is important to note that we are only minimizing the actual action occurrences
between the initial situation and the current situation. No such minimization is done about
the future. This is instrumental for our formalization to avoid the trap of “premature
minimization” [42], which we will further discuss in Section 11.5. The final definition
is matter of course.

Definition 6. A domain descriptiorD is said to beconsistentf it has a model. A domain
descriptionD entails a facty (written D = ¢) iff ¢ is true in all models oD.

2.2.1. Hypotheses and their entailmentin

Planning from the current situation is necessary for an agent in a dynamic environment
where exogenous events may occur; our agent may need to revise its plan and construct
new ones starting from the current situation. In fact, once the agent realizes—during the
execution of the plan—that the changed conditions make it not effective any more, it no
longer makes sense for the agent to make a plan from the initial situation. That is because
the agent cannot wish away what has already happened. Hence, it needs to make a plan
from the situation it currently is in. To describe such plans and also to be able to do
counterfactual reasonind, has a construct callelypothesesvhich is of the following
form:

(—)F after [Aq,..., A ] ats;. (5)

Intuitively, the above hypothesis means thatholds (does not hold) after actions
A1,..., A, are executed is;. Note, thatA,, ..., A, may not be the sequence of actions
that actually followed fromsS;, thus making this a counterfactual statement. WKeis
Sy, we just write:

(—)F after [A1,..., A,]. (6)

Statements like (6) denote reasoning about plans starting from the current situation.
Intuitively, the above hypothesis means thét holds (does not hold) after actions
A1, ..., A, are executed irfy. Note that the above construct has a different meaning

9 Recall thatx = Aq,..., Ay, is a subsequence gf= By, ..., By, if there exists a strictly increasing sequence
i1y.ees i, of indices ofp such thatforallj =1, ..., m, we haveA ; = B,-/. .
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in the languaged. There, it means that holds (does not hold) after actiorts, ..., A,
are executed in the initial situatiaf.
If n =0, then we write the hypothesis as

currently (—)F. @)

Hypotheses are not part of a domain description, rather they are part of the query
language.

We say a hypothesis of the form (5) is true in a model X') of a domain description
D if (=)F holdsin

Y(X(Si)- AL+ Ap)

and, D entails a hypotheses if it is true in all models Bf Truth of hypotheses of the
forms (6) and (7) is defined accordingly.
We can now define a notion of a plan from the current situation.

Definition 7 (Bara, Gelfond and Provet{B]). Let D be a domain description ar@ be
a set of fluent literals. A sequeneeof actions is gplan from the current situation for
achieving a goal; if D |= f after « for every fluent literalf € G.

We now describe several examples that illustrate the expressibility of the language
earlier mentioned in Section 1.2.

2.3. Examples illustrating expressibility 6f

2.3.1. Explaining observations

First let us formally show how the intuition discussed in Example 1 are captured by the
semantics ofL. In that example an observation is explained by discovering missing action
occurrences,

Example 2 (Inferring missing action occurrencesConsider domain descriptiaby from
Example 1. By the fact

hagqcar) at So
we have thahagcar) € ¥ (X' (Sp)). By the causal law
stealcar) causes—hagqcar)

we havehagcar) ¢ ¥ ([stealcar), ..., stealcar)]) for any sequence of one or more
stealcar). It is easy to see thal' (Sy) = X (S1) = [stealcar)] is the minimal sequence
satisfying the facts in the domain description. ThH$So) - stealcar) is a prefix of X' (Sy).
Therefore,D; entailsstealcar) occurs_atSp.

Let us now discuss another example where observations are explained by discovering
both missing action occurrences and new fluent facts (that were not known before).
Suppose our agent has the following domain description consisting of some laws and some
observations:
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shootcauses-loaded
shootcauses—aliveif loaded
unloadcauses-loaded

alive at Sg

—aliveat S1

So precedesSy

Using the entailment relation af we can make the following conclusions that illustrate
some of the features df.
— Missing action occurrences
D> = shootoccurs_atSp.
Thus, while explaining the observation tteive is false inS; we conclude that the
actionshoot must have occurred &b.
— Discovering new fluent facts about the past
D, = loadedat Sp.
Thus while explaining the observation tl#itve is false inS; we conclude thdbaded
must have been true §¢.
— Discovering new fluent facts about the current situation
D> = currently —loaded
Explaining observations not only allow us to discover new facts about the past but
also to make new conclusions about the current situation. In this case, we are able to
conclude that the gun is not loaded in the current situation.
— Counterfactual reasoning
D> = alive after unload shootat Sp.
Earlier we concluded thathootoccurred atSg. If we were now to reason about what
would have happened if the gun was unloadeghatnd thershoothad happened, we
would conclude thaalive would be true in the resultant situation. This is the type of
counterfactual reasoning that is possible€in
Since this reasoning is counter to what really happened, this is a form of counterfactual
reasoning, and we can do such reasoning.in

2.3.2. Planning from the current situation

In the following example we usg to show the planning and re-planning done by an
agent in a dynamic world. This is very important from the point of view of an agent
architecture where the agent continuously observes the world and adds the observation
to its domain description, makes a new plan—from the current situation—to reach its goal
and executes part of the plan, records its actions in its domain description, before going
back to observe again. The planning in each cycle needs to be done from the situation
the agent is in at that moment (referred to as the current situation) rather than the initial
situation. In fact, the agent can not wish away what has happened—be it performed by the
itself or by the environment—since the initial situatié®.

10Note that, given the complexity of planning [11] such an architecture may not be useful for agents such as
mobile robots that need to react in real time—a reactive architecture would be more appropriate in that case—but
it may still be useful for Internet agents where there is more time to plan.
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Example 3. Suppose our agent has the following initial knowledge, in terms of the various
actions and their effects and the values of fluents in the initial situation.

load causedoaded
unloadcauses—loaded
set targetcausedarget set
L = Dhypo.
shootcausedarget hit if loaded target set

loadedat So

—target setat Sy

Given the agent’s goal to have tharget hit, it develops the plaifiset target shooi by
checking that indeed

Dnypo k= target hit after [set target shool

holds. Then, the agent proceeds to execute the first actentarget and adds
set target occurs_atS; and Sp precedesS; to the domain description. (Let us call the
updated domain descriptiabhyp1.) At this point, the agent’s domain descriptidpyps,
entails:

currently loaded
currently target set

Before executing the next action, however, it observes that the gun is no longer loaded, and
updates its domain description by addintpadedat S»> and S; precedesS,. (Let us call
the updated domain descripti@hyp2.) It concludes that:

Dhyp2 = currently target set

Dhyp2 = currently —loaded

Dnyp2 k= [set target unload occurs_atSp
Vv [unload set targef] occurs_atSp.

The agent then notices that it can no longer continue with its original plan, since
Dhyp2 = target hit after shoot

Hence, the agent proceeds to re-planning from the current situgtiorather than from
the initial situation,So. While the initial plan starting fron$g is still [set target shoot,
the new plan igload, shoot since

Dnyp2 [= target hit after [load, shooi.

Assuming that no other untoward incident takes place, the agent can proceed with its
current plan to reach the goal.
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3. Overview of nested circumscription

Nested Abnormality Theories (NATS) is a novel circumscription [25,30] technique
introduced by Lifschitz [24]. With NATSs it is possible to circumscribe several predicates
each with respect to only parts of the theory of interest, as opposed to previous techniques
where the circumscription must be done with respect to all of the axioms in the
underlying theory. Furthermore, all the complications arising from the interaction of
multiple circumscription axioms in a theory are avoided in NATs with the introduction
of blocks. Ablockis characterized by a set of axioms, ..., A,—possibly containing
the abnormality predicatdb—which “describe” a set of predicate/function constants
C1, ..., Cy. The notation for such a theory is

{C1,...,Cy : A1, ..., Ay}, (8)

where eachd; may itself be a block of form (8). The “description” @fy, ..., C,, by a
block may depend on other descriptions in embedded blocks.

Interference between circumscription in different blocks is prevented by replacing a
predicateAb with an existentially quantified variable. Lifschitz’s idea is to makg
“local” to the block where it is used, since abnormality predicates play only an auxiliary
role, i.e., the interesting consequences of the theory are those which do not cohtain
The next section contains the formal definitions of this concepts.

3.1. Syntax and semantics of NATs

The following definitions are from [24]. Lek be a second-order language which does
not includeAb. For every natural number let L be the language obtained by adding the
k-ary predicate constadth to L. {C1, ..., Cy, : A1,..., A,}isablockifeachCy, ..., Cy
is a predicate or a function constantigfand each, ..., A, is aformula ofL; or a block.

A Nested Abnormality Theory a set of blocks. The semantics of NATs is characterized
by a mappingp from blocks into sentences df. If A is a formula of languagé, ¢ A
stands for the universal closure 4f otherwise

o{C1,...,Cp : A1,..., Ay} = (3ab)F(ab),
where
F(Ab) =CIRC[pA1 A ---AN@pAy; Ab; Cq, ...,Cyl.

Recall that CIRCT'; P; Q], means circumscription of the theofy, by minimizing the
predicates inP, and varying the objects i@.

For any NATT, ¢T stands for{@A | A € T}. A modelof T is a model ofpT in the
sense of classical logic. Aonsequencef T is a sentence of language. that is true in
all models ofT'. In this paper, as suggested in [24], we use the abbreviation

{C1,....,Cp, MNP :A1,..., A}
to denote blocks of the form

{C1,...,Cp, P: P(x) D Ab(x), A1, ..., As}.
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As the notation suggests, this type of block is used when it is necessary to circumscribe
a particular predicat® in a block. In [24] it is shown that

o{C1,...,Cp, minP: A1, ..., A}
is equivalent to the formula
CIRC[A1A---ANA,; P;C1, ..., Chl

when eachy; is a sentence.

4. From domain descriptions in L to NATs

We are now ready to present our translation frério NATs. We will start by formally
describing some rather typical relations on sequences which we will use later in our proofs.

4.1. Relations on sequences

The relations we are interested in are prefix, subsequence and concatenate. These rela-
tions are captured by the NAT blocKgrefix_eq, BsubsequencedNd Beoncatenatel€Spectively,
which are presented in a later section. Given the formal description of these relations, it is
important to ensure that all and only the intended instances of these relations are included
in models of the theory described in the following sections. Let us start by defining the
prefix relation which will be denoted by:

Apo---0A1<XB,0---0oB1 & Vi,i<n. A, =B,

where above and in the rest of this section by ve mean syntactic identity. The second
relation we need to describe is subsequence:

Apo--0A1<K Bpo---oB1 IuVi,Ai=B,i) Ali < j= u@) 2 u(j)].

Relation« formalizes the notion cdubsequencéf « « 8 then intuitively contains all
the elements o, in the same order, but it may contain more elements. This relation is
defined by blockBsubsequencif the theory.

The third relation needed for dealing with sequences is concatenation. We will
concatenatsequences of actions in reverse, iee.8 = Ba:

(ApoAp_10---0A1) - (ByoBpy-_10-0B1)
=B,oBy_10---0oBioA,0A,_10---0A1.

Block Beoncatenatélefines this relation.
4.2. The target language

The language of the theor¥ is many-sorted and borrows much notation from the
standard situation calculus. The sorts aretions fluents situationsand sequencesThe
variables for the first three sorts will be denoted by possibly indexed letiefsands,
respectively, unless otherwise stated. Variables for sequences will be denoted by possibly
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indexed Greek lettera, 8 and y. The language includes the elementsfas action
constants, ofF as fluent constants, anfl as situation constants. It also includes the
sequence constantwhich stands for the empty sequence.
Sequences of actions are defined by means of a funetfosm sequences and actions
to sequences. Sequences of actions are then constructed by multiple application of the
functiono. We will use infix notation fob—given its similarity to theResfunction widely
used in situation calculus—and ignore parenthesis without ambiguity. The following is an
example of a sequence:
ApoA,_10---0A10¢.
In addition too, we have the following function and predicate constants:
— Sit_ map a function that maps situations into sequences;
— Prefix eq(a, B): both arguments of sort situation, this predicate captures relation
on sequences, i.ex,< f8;
— Subsequence, 8): captures relatiorg, i.e.,a K 8;
— Holds(f, «): with sorts fluent and sequence, meaning tlifais true in the state
resulting from executing in the initial situation;
— Concatenateyr, 8, y): captures relationon sequences, i.e, =« - §;
— Causes™)(a, f, a): with sorts action, fluent and sequence, meaning that exeauting
in the state resulting from executingn the initial situation makeg true(false).

4.3. Framework axioms

To yield the expected results, the theory includes a set of extra axioms which represent
the domain-closure assumption fftheories, and in particular assumption (b): “there are
no actions except those from the language of the domain description”. Also unique-name
assumptions for actions, fluents and situations are in the theory.

Va)a=A1V---Va=A,
VO).f=FLv -V f=Fp,
Vs)s=SoVv---Vvs=3Sy,

UNA[actiong, UNA[fluent§, UNA[situation§,
Va,a).e £aoa,
Va,b,a,B).aoca=boBDa=bAra=p,

whereUNA(sort) is the standard set of inequalities between each distinct pair of constants
from sort, e.g.,UNA[situationg stands foiSp £ S1, S1 # So, ... etc. In the rest of the paper
we will refer to the above sentencesFamework axioms

4.4. Translation of facts
Atomic facts are translated as follows:
(—)F at$ = (—)Holds(F, Sit map(s))
a occurs_atS = (38).ConcatenatSit map(s), o, B) A
Prefix_eq(8, Sit map(Sy))
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Sy precedesS, = Prefix_eq(Sit map(S1), Sit map(S2)) A
—Prefix_eq(Sit map(S2), Sit map(S1)).

Nonatomic facts are translated in the obvious way. For anydaete will use z(¢) to
denote its translation. For the collection of faglg in a domain descriptio®, the set of
formulaer (¢) for each¢ € D¢ will be denoted byt (D).

4.5. The resulting NAT

We now present our translation of domain descriptionsCifinto NATs (universal
guantification with the highest scope is implicit on free variables):

T(D) =
{ Sit map:
(a) Sit map(Sp) = ¢
(b) Prefix_eq(Sit map(s), Sit map(Sy))
(c) Subsequence, Sit map(Sy)) D Ab(x)
©(Dy), SC(Dy)
Bprefix_eq Bsubsequenee Beoncatenate
Framework axioms
}
where:
SC(Dy) =
—Causes (a, f,a) A ~Causes (a, f,«) D [Holds( f, «) = Holds(f, a o a)]
Causes (a, f,«) D Holds(f, a o @)
Causes (a, f,a) D —Holds f,a o a)
{ min Causes :
H(P1,a) A+ A H(P,,a) D Causes$ (A, F, o)
(for eachA causesF if Py, ..., P, € D)
}

{ min Causes :
H(Py,a)A---NH(Py,a) DCauses (A, F, o)

(for eachA causes—F if P1,..., P, € D)




C. Baral et al. / Artificial Intelligence 104 (1998) 107-164 125

In the above translation, for a positive fluent liteFalH (F, o) denotedHolds F, «); while
for a negative fluent literabG, H (-G, o) denotes-Hold(G, «). PredicateCauses™
in the form used above comes originally from Lifschitz [24].

Bprefix_eq =
{min Prefix_eq:

Prefix eq(e, )

Prefix eq(«, B) D Prefix eq(w, a o B)
}

Bsubsequenc?
{min Subsequence

Subsequence, o)

Subsequence, 8) D Subsequence, a o B)

Subsequen¢e, 8) D Subsequencéeo «, a o B)
}

Bconcatenate_—
{min Concatenate

Concatenatey, ¢, o)
Concatenat@y, 8, y) D Concatenat@r,a o B,aoy)
}

Let us now compare the axiomsBf D) with the definitions in the section on semantics.

— The blocksBprefix_eq: Bsubsequenc@Nd Beoncatenatedefine the predicateBrefix eq,
SubsequencandConcatenatgrespectively. The axioms inside each of these blocks
are definite clauses and in the appendix we use results from [25,29] to show that
indeed they are a correct representation of their corresponding relations.

— SQADy) is the part ofT (D) most similar to standard situation calculus and captures
the meaning of causal laws. Models $€(D;) correspond to the causal models of
D. (We show this in Section 7.) Insid&3(D;) we have two blocks that minimize the
predicate€ause$ andCauses. Intuitively, they encode the informal assumption (c)
in Section 2.1, saying that there are no effects of actions except those specified by the
causal laws. The first axiom &Q D;) encodes the frame axiom—the assumption (a)
in Section 2.1, as a first order statement while the second and the third axioms in
SA D), encode the effect of actions on fluents.

— The axioms (a) and (b) encode Definition 2 in a straightforward manner.

— The axioms irr (D) encode Definition 4 in a straightforward way.

— Finally, the minimality in condition (iii) of Definition 5 (which corresponds to the
assumption (d) of Section 2.1) is encoded by axiom (c) plus circumscriptia of
Intuitively, here minimization of th@alue of the term SitmapSy) is accomplished
through axiom (c) by minimizingdb while varying Sit map A discussion on this
axiom and the technique it exemplifies follows in Section 5.
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— Before moving on, let us quickly review how the various informal assumptions
described in Section 2.1 are encoded in our NAT. We already discussed the
assumptions (a), (c) and (d); assumption (b) is captured through the “Frame-
work axioms”. Verifying that assumption (e) is captured by the translation is
slightly more involved: suppose that there is a situati®rs.t. A occurs_atS
and B occurs_atS, are in D, i.e.,A and B occurred concurrently at situa-
tion S. As a result,ConcatenatéSit map(S), A, «), Prefix eq(w, Sit mapSy)),
Concatenatésit map(S), B, 8) andPrefix eq(s, Sit mapSy)) hold for somex and
B. Itis not hard to prove that this implies= B.

4.6. Translation of hypotheses

Even though hypotheses do not appear in domain descriptions, we define a translation
so that we can check whether they are entailed by the NAT theory. For hypotheses of the
form (5), the translation; ((—) F after [A1, ..., A,] at s;), is defined as follows:

(3B).Concatenatesit map(S;), A, o---0Aj0¢, B) D (—)HoIASF, B). (9

5. Value minimization of functions

In [6], we introduced the concept of value minimizing a function. That is, forcing a
function to map the elements of its domain onto minimal elements of its range, where the
minimality criterion is with respect to an arbitrary partial order defined on the range. This
is completely different from all earlier formulations of circumscription where function and
predicates (or formulas) were allowed to vary but only the latter could be minimized.

As we mentioned in the introduction, our formalization of narrative applies this
technique. In order to capture condition (iii) of Definition 5, we minimize the value of
function Sit mapon termSy, with respect to the partial order on sequences defined by
predicateSubsequenc@herefore, this is an instance of “term minimization”. Intuitively,
this forcesSit mapto mapSy onto the “minimal” possible sequence such that the facts
and all the axioms remain satisfied.

By using the syntactic definition of value minimization with respect our application, we
can express the minimization 8it map(Sy) as follows: letTsunsegstand forT (D) minus
axiom (c), and leTsypseqer) denoteTsybseqr Sit map(Sy) = «, for an arbitrary sequence
a. TermSit_ map(Sy) is minimized with respect tSubsequendey postulating:

(Vo). Tsubsedor) D
(Va').(Tsubseq”) A Subsequence’, )) D Subsequence, o).
In [6] we show that value minimization of a functignin a theoryT with respect to an

orderingR (which itself is defined in a block insidB) while varying the predicate/function
constantsZ, can be achieved by the following NAT:

{6, Z:

(10)

(Vx, ). R(y. ¢(x)) D Ab(x, y)
T
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Moreover, to minimizep at only one termy, the corresponding NAT characterization
becomes:

{p,Z:
(Vy). R(y, ¢(0)) D Ab(y)
T

}

By applying this result and observing that in our cé@sis the functionSit map R is
the predicat&Subsequencendo is Sy, we obtain the following NAT characterization of
the Formula (10).

{Sit_map:
(Vy). Subsequenég, Sit map(Sy)) D Ab(y)
7éubseq

}

This is exactly our translatiofi (D).

6. NAT characterization of some simple domain descriptions

In this section we illustrate our NAT characterization of domain descriptighthrough
some examples.

Example 4. Consider again the domain descriptidn from Example 1, the translation
corresponds to

Holds(hag(car), Sit map(So))
—Holds(hagcar), Sit map(S1))
Prefix eq(Sit map(So), Sit map(S1)) A
—Prefix_eq(Sit_map(So), Sit map(S1))
and the sub-block d6C(D1;) definingCauses:

©(Dy) =

{min Causes:

Causes (stealcar), hagcar), )

}
which is equivalent to
(Va, f,@).Causes (a, f, o) = a = stealcar) A f =hagcar). (12)

The sub-block definingCauses is empty, i.e.,Causes (a, f, «) is false for alla, f, .
From this, (11), the axionCauses(a, f,«®) D —Hold(f,a o @), and the fact that
stealcar) is the only action in our language; it follows that for every sequetce

—Holdghagcar), 8) iff B =stealcar)o«, for somea.
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From —Holds(has car, Sit map(S1)) we haveSit mapS1) = stealcar) o a for some
sequence. By value minimization and axiom (b),

Sit map(Sy) = Sit map(S1) = stealcar) o ¢

and from this and the blockBconcatenat@nd Bprefix_eq We get that
ConcatenatéSit map(So), stealcar) o ¢, stealcar) o ¢)

and
Prefix eq(stealcar) o ¢, Sit map(Sy)).

Hence,z (stealcar) occurs_atSp) holds.

We now consider a slightly different example where by using the observations we can
“abduce” new truth values of fluents.

Example 5 (Abduction of fluent-valu¢sConsider another scenario where there is a gun
that causes Fred to die if fired at him when loaded. Suppose we know that Fred had been
observed to be alive at some moment of time and to be dead at a later moment. Description
D> below captures this scenario:

shootcauses—aliveif loaded
alive at Sp,
Dy =
—aliveat S1,
So precedesS;.

Let us consider the corresponding NAT(Dy), starting from the inner blocks. Since the
sub-block definingCauses is empty we have

(Ya, f,a).—~Causes (a, f, o). (12)
The sub-block definin@auses contains only the axiom

Holdgloaded «) > Causes (shoot alive, «).
By minimization ofCauses in this block we obtain.

(Va, f,a).Causes(a, f,«) = (a =shootr f =alive Holds(loaded )). ~ (13)

Now, 7(Dy) includesHoldgalive, Sit map(So)) and—Holdgalive, Sit map(S1)). Let us
reason about the value of the fluémddedin the initial state. There are two cases:
(a) Loadedwas initially false &Holds(loaded ¢)) and since there is no action that
affects this fluent, i.e., for alk, », —Causes (a, loaded «) and —Causes (a,
loaded «), we have that

(Va)—Holds(loaded a). (14)
From this and (13) it follows that
(Va, f,x)—Causes (a, f, a). (15)
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From the factr (alive at Sp) and axiom (a) we obtaifloldgalive, ¢). From this,
(12), (15), and axiom

—Causes (a, f,a) A ~Causes (a, f, «) D [Holds f, «) = Holds(f, a o a)]

we conclude that(Va)Holdsalive, ). However, from fact—alive at S1 we
have —Holdgalive, Sit map(S1)). This is a contradiction, therefore the initial
assumption of loaded being initially false is ruled out.

(b) The other possibility is thdbadedwas initially true, i.e.Holdg(loaded ¢) holds.
From (13) this implies thaCauses (shoot alive, ¢) and by axiom

Causes (a, f, @) D —Holds f,a o @)

we obtain—Holds(alive, shooto ¢). Clearly, an interpretation @it mapsuch that

S1 andSy are mapped into sequensieooto ¢ satisfiesr (D ) and minimization of
Sit_ map(Sy). It remains easy to prove that this interpretation is the only model of
the theory and that it entaitgshootoccurs_atSp).

7. Correctness of the NAT formalization

In this section we formulate the results about the correctness of our NAT formalization
of domain descriptions irC. In the process, for a domain descriptidn we show the
equivalence between models 8f0D;) and causal models ab. This illustrates the
modularity of our NAT formulation; later, (in Section 9) we discuss how this allows
us to easily extend the language with additional features, such as constraints, by only
replacingSC(Dy). The proofs of the lemmata and the theorem of this section are given
in the appendix.

Throughout the paper, we will use 8 to denote sequences both in the context of the
semantics ofZ and its NAT formalization. For instance, ¢ stands for a sequence with
actionsAsy, ..., A,, we may writeHoldS(F, o) < F € ¥ (o) meaningHolds(F, A, 0---0
A1o0e) & F eV ([Al, ..., Au).

The equivalence o8Cand ¥ is first proved under the assumption thatis defined
for every sequence of actiords. This restriction is removed in Section 8 when concurrent
actions are considered.

Proposition 1 (Causal equivalence).
(1) For every causal modelr of D; there exists a modeMsc of SQD)) U
Framework Axioms such that for al,«:

F e ¥ (x) & MsclkEHoldgF, ). (16)
(2) For every modeMsc of SA Dy) there exists a causal modél of D; such tha{16)
holds.

11This conditions is satisfied by disallowing contradictory causal laws; two axiéroausesF if Py, ..., Py
andA causes~F if Q1,..., Q. are said to be contradictory {fPq, ..., P,yN{01,..., Om}=0.
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Proposition 2 (Equivalence of models)For any domain descriptio®, if the interpreta-
tion (¥, X) is a model ofD then there exists a modaH of T(D) such that for every fact
¢ in the language oD:

W, D)oo MET(9) (17)
and if M is a model off’ (D) then there exists a modeb, ) of D such that(17) holds.

Proposition 3 (Equivalence).For any domain descriptio®® and fact¢ in the language
of D:

DiEp ¢ TD)E(9).

The following proposition shows the correctness of our theory with respect to
hypotheses.

Proposition 4. For any domain descriptio® and hypothesig in the language oD:

D¢ & T(D)E1(9).

8. Narratives with concurrent actions

In this section we consider reasoning about concurrent actions together with narra-
tives.This means that the informal assumption (e) of Section 2.1 is weakened to allow
concurrent contemporaneous actions. Still, we do not allow noncontemporaneous overlap-
ping actions. The semantics dfis extended to allow concurrent actions. We will only
consider concurrent actions consisting of the simultaneous execution of a finite number of
basic actions with noncontradictory effects. For a more sophisticated treatment of concur-
rent actions in a nonnarrative setting see, e.g., [3] and [28]. We will refer to the language
with the extended semantics 4s.

8.1. Extended semantics

Concurrent actions will be characterized by finite nonempty sets of basic actions. Let
us consider the changes that are required in the semanti€$méccount for concurrent
actions. First, we need to redefine what the effect of an action is since we now have a more
general notion of action. Since a singleton concurrent adtigns basically the same as
basic action4, from now on by action we will mean concurrent action.

We say that a fluenk' is aneffectof an actionA in a states if there is an actiorB € A
such thatF is an immediate effect oB in o. Furthermore, we replace the definitions of
setsE} (o) andE; (o) with the following:

Ef(0)={F: Fisan effect ofd in o'},
E, (0)={F: —~F isaneffectofd in o}.

We will also need the following notions. Let=[A1, ..., Ay]andB = [Bu, ..., By]. We
say B is embeddedh o (written asg C «) if B; C A; for eachi. Intuitively, 8 € @« means
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that we can obtai froma by removing some basic actions from each (concurrent) action
in the action sequence

Furthermore, we say thatis anembedded-subsequerafe if there is a subsequence
a of y such that8 is embedded irv. The definitions of causal interpretation, situation
assignment, interpretation, and consistent domain description remain the same. We only
need to modify Definitions 4 and 5.

Definition 8. For any interpretatioM = (¥, X):
(i) (F atS)istruein M (or satisfied byM) if F is true in¥ (X(S));
(i) (« occurs_atS) istrue inM if there isg such that¥ (S) - 8 is a prefix of the actual
path ofM anda C 8.
(iii) (S1 precedesSy) is true inM if X'(S1) is a proper prefix o' (S2)

The above definition differs from its counterpart Definition 4 on point (ii), where truth
of action occurrences is defined for concurrent actions.

Definition 9. Aninterpretatiom = (¥, X) will be called anodelof a domain description
D in L if the following conditions are satisfied:
(i) ¥ is acausal model ab;
(iiy facts of D are true inM,;
(iii) there is no other interpretatioN = (¥, X’) such thatV satisfies condition (ii) and
X' (Sy) is an embedded-subsequencexfSy).

This definition differs from Definition 5 on point (iii) where the minimality condition is
now in terms of the relation embedded-subsequence.

8.2. Translation into NATs

Let us now modify the NAT translation of Section 4 to accommodate the semantics
of L.

In our translation, we will use sets to represent concurrent actions. We will not, however,
axiomatize sets and their operations but assume their standard interpréfatieor.
concurrent actions we introduce a new sort calteaictions Functiono will now be of
sortsc-action x sequence> sequenceSome new predicates will be introduced below.

We need to change the sub-the®§( D;) to capture the effects of concurrent actions.
The kind of concurrent actions considered here are such thaitthesit the effects of their
constituent actions. Thus, we include two blocks, one defining preditageits™ (a, f, o)
and one defining predicataherits (a, f, «), both with arguments of the sorts, c-action,
fluent and sequence, respectively:

{min Inherits" :
b € a A Causes (b, f,a) D Inherits" (a, f, )
}

12 For a formulation ofC. in NAT without set theory, please see http://cs/utep/edu/chitta/papers/L-NAT-ext.ps.
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The block forlnherits™ is defined similarly. The intuitive meaning btheritst (™) (a, f, &)
is that concurrent actiom inherits the effectf (—f), from its sub-actions, in the situation
afterq is executed.
We also add the following block defining the predicatadef characterizing action
sequences where the causal interpretatios undefined.
{min Undef:
Inherits" (a, f, @) A Inherits™ (a, f, ) D Undef(a o «)
Undef(a) D Undef(a o @)

}
Next, we replace the first three axioms(E(D;) with the following axioms:
—Inherits" (a, f, ) A —Inherits (a, f, «) D [Hold(f, o) = HoldS(f, a o o)1,
—Undef(a o a) A Inherits" (a, f, @) D Holds(f, a o «),
—Undef(a o @) A Inherits™ (a, f, «) D —Holds(f, a o ).
Next, we add a new blockBempedded at the same level of nesting as blocks defining

Bprefix_eq €tC., which defineEmbeddegwith two arguments of sort sequence:

Bembedded=
{min Embedded
Embeddett, ¢)
[aebDaecc]D>Embeddethos, coe)
[Embeddeth o ¢, a o £¢) A Embedde®, «)] D Embeddet o 8, a o )

}
The new orderingmbedded-subsequeriseaptured by predicatembsubsegjefined in
terms of the relationEmbedde@ndSubsequenda the following block:
Bembsubseq_—
{min Embsubseq
Embeddedy, 8) A Subsequen¢g, y) D Embsubse@, y)
}
At the top level of nesting we add the following axiom
—Undef(Sit mapSy))

which restricts actual situations to be mapped onto defined states. (We did not need this in
T (D), because our restriction d not to allow contradictory causal laws guaranteed that
the causal interpretatios was defined for all action sequences.)
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Finally, Sit map(Sy) is now minimized with respect to the partial ordembsubsegy
replacing axiom (c) with axiom

Embsubse@, Sit mapSy)) D Ab(x). (18)
We will denote the new theory b, and the modified blocECby SC..
T.(D) =
{ Sit map:
—Undef(Sit map(Sy))
(a) Sit map(So) = ¢
(b) Prefix_eq(Sit map(s), Sit mapSy))
(c') Embsubse@, Sit mapSy)) D Ab(x)
©(Dy), SG(Dr)
Bprefix_eq Bsubsequence Beoncatenate Bembedded Bembsubseq
Framework axioms
}
where:
SC.(Dy) =
—Inherits* (a, f,a) A —Inherits (a, £, «) D [HoldS(f, ) = HoldS(f, a o a)]
—Undef(a o a) A Inherits* (a, f, &) D Hold(f, a o @)
—Undef(a o @) A Inherits™ (a, f, @) D —Holds(f, a o )
{ min Cause3™ :
H(Pi,0) A---AH(P,,a) D Caused (A, F,a)
(for eachA causeg—)F if Py, ..., P, e D)
}
{min Inheritst) :
b e a A Causes' (b, f,«) D Inherits" 7 (a, £, a)
}
{min Undef:
Inherits* (a, f,a) A Inherits™ (a, f, «) D Undef(a o «)

Undef(a) D Undef(a o )




134 C. Baral et al. / Artificial Intelligence 104 (1998) 107-164

The translation of facts fromb is the same except for occurrence facts; let
T(a occurs_ats)
stand for:
(38, v).Embedded, ) A ConcatenatgSit map(s), B, y)
A Prefix eq(y, Sit map(Sy)).
We now state the correctness of our NAT formulationfpfwith propositions similar to

those in Section 7. The proofs are given in the Appendixes A and B.

Proposition 5 (Causal equivalence).
(1) For every causal model of D; there exists a modeUsc, of SG.(D;) such that
forall F,a:
FeV¥(a) & MsckE, Holdg(F,«) and (19)
¥ (@) is undefineds> Msc = Undef(w).

(2) For every modelMsc of SG.(D;) there exists a causal modé#l of D; such that
(19) holds.

Proposition 6. For any domain descriptiomD, if interpretation (¥, X) is a model ofD
then there exists a modaH of 7. (D) such that for every fagp in the language oD:

W, D)oo MET(9) (20)
and if M is a model off.(D) then there exists a mod@l, X) of D such that(20) holds.

Proposition 7. For any domain descriptio® and facte in the language oD:

D¢ & T(D) E=1(9).

Example 6. Consider a scenario where there are two guns which cause Fred to die if fired
at him when loaded. Suppose all we know is that initially either gun was loaded and that
both were fired at him. The following domain description captures this story:
shoot1) causes—aliveif loaded1)
shoot?2) causes—aliveif loaded?2)
alive at S = Dguns
(loaded) at Sp) Vv (loaded?2) at Sp)

{shoot1), shoot2)} occurs_atSg

It is easy to see thddgynsentails—alive at Sy .
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9. Further extension of L—allowing actions with indirect effects

In this section we discuss how the NAT formalization ©fcan be easily extended
to allow ramification constraints, and axioms about executability of acti@isnchiglia
et al. [15,22] introduced the high-level languad® with the above mentioned features
(and some additional ones, such as actions with nondeterministic effects) with nonpropo-
sitional fluents, but in the absence of narratives. They then give a formulation of temporal
projection problems inAR using NATs. Essentially, if we restrict their formulation to
boolean fluents, then we can say that their NAT characterization corresponds to a causal
model¥ for an extended language that allows ramification constraints, executability con-
ditions and non-deterministic effects.

Since NATs are nestings of independent blocks, we can replaceQti®;,) part of the
NAT T (D) of Section 4.5—that characterizes the causal model of our original but restricted
language, by a new theory that captures the causal model of the extended language.
Moreover, the resultant NAT gives a characterization of an extensimdfere constraints
and executability conditions are allowed.

We now present the syntax of (ramification) constraints, and executability conditions
and touch upon how their addition tbnecessitates some changes in the semantics.

Constraint are of the form

alwaysC, (21)
whereC is a propositional fluent formula. Intuitively, a constraint
always(in_lake> wef)

asserts that if someone is in the lake then he/she is wet.

The semantics of extended with constraints is defined by requirR@sA, o) to be
the set of valid stateslosest(in the sense of set difference) dowhich containE;;(a)
and do not contain any element 8f, (o))—where valid states are states that satisfy all
the constraints; and requiring(« - A) to be an element dRegA, ¥ («)). This guarantees
that for alla, eitherC holds in¥ (@) or ¥ (@) is undefined and captures the indirect effect
of actions due to constraints.

An executability condition is of the form

impossibleA if 01,..., Oy, (22)

whereQ1, ..., Q, are fluent literals. From the semantics point of view, a proposition of
this type is satisfied by a causal interpretatioif ¥ (« - A) is undefined whe, ..., O,
are satisfied by («). For instance,

impossibleget out of the lakeif —in_lake

means that it is impossible to execute the actyigh out of the lake in a state where
in_lakeis false.
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We are now ready to discuss the thedfy, obtained from7T (of Section 4.5) by
replacing SC with SC" which encodes the transition functioh in the presence of
constraints and executability conditions. We now present the t1&0ry

SCt =
(h) y,C (for each constraint (21))
(i) Holds" (f, a o o) = Holds f, a o &)
{Holds" :
(i) =Undef(a o &) A =AB(f, a, @) D
[Holds( f, @) = Holds (f,a o a)]
{Holds", min Undef:
(K)y H(Pr, @) A+ A H(Ppy, o) A
=Undef(A o) D H*(F, Ao )
(for each causal law (1))
() H(Q1, &) A+ A H(Qn, @) D Undef(A o )
(for each proposition (22))
(m) Undef(a) D Undef(a o )
(n) v, C (for each constraint (21))

}

where,y, C stands for the universally closed formula obtained from a constraint (21) by
replacing each fluent literdl by H( f, «). Note also that:

— SC' is a slightly modified and simplified version of the main part of the NAT in
[15,21]. The main differences are: our use of boolean fluents instead of nonboolean
ones as in [21] and our use of conjunction of fluent literals in thepart of (1) and
(22) and in thecausespart of (1) instead of fluent formulas, as in [21]. We make these
restrictions for simplicity, and to stay as closedas possible, while still being able
to make our point about easy incorporation of constraints and executability conditions
into L.

— The outer block o8C"T encodefResa, o), for all actionsa, and for all states that
are mapped to by some action sequence. Whiie encoded usinglolds Resa, o)
is encoded usinglolds®. The inner block defines which actions are undefined (or not
executable) in which state.

The reason behind having two different predicdetdsandHolds" and only varying

the latter when minimizingib is to individually minimize the difference between
andRega, o) without globally minimizing all such differences as a whole. The latter
precludes many models and may result in intuitive interpretations being ruled out.
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Consider the example where we haveausesf if p and always— f in our domain
description. If we had replacadolds® in SC" by Holds Then minimizingUndef
while varyingHoldsin the inner block would result imHolds(p, @) being true in all
models of the inner block. This is prevented by using sepatatésandHolds".

— Although at first glance it seems that only (I) and (m) are necessary in the inner block,
(k) and (n) are needed to specify undefined action sequences that may arise because
of the possible interaction between effect axioms and constraints, as it might happen
when the domain is constrained to hakeénitially true.

Note that our constraints are meant for ramifications; i.e., if we lewRys—(f A g)
anda causesf, then application of in a state wherg is true (directly) makeg' true

in the resulting situation and (indirectly, because of ramifications) makase in the
resulting state. On the other hand, if we have

always—(f A g), a causesf anda causes if p,

thena is not executable in any situation wheras true. To capture this we need (k)
and (n) in the inner block.

— Axiom (j) encodes the law of inertia.

— Axiom (h) restricts all states to be valid, making sure they satisfy all the constraints.

— Axiom (i) relatesHoldsandHolds*. Once the minimizations are done appropriately
in the inner and outer blocks, axiom (i) selects only those models whelds and
Holds* agree.

— Another difference betweeBC" and the corresponding theory in [21,22] is that in
our case the second argumentHtdldsis a sequence of actions while in the other
ones it is a state. This is because all situation constants in our language are mapped
onto a sequence of actions; there is no such requirementin [21,22].

— Finally, although we did not discuss allowing indeterminate propositions [21], they
can be easily incorporated. An indeterminate proposition of the form
A possibly changesF if Py, ..., P, may be incorporated intBC' by adding

H(Pi,0) A---NH(P,a) D Ab(F, A, @)

just before (j) inside the outer block definikiplds®.

Although we do not formally state and prove the equivalence between the causal
interpretationd of a domain descriptio® with constraints and executability conditions
and the correspondin§C", the equivalence directly follows from [21]. Moreover, the
correspondence between domain descriptions in the extefd@dth constraints and
executability conditions) and the corresponding NATs, v@replaced bySC", follows
(with slight modifications) from [21] and the proof of Lemma 2.

We would like to stress that the ability of NATs to allow us to treat blocks in a similar
way as subroutines in structured programming makes NATs a strong tool for knowledge
representation. This allowed us to take a block from the formalization of actions of
Giunchiglia et al. and “insert” it into our theory with practically no complications.

10. Filtering and restricted monotonicity in 7 and 7+

To the best of our knowledg&, and7* are among the largest circumscriptive theories
in the literature, in terms of the number of levels of minimization and filtering [44].
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They are thus good testbed examples for analyzing the expressibility of NATs (and
circumscription in general) in terms of the various KR features they incorporate. In
Section 5 we already discussed hwalue minimizatior[6] of functions was expressed
using NATSs in the theory". In this section we focus on two additional aspects—filtering
and restricted monotonicity with respectfoand7*.

10.1. Filtering
The notion of filtering was first introduced by Sandewall in [44]. We define it as follows:

Definition 10. Let T be a (possibly nonmonotonic) theory a@dan observation) be a set
of sentences in first-order logic. Byilter (T, Q), we refer to the theory whose models are
the models off" that are first-order models @.

Proposition 8. Filter (T, Q) is monotonic with respect tQ.

Proof. Follows directly from the definition oFilter (7, Q); adding sentences t@ can
only decrease the modelsfifter (T, Q). O

10.2. Restricted monotonicity in filtering

The concept of restricted monotonicity was introduced by Lifschitz [26]. In this
subsection we first recall some of his definitions and then show how filtering and restricted
monotonicity are related and how restricted monotonicity is captured in NATSs.

Definition 11 (Lifschitz [26]). A declarative formalisnis defined by a sef of symbolic
expressions callesentencesa setP of symbolic expressions callgmbstulatesand a map
Cnfrom sets of postulates to sets of sentences.

A set of postulates is referred to agheeory and a sentenca is a consequence of a
theoryT is A € Cn(T).

Definition 12 (Lifschitz [26]). Let(S, P, Cn) be a declarative formalism. Let a subSgt
of § be designated as the set of assertions, and &gsef P as the set of parameters.
A theory T is said to satisfy the restricted monotonicity condition with respe&ptand
Py if, for any setsp, ¢ C Po,

pCq=Cn(TUp)NSyc Cn(T Ug)N So.

In[26], Lifschitz gives several examples of restricted monotonicity and in [16,22] Kartha
et al. prove restricted monotonicity R and AR . Here we generalize some of the above
results and discuss the restricted monotonicity associated with filtering in general.

In case of filtering, we can say that the thedfilter(7, Q) has the restricted
monotonicity property with respect t9. This follows directly by considering parameters
as statements of the language of observations, def@mig U p) to be the seff | f is
true in all models ofilter (T, Q)} and consideringsp to be the set of all sentences.
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Filtering is easily achieved in NATs by means of two blocks represem@iagdT’; thus
making it easy®to express restricted monotonicity in NATs. This is exactly what happens
in T andT T, respectively.

Before moving on to analyze blocks @f and T+, let us say a few more words
about NATs as a knowledge representation language. Besides the issue of recent advances
of automated circumscriptive reasoning [10] that benefit NAW&Ts are good for
representing knowledge because they allow us to encode nonmonotonicity about certain
aspects, and at the same time guarantee encoding of restricted monotonicity with respect
to others.Moreover, nesting allows several levels of filtering. Prima facie, the equivalence
of Filter(Filter(T, Q), Q') and Filter(T, Q U Q') may suggest that several levels of
filtering are not needed. On the other hand, often (as in [44]), we need to compute
Filter (Min(Filter (T, Q), <), Q’), where we minimizeFilter (T, Q) with respect to an
ordering < before filtering the result byQ’. Assuming that< can be encoded by
varying P, . .., P, and minimizingPx+1, ..., Py, andT itself is a NAT, we can represent
Filter (Min(Filter (T, Q), <), Q") by the following:

{

0’
{ P1,...,P,, minP1,..., P,
0
T
}

}
10.3. Analyzing blocks and sub-blockstoand 7+

— Consider the inner block @C'. Let us call it Binner. Intuitively, this block (among
other things) encodes a function frafoldsliterals toUndefliterals. The axioms (Kk),
(), (m), and (n) partially define this function, which is further refined by the
minimization of Undef while varying Holds*. This leaves open the possibility to
add observations about the successful execution of sequences. So, if sefjbaisce
succeeded, we can addUndef(8) as a new blockB; consisting only of-Undef(8),
added at the same level of axiom (j).

In the NAT By consisting of Binner and B1 we are basically filteringBinner by B1

and the resultant models are the modelBgher that are also models a8;. Thus

B> is monotonic with respect to addition of observationsBobut nonmonotonic
with respect to addition of causal laws, constraints, or executability conditions, which
Chang(:—'Binner-

— Let us callBgyter the outer block oSC", which intuitively encodes a function from
Holdsliterals toUndefandHolds® literals. Observations aboktiblds® are put outside

13Among other knowledge representation languages, filtering is easily done in logic programming by
representing observations as integrity constraints. On the other hand, logic programs do not easily allow a
hierarchy of integrity constraints. Thus, multiple levels of filtering are not easily represented in logic programs.
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of Bouter as axioms (h) and (i) irBC", and axiomsFACTSand (e) inT+. Here
also, the observations filter the NABouter The resulting theory has the restricted
monotonicity property about the observations.

— The block T(D), represents a function from literals of predicatés, Occurs
PreccedsHolds Subsequenc®refix eq Concatenatéo mappings of the function
Sit map Observations about the value 8ft map can be incorporated by putting
them outsidel’ (D). These observations will then filter the modelsT@D) and keep
only those that agree with them.

— In[8] hypothesis of the forn# after « at S were treated as observations on top of the
domain description irC. We can incorporate them to our NAT consistingZafD),
by addingvsConcatenatésit mapS), «, 8) D Holds(F, 8) to the NAT—not inside
T (D). These observations will filtef (D), and select only those modelsBfD) that
agree with the observations. The thedilter (T (D), Obg will thus be monotonic
with respect to the hypotheses, while it is nonmonotonic with respect to facts, which
are incorporated by changifg D).

11. Related work

Until recently there were two distinct directions in reasoning about actions; one based
on situation calculus which did hypothetical reasoning and planning, and normally consid-
ered simple actions (i.e., no continuous actions, no actions with durations, etc.), while the
other (in particular, Allen’s temporal logic [1], Kowalski and Sergot’s event calculus [23])
focused on reasoning with narratives and often allowed actions with durations, and con-
tinuous actions, but did not consider hypothetical reasoning. In the late eighties and early
nineties several influential works [12,13,41,45] have had a big impact in this field, and trig-
gered a flurry of new research. Some of these appear in the special journal issues [14,27],
in the workshops AAAI-96 Workshop on Reasoning about actions and AAAI-95 Spring
symposium on Extending Theories of Action, and in the recent AAAI, IJCAI and KR con-
ferences.

In general, our work has been influenced by the approach of using high-level action
description languages [3,8,12,16], and their formalization (particularlyA®& [16])
using nested circumscription. In the previous sections we argued why we believe nested
circumscription is an excellent KR language, and listed some of its features. Also, we
acknowledge Sandewall’s idea of filtering [44] with which NATs has much in common.

In this section we first compare NATs with Sandewall’s filter preferential entailment and
then give a detailed comparison of our work with other proposals that do both narrative
and hypothetical reasoning; particularly, those by McCarthy [33], Kakas and Miller [19],
Miller and Shanahan [35], and Pinto and Reiter [38,39].

11.1. Sandewall’s filter preferential entailment

The notion of filtering was first introduced by Sandewall [44] to be able to formally
obtain explanations in terms of action occurrenaggen action descriptions (in terms
of conditions and effects), physical laws, and observations about values of fluents at
specific time instants. He argued that his approach can also be used to obtain a plan for
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a specific goal, by considering the goal as an observation which needs to be explained, and
considering an explanation as a plan that achieves the goal.

Sandewall’'s notion of filtering is a general one. The NATs formalism that we use in
this paper is an instance of it, where circumscription is used for minimizations, with local
abnormal predicates.

He motivates the intuition behind using filtering of the models of a theory containing
action descriptions and natural laws (no observations) by observations, instead of the
models of the theory containing action descriptions, natural laws and observations, by
appealing to an example involving a moving objedfe give a different justification
in Section10; we show that by using filtering the resulting theory has the restricted
monotonicity property with respect to the observations.

Although Sandewall’s formalism [44] considers one of the important aspects of narra-
tives (i.e., explaining values of fluents at different time instants by action occurrences), it
does not cover the whole issue of hypothetical reasoning in presence of narratives and un-
like ours it does not have a notion of planning from the current situation, which we have
in this paper. On the other hand, Sandewall considers actions with durations, which are not
considered in this paper.

11.2. McCarthy’s formulation of situation calculus with concurrent events and narratives

In this section we relate our work with McCarthy’s draft titled “Situation Calculus with
concurrent events and Narrative” [33] available through his Web page. In our comparison
we make several quotes from his draft.

— McCarthy says:

Situations in a narrative are partially ordered in time. The real situations are totally
ordered, but the narrative does not include full information about this ordering.

We agree with the above statement, but in our formalization of a narrative description
with partially ordered situations, rather than having models encoding this partial
ordering, each model encodes a possible total ordering of the situations.

— He also writes:

In a narrative, it is not necessary that what is said to hold in a situation be a
logical consequence (even nonmonotonically) of what was said to hold about a
previous situation and known common sense facts about the effects of events.
Nevertheless, some narratives are anomaloudVe want to introduce a concept

of proper narrative but it is not clear exactly what it should be. The fluents holding

in a new situation should be reasonable outcomes of the events that have been
reported, except for those fluents that are newly asserted].e.g.,

In our formulation, if something is said to hold in a situation, it may not logically
follow from the rest of the description itself, though we incorporate the assumption
that it must have an explanation. Since this assumption is part of our formulation,
when something is said to hold in a situation, it is a logical consequence of action
occurrences leading up to this situation. Yet, these action occurrences need not
be all explicitly stated in the original description, some may be abduced from the
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observations that are made. Of course, a description may have several models, each
suggesting a different action occurrence.

We believe that our formulation suggests a definitiondimper narrative which is

not defined in [33], and in our formulation we require that models of the description
encode proper narratives, and lack of information leading to not having a unique
proper narrative results in multiple models of the description.

McCarthy goes on writing:

Perhaps narrative seems easy, since it is not yet clear what facts must be included
in a narrative and what assertions should be inferable from a narrative.

We hope that in the previous sections we have given a satisfactory answer to this.
McCarthy also discusses elaborations of actions in a narrative by finer actions and
sub-narratives; we do not consider them here.

McCarthy informally discusses an interesting example involving narratives. The
example has two versions, one consisting of two narratives occurring concurrently
and independently, and another where the same two narratives have a few points of
interaction. In the following example, we show how the second version of the example
can be represented ifi. (The representation of the first version is a subset of the
representation of the second version.)

Example 7 (Glasgow, London, Moscow and New Y§88]). The story is the following:
there is a person called Daddy in New York who is stacking blocks. At the same time,
there is a person called Junior who is in Glasgow and has tickets for and is traveling from
Glasgow to Moscow via London. Arriving into London, Junior loses his ticket and sends a
telegram to Daddy asking for money. Daddy then sells one of his blocks to get the money
and sends it to Junior. Junior then gets the money, buys a London—Moscow ticket and
finishes his trip.

Part of a domain description it which captures this story would be the following:

Causal law schemata:

Flies(Prsn X, Y) causesAt(Prsn Y) if AtPprsn X), Hag(Prsn tkt(X, Y))
Flies(Prsn, X, Y) causes—At(Prsn X) if At(Prsn X), Has(Prsn tkt(X, Y))
LosgPrsn X) causes~HagPrsn X)
BuygPrsn X) causesHas(Prsn X) if Has(Prsn money
SellgPrsn, blkl) causesHas(Prsn money
SellgPrsn, blk2) causesHas(Prsn money
SendgPrsnl, Prsm2, X) causesSentPrsnl, Prsr2, X) if Hag(Prsnl, X)
Receivedrsnl, Prsm2, money causeHagPrsnl, money if

SentPrsr2, Prsnl, money
Receivedrsnl, Prsr2, tigrm) causesRcvd Prsni, tigrm) if

SentPrsr2, Prsni, tigrm)

StackPrsn X, Y) causeOn(X, Y) if Clear(X), Clear(Y)
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Fluent facts about the initial situation:

Junior:

At(jr, gw) at Sp

Hag(jr, tkt(gw, Idn)) at So
Hag(jr, tkt(ldn, mscw) at So

Occurrences of actions:

Junior:

Daddy:

At(ddy, ny) at S;
—Has(ddy, money at S
Has(ddy, blkl) at S
Has(ddy, blk2) at S,
On(blk, tbl) at S;
on(blk2, thl) at S}

Daddy:

Flies(r, gw, [dn) occurs_atSg Staclk (ddy, blk2, blk1) occurs_atsS;,
Losdjr, tkt(ldn, mscw)) occurs_atSy

Send§r, ddy, tigrm) occurs_atsS»

Receiveady, jr, tigrm) occurs_atsS;
Sellgddy, blk1) occurs_ats,

Send&ddy, jr, money occurs_atsSs

Receivegr, ddy, money occurs_atSs

Buysjr, tkt(ldn, mscw) occ

urs_atSy

Flies(jr, Idn, mscw occurs_atSs

Ordering on situations:

So precedesSy
S1 precedesS,

S precedesSs

S3 precedesSy
S4 precedesSs

Sp precedesS;

S precedesS;

S1 precedess,

S5 precedesS;
S5 precedesSs

143
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For this domain description, the semantics ©ftells us among other things that
Has(ddy, money at S;, Has(jr, money at S4, currently At(jr, mscw; and that neither
S1 precedesS; nor Sy precedesS; are entailed by the domain description. Intuitively, we
have two sub-narratives occurring simultaneously with few points of interaction. Although
in reality there is a total order of all the events, the domain description does not entail such
an order because it contains only partial information about it.

11.3. Miller and Shanahan’s circumscriptive approach

In [35] Miller and Shanahan introduced a formalization of narratives using the situation
calculus and circumscription. Their formalization of narrative has many similarities to
our work. Their functionState which maps time points (real numbers) to situations
(constructed using the functidRes an initial situationSp and action constants) is similar
to our X’ which maps situation constants to sequences of actions.

However, their formalization requiré$that the domain description include all occur-
rences of actions and fluent facts are restricted to be about the initial situation only.

Our approach is then more general with respect to the above restrictions. And further,
propositional combinations of fluent facts, occurrence facts and precedence facts are
also allowed in our formalization. Our semantics incorporates the abductive reasoning
necessary to make conclusions regarding occurrences of actions and values of fluents in
different situations, even if they are not explicitly stated in the domain description. On the
other hand, [35] contains discussions on allowing divisible and overlapping actions, which
we do not discuss in this paper.

11.4. Kakas and Millers

Kakas and Miller [19] have introduced a high-level langu&dsased on event-calculus.

A domain description in their language consists of c-propositions, h-propositions and
i-propositions, which are similar to causal laws, atomic occurrence facts, and atomic fluent
facts in our language. Their time points correspond to situation constants in our language.
The major differences between their work and that of ours are:

— In our language the ordering between situation constants is part of the domain
description while in their language it is rather part of the domain language.

— Hypothetical reasoning ifi is done by definingi-sequences (which are hypothetical
time points) corresponding to each hypothetical situation, and for a time point
between two consecutive hypothetical situations; and then defining the ordering
between thesel-sequences. These definitions are included in the domain language.
In addition hypothetical action occurrences are added to the domain description. The
following example illustrates how we can reason about the hypothetical situation
RegShootRegLoad, Sp)) in £.

— First the domain language will contain thesequences:
@ ),
(i) ((/load))),

14They do point out that these restrictions can be weakened using abduction.
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(i) {{|load|, load)),

(iv) ({|load|, load, |shoot)), and

(v) {(lload|, load, |shoot, shoo}).

The A-sequences (i), (iii) and (v) above correspond to the situatipnRegLoad,

So), andRegShootRegLoad So)), respectively. TheA-sequences (i), and (iv)

above correspond to the time point between the situatigrend RegLoad, So),

andRegLoad, Sp) andRegShoot ReglLoad Sp)), respectively. TheA-sequences

(i), and (iv) are necessary to be able to specify that the adtaad happened in

the A-sequences (ii) and that the actiBhoothappened in thel\-sequences (iv).
— Next the domain language will also contain the following ordering betweer the

sequences:

(()) precedes(|load|)) precedeg(|load|, load)) precedeg(|load|, load, [shoot))

precedeg(|load|, load, |shoot, shoo}).
— Finally, the domain description will contain action occurrences

load happened af{|load|)), and

shoothappened af(|load|, load, |shoot)).
It should be noted that the numberso$equences is infinite, thus making the domain
language infinite; also the number of action occurrences will be infinite. However,
both can be finitely expressed in a logical language such as logic programming.
It seems to us—and hopefully the above example illustrates it—that the additional
formulation in £ (as opposed tod) that is used for incorporating narratives into
hypothetical reasoning (i.e., going frasto £) is much less than that necessary in
simulating hypothetical reasoning in the narrative based langfiajevertheless, it
is important to know, and Kakas and Miller [19] show us, how hypothetical reasoning
can be done in a narrative-based language.
Unlike in £, in £ information about action occurrences (called h-propositions) is
assumed to be complete. Although this seems very restrictive, they later simulate
incompleteness by introducing a notion of explanation that restores inconsistency in a
theory where the completeness assumption makes it contradictory. They first start with
an explanation consisting of action occurrences (h-explanation), and then incorporate
an explanation consisting of c-propositions (our causal lawsjur formalization we
assume our set of causal laws to be complete.
Kakas and Miller then consider projection domain descriptions, i.e., those where
t-propositions (our atomic fluent facts) are only allowed about the initial situation
(such t-propositions are referred to as i-propositions), and discuss how to incorporate
observations about fluent values at noninitial time points (such t-propositions are
referred to as o-propositions). They incorporate observations by first explaining
in terms of additional i-propositions (called i-explanations) and then explaining in
terms of both i-propositions and h-propositions (called ih-explanations), where the
h-propositions are used to restore consistency.
In contrast, our domain descriptions allow incomplete information about action
occurrences, values of fluents at both initial and noninitial situations, and a partial
specification of the ordering between the situation consténtsformulation is such
that each model of the domain description fills in the missing adieurrences,
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and has a total ordering between the situation constants. (The ordering between time-
points in€ cannot be total as it also orders the hypothetical time-points.)
Thus, we incorporate the concept of ih-explanation, i-explanation and h-explanation
in the object language itself without resorting to restoring consistency or meta-level
explanation. Still, we do not allow explanations through c-propositions/causal laws,
which we consider as fixed.

— Finally, we believe that our notions ofirrent situatiorandplanning from the current
situationto be very important. These notions are not considered in [19].

11.5. Pinto and Reiter’s actual and legal situations

Pinto and Reiter in [39] were among the first ones to introduce a time line into situation
calculus, allowing not only the hypothetical reasoning inherent of situation calculus but
also the expression of event occurrences and values of fluents at different time instants.
Their approach, based on Reitef41] solution to the frame problem, was restricted to
nonconcurrent actions, and appealed to circumscription to minimize occurremcb®ir
formalization, they introduced a predicaetual on situations to characterize situations
that lie on the path that describes the world’s real evolution. Simildl tioeir formalism
allows the possibility of inferring action occurrences that explain observations but that
are not explicitly specified as part of the axiomatization. To avoid inferring occurrence of
superfluous actions they minimize the predicate occurs.

Unlike the formalism inC [8], they do not have the notion of @irrent situation and
of planning from the current situatiorTheir notion of planning® then boils down to
finding actual situations that satisfy a given goal. Because of the minimizataocafsin
the actual line, the possible existence of new situations—ones not specified as part of the
axiomatization or not inferable from it, is ruled out; this results in not being able to find new
situations where the goal is satisfied. Reiter refers to this as the “premature minimization
problem” [42] and points out that Miller and Shanahan’s formalism also suffers from it.
Even though we also minimize action occurrenaas, formalism does not suffer from
this problem because the minimization is only used to define the current situation while
planning (by hypothetical reasoning) is still possible from the current situation.

Pinto in his thesis [37] builds up on the work in [39], and discusses many new issues
including concurrent actions, continuous actions and natural events; since the core of
the approach: the use of Reiter's solution to the frame problem, definition of actual, and
minimization of occurs, remains unchanged from [39], his work also suffers from the same
problem of premature minimization and inability to make executable plans.

In their later work [38,40,42], Pinto and Reitabandon minimization of occurrenges
and in [42] and [38] they allow the possibility of several “hypothetical actual branches™—
whose situations are now referred to as “legal” instead of “actual”, thstores the
capability of making plan$But even here, their approach to planning is based on finding a
legal situation where the goal is satisfied. It is not clear to us if this notion of planning is
useful in the scenario of an agent in a dynamic world. The agent does not need a plan from

15The issue of planning is not directly mentioned in [39], but based on the discussion in [42] on “premature
minimization” and the notion of planning there, it seems that this is what Pinto and Reiter had in mind.
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the initial situation—as Pinto and Reiter’s approach would give us; rather, it needs a plan
from the current one.

Let us now try to list the major differences between our approach and that of Pinto and

Reiter’s.

— Our approach is based on a high-level languabewhich is restrictive compared
to that of Pinto and Reiter’s. For example, our domain description does not allow
statements that have both holds and occurs in them. Moreover, we do not allow
triggers, and natural events, which are considered in [37,38,42].

— In our formalism the only restriction on the legality of actions in a branch is due to
the executability conditions. Thus our branches consist of “legal” situations and are
“hypothetical actual branches” in their sense.

— In [38,42] “legal situation” replaces the notion of “actual situation”. Such is not the
case in our formalism. While all situations in our branches are legal, only a finite set of
situations in a finite line—called thectual line,from the initial situation and ending
at the “current” situation are considered to be “actudé minimize the occurrences
of actions in this actual lindn contrast, Pinto and Reiter in [37,39] face the problem
of premature minimization while minimizing occurs, while in later work [38,42] they
abandort® minimization of occurrences. Also, it seefisthat Pinto in [38]does
not allow statements about values of fluents at noninitial situatiallewing such
statements and abducing additional information from them in the object language
itself is an important aspect of our work.

We believe—and so do Pinto and Reiter in [37,39]—on the intuitiveness of
minimizing action occurrences on the description of the evolution of the world up
until the current situation. We avoid the problem of “premature minimization” because
of carefully minimizing only the action occurrences in the “actual line”, while they
minimize action occurrences without restraint. Our notion of current situation comes
in handy.

— Pinto and Reiter stay within first-order logic as much as possible. In [37,39] all their
axiomatization except the induction axiom, and the minimization of occurs at the end,
is in first-order logic; and later [38,42] all their axiomatization except the induction
axiom is in first-order logic.

Our formalization here is based on circumscription, and seemingly makes it easier to
allow constraints and even actions with uncertain effects together with effect axioms.
Pinto concurs and in [38] says:

An important advantage of the circumscriptive approach is that the solution to the
frame problem is more general and can be applied to theories that include state
constraints as well as effect axioms. However, the correctness of solutions based
on circumscription is hard to assess.

161 [38], Pinto shows how to characterize within the first-order logical language preferences between action
sequences based on some minimality criteria. Although, as he shows, such a characterization can be used to
define particular kind of minimal plans, it is not clear how such minimizations can be used to minimize action
occurrences in the actual line.

17This is based on the remark Pinto makes in the Conclusion section of [38], where he says he would like to
extend his work to study the effect of adding statements regarding the value of fluents at different points in time.
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In our case since we show our circumscriptive formulation to be correct with respect to
the semantics of the high-level languagat makes it easier to assess the correctness
of solutions based on our approach.

12. Conclusion and future work

In this paper we discussed the necessity of allowing both narratives and hypothetical
reasoning and presented a sound and complete translation of domain descriptions in the
action description languagé into nested abnormality theories. Our translation uses a
new formulation of circumscription where values of functions are minimized. We then
extended the language to allow concurrent execution of actions and showed that the
earlier NAT translation can be easily elaborated for this case. We continued further by
adding actions with indirect effects, and discussing the relation between filtering, NATs
and restricted monotonicity. Finally, we give a detailed comparison of our approach with
other approaches in the literature.

In the future, we would like to continue on several fronts. In particular, we would like to:

— Develop algorithms that will allow us to discover missing action occurrences based on
our observations. Also, we would like to explore learning of environment interaction
patterns based on the past occurrences and use that information to make future plans.

— Carefully extend our language to allow additional constructs such as natural
events, explicit time, continuous actions, and various kinds of action occurrences
beyond the simple ones that we have—such as non preventable occurrences,
conditional occurrences, eventual occurrences, and triggered occurrences. One of
us [9] has already participated in extendifgo allow triggers so as to formulate
active databases; but this high-level formulation has not been axiomatized using
circumscription.

— Introduce the notion of “current situation” and “planning from the current situation”
to Pinto and Reiter’'s formalism; and have separate notions of “legal” and “actual”
situations, and allow minimization of occurrences of actions in the actual line.
With these additional notions we would then like to compare their axiomatization
and our circumscriptive axiomatization on domain descriptions,isimilar to the
comparison in [20].

— Finally, in Section 10 we discussed the relation between filtering and restricted
monotonicity in general and instances of filtering and restricted monotonicity in
and T+. We believe that each filtering step i and T+ also encodes abductive
reasoning, i.e., abductive reasoning is don& iand T+ through filtering. We need
to further study this issue and identify all instances of abductiofi end 7+, and
discuss under what circumstances abduction can be done through filtering.
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Appendix A. Correctness of translationT

In proofs we will use the following notation:
M[x]

will stand for the set of tuples which belong to the extent of predigaite interpretation
M. With functions we use

Mlel(r)

to denote the object which functignmapsr into in interpretationM.

In what follows, by a model of a single block or a sub-theory we will mean a model of
a block or sub-theory plus tHe'amework Axioms

Readers who are familiar with logic programming might have noticed that the blocks
defining Prefix eq and the other relations on sequences are very similar to the typical
definition of these relations in logic programming. The following lemma, and those which
are similar, are analogous to a lemma due to Marek and Subrahmanian [29] which is very
useful in logic programming. Our lemmata consider only particular predicates, though.

Lemma 1. Let M be a model oBpreiix_eq- Then, for alla, «, B, 18
(a, &) € M[[Prefix_ed = o =¢, (23)
[@ #aopB, (a,ao0pB) e M[Prefix_ed]= [{«, B) € M[Prefix_eq]. (24)

Proof. Note thatthe axioms iBprefix_eqare definite clause®’ so their conjunction, which
we will denote byA(Prefix eg), is a definite formula [25, Section 3.5] irefix eq By
Corollary 3.5.3 from [25],

Bprefix_eq= CIRCLA(Prefix eq); Prefix eq] (25)
is equivalent to

(Va, B).Prefix eqa, ) = (Vp).A(p) O p(a, p). (26)

Let us show that (23) holds. Assume that there is a mottlof (25) s.t. M =

Prefix eq(a, ¢) for somea. Suppose thatr # ¢. It is easy to see that the modéh’

differing from M only in that (&, &) ¢ M[[Prefix eqd] satisfies A(Prefix eg and is
therefore preferable ta1. But this contradicts our assumption thet is a model of (25).
Thereforep = ¢.

Let us show that (24) holds. Assume that there is a moudtlof (25) s.t. M

Prefix eq(a, a o B) for some sequences+# a o 8. Suppose thaM = —Prefix eq(«, B).

Consider a predicate? with extent M[[Prefix eq]] \ («@,a o 8). Clearly, A(P) is

satisfied whileA(P) D P(a,a o B) is not. Hence our assumption is wrong and =

Prefix eq(«, B). Therefore, (24) is satisfied by all models of (25)1

18 Recall that constant denotes the empty sequence.
19 A clause is said to bdefiniteif exactly one of its literals is positive.
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Lemma 2. Let M be a model ofBprefix eq and «, B be sequences of actions. Then
M = Prefix_edo, B) iff « < 8.

Proof. (=) Let M be a model ofBprefix eq- We will show that for alle, 8, if M =
Prefix eq(a, 8) thena < B by induction on the length g8. Letn > 0 be the length of
andm > 0 be the length op.

Base casem = 0. Then,8 = ¢. Suppose that > m. Then,a # ¢ and by (23) we get a
contradiction. Thusy < m. Sincem =0 andn > 0, we have that =0, i.e.,a =8 =¢.
Thereforep < 8.

Inductive hypothesidor all g of lengthm < k and for alle, if M = Prefix eq«, 8)
thena < B.

Induction let a o B be an arbitrary sequence of length+ 1. Let us show that if
M = Prefix eq(a,a o B) thena < a o B. From M = Prefix eq(a, a o ) and (24) we
have thatM = Prefix_eq(a, 8). By the inductive hypothesis, this implies thak 8. By
definition of <, @ < a o B follows froma < 8.

(<) Let M be a model ofBprefix_eq- For alla, 8, if a < B then, by definition ofx,
B=B,o0---0Bioa forsomenBy,..., B, andn > 0.

Now, let us show by induction amthat M = Prefix eq(«, B, o+ -+ o By o @) for all «.

Base casen = 0. We need to showM = Prefix eq(a, o). But this is an axiom of
Bprefix_eq-

Induction hypothesidor anyn < k anda, M = Prefix eq(o, B, o--- 0 B1 o).

Induction stepwe need to show that! = Prefix eq(«, Bx+10 Bro---o Bioa). By the
induction hypothesis we have th&t = Prefix eq(a, By o - - - o By o ). Then, by axiom

(Va, B, a).Prefix eq(«, B) D Prefix eqla, a o B)
of Bprefix_eq, We have thai\! (= Prefix eq(a, Byr10Byo---oBioa). O

Lemma 3. Let M be a model 0Bsubsequencel hen for alle, g,
a#b, {aowa,bop) e M[[Subsequenfie= (a o a, B) € M[[Subsequende (27)
(aoa,aoB) e M[Subsequendle= («, B) € M[Subsequende (28)

Proof. Similar to the proof of Lemma 1. O

Lemma 4. Let M be a model 0Bsypsequencel hen, for alle, 8, M = Subsequence, )
iff « < B.

Proof. This can be proved by induction on the lengthsxadnd 8 in a manner similar to
the proof of Lemma 2. O

Lemma 5. Let M be a model oBconcatenate Then, for alle, 8, v,
[{a, &, y) € M[Concatenatp ] = o =y, (29)
[{a,a o B,boy) e M[Concatenatg] =
[{a, B, y) € M[Concatenatg A a = b].

(30)
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Proof. Similar to proof of Lemma 1. O

Lemma 6. Let M be a model oBconcatenate Then, for alle, 8,y
M = Concatenater, £, y)

Proof. By induction on the length of the second argumentin a manner similar to the proof
of Lemma2. O

In the lemma below we will use the following notation: létbe an action and’ be a

fluent, formuIaH;(;) () will stand for the disjunction of all the premises of axioms of the
form:

H(p1,a) A+ A H(py,a) D Causes(a, f,a)

such thatz = A and f = F. For instance, if axiomblolds(P, o) D> Causes$ (A, F, «) and
Holds(Q, @) D Causes$ (A, F, «) are all the axioms with consequeBauses (A, F, o),
thenH;F(a) stands foHolds( P, «) v HoldS( Q, «).

Lemma 7. Let D be a domain description. Block
{min Cause3™ :
H(Py,a) A---AH(P,, &) D Causes' (A, F, «)

(31)
(for eachA causesF if Py,..., P, € D)
}
is equivalent to the conjunction of formulas of the form
(Va).H, () = Cause$ (A, F, a) (32)

one for each pair of action-fluent constants that appedBih).

Proof. Follows from Proposition 3.1.1 of [25] which shows under what conditions a
circumscription formula can be simplified Ipyedicate completion O

Proposition 1.
(1) For every causal mode¥ of D; there exists a model1sc of SQ D;) such that for

all F,o:
F e ¥ (a) & Mscl=HoldgF, o). (33)
(2) For every modeMsc of SA Dy) there exists a causal modél of D; such tha{33)
holds.

Proof. (1) Let¥ be a causal model ap; and let us consider an interpretatigrisc of
SA D)) such that,

Mscl[Holds]| = {{F, a): F € ¥ ()}
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and
MsclCauses T = {(A, F,a): F e Ef 7 W)

We will show thatMsc is a model ofSC(Dy). First, let us show that the blocks defining
Causes ™) are satisfied. By Lemma 7 it is sufficient to show that

H;(;)(a) = Causes()(A, F,a).

SupposeH;;(;)(oe) holds in Msc for arbitrary A, F,a. Then, by construction aMsc,
there is a causal lam causesF if P1,..., P, € D such thatH (P;,«) holds fori =
1,...,n. Again, by construction ofMsc, this implies thatP; € ¥ («) fori =1,...,n,
which in turn implies that € E1' (¥ (@)). By construction ofMsc, F € E1 7 (¥ ()
implies thatCauses()(A, F, ) holds inMsc.

Suppose now thaCause3~) (A, F,«) holds in Msc for arbitrary A, F, «. Then,
by construction ofMsc, F € EX(_)(W(a)). This implies that there is a causal law
AcausesFif P1,..., P, € Dsuchthatt;, e ¥(x)fori =1,...,n. Again, by construction
of Mg, it follows that H(P;, «) holds fori =1, ...,n. Therefore,H:,(F_)(a) holds in
Msc.

Now, let us show that axiom

—Causes (a, f, ) A —~Causes (a, f,«) D [Holds f, «) = Holds(f, a o «)]

is satisfied byMsc. Let A, F,a be an arbitrary action, fluent and sequenceDn
respectively, such that LHS of the axiom holds Msc. By construction of Msc,
we have thatF ¢ EX(lI/(ot)) U E, (¥ (a)). By definition of causal model, this implies
that F € ¥(a) iff F € W(a - A). Therefore, by construction afsc, HoldS(F, o) =
Holds(F, A o @) holds inMgc.

Now, consider the axioms

Causes (a, f,a) D Holds( f,a o a),
Causes (a, f,®) D —~Holds f,a o @).

Suppose thatauses (A, F, «) holds inMsc for arbitraryA, F, «. Then, by construction
of Msc, F € Ej(W(oz)). Given our assumption tha¥ is defined on all sequences
(Section 7), we have thak ¢ EJ (¥ () N E, (¥ (), thus by definition of¥, F €
¥ (x - A). Therefore, by construction 0¥1sc, Holds(F, A o @) holds.

A similar argument holds for the second axiom.

(2) Let Msc be a model oSQ D;). Let us consider a transition functiah such that
(33) holds. We showr to be a causal model db,, i.e., for eachd, o

W(a-A) =¥ (@ UEL(¥ @)\ E; (¥(@).

We show this is indeed the case by induction on the length of the sequence.
Base casethe length ofx is 0. We need to show that for amy,

T([A)=P(ADUEL(¥AD)\E,(TAD)
whereF € ¥ ([ ) iff Holds(F, £) by construction ofr.
@PIAD 2T DUELWA )\ E,@).



C. Baral et al. / Artificial Intelligence 104 (1998) 107-164 153

Let F and A be an arbitrary fluent and action iP respectively, such thaf e
v(hu E:{(lI/([ IM\E, ([ ]). Letus show that € ¥ ([A]). Clearly,F ¢ E, (¥ ([ 1)),
hence there is no causal latvcauses-F if Q1,..., O € D; such that the preconditions
hold in ¥ ([ ]). By construction of¢ this means thatMsc = H(Q;, ¢) does not hold for
some 1< i < m, for all such causal laws. By Lemma 7, this implies that

Mscl=—CauseS (A, F,¢). (34)

There are two cases of interest
() FeE (D),

(i) F¢EL W)

If (i) is the case, then there must be a causal awausesF if P1,..., P, € D; such
that the preconditions hold i# ([ ]). By construction of&, this implies thatMsc =
H(P;,¢) for eachi =1, ..., n. Therefore, Msc = Cause3 (A, F,s) and by axiom
Causes (a, f, o) D HoldS(f,a o o) we have thatMsc = HoldS(F, A o ¢). Thus, by
construction o, F € ¥ ([A]).

If (i) is the case, thenF € ¥([]) which implies, by construction o, that
Msc = Holds(F, ¢). Furthermore,F ¢ Ej(l!/([])) implies there is no causal law
A causesF if P1,..., P, € D; such that the preconditions holdin([ ]). Hence Msc =
H(P;, ¢) does not hold for some & i < n, for all causal laws of this form ansc =
—Causes (A, F, ). From this, (34) and axiom

—Causes (a, f, a) A ~Causes (a, f, «) D [Holds( f, @) = Holds(f, a o «)]

we conclude thatMsc = Holdg(F, A o ¢), and by construction of thatF € W ([A]).

O w(AD ¥ (DU EX(‘P([ O\NEL& (D).

Let F andA be an arbitrary fluent and action i, respectively, such that € ¥ ([A]).
By construction of¥, Msc = Hold9(F, A o ¢). Thus, Msc = —~Causes (A, F, ¢), and
by Lemma 7, for every causal law causes—F if Q1,..., O, € D; we haveMsc =
H(Q;, ¢) does not hold for some & i < m. By construction of¥, for every causal law
its preconditions do not hold i# ([ ]) either. Thus,F ¢ E, (¥ ([])). We again have two
cases:

(i) Mscl=Causes (A, F,¢),

(i) Mscl=—Causes(A, F,¢).

If (i) is the case, then by Lemma 7 there is a causal lawausesF if Py,..., P, €
D; such thatMsc = H(P;,¢) for eachi = 1,...,n. By construction ofy, all the
preconditions of such a causal law holdéit([ ]). Therefore F < Ej(l[/([])), and since
we assume tha¥ is defined on every sequence (Section F)¢ E, (¥ ([]1)). Thus,
Few(DUEF@II)\E;#([]).

If (ii) is the case then by virtue of the first axiom 83 D;), Msc = Holdg(F, ¢). This
implies, by construction o, that F € ¥ ([]). We showed above that ¢ E, (¥ ([])).
ThereforeF e W([(DUEF W (1) \ E; (@ ([]).

Induction hypothesidor eachA, o

(e -A) =¥ (@) UES (¥ @)\ E;(¥@).

Inductive casgit can be proved by following the same steps as in the proof of the base
case. O
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Proposition 2. For any domain descriptiomD, if interpretation (¥, X) is a model ofD
then there exists a modat of T (D) such that for every fagat in the language oD:

WD) Ep MET(P) (35)
and if M is a model off (D) then there exists a modeb, ) of D such that(35) holds.

Proof. (=) LetM = (¥, ) be amodel oD. Let M, be an interpretation df (D) such
that
() The universe ofictions fluents andsituationsconsist of the symbols in the sefls
F andS of D, respectively. The universe seéquencesonsists of a unique object
for each possible sequence of actions frdm
(i) HoldsandCause3(~) are interpreted as follows:

My [[Holds] = {(F, a): F € ¥ (@)},
MulCauses = [(A, F,a): Fe Ef ().

(i) All action, fluent and situation constants are interpreted as themselves. Predicates
Prefix eq Subsequencand Concatenateare interpreted as the corresponding
intended relation.

(iv) Sit mapis interpreted as follows: for eachin D, M, [[Sit mag](S) = Ajyo0---0
Arocif X(S)=[A1,..., Anl.

We will show thatM,, is a model ofT' (D).

First, note that the framework axioms are trivially satisfied. The blocks defining prefix,
subsequence and concatenate have already been proven to correctly capture the intended
relations.

Axioms (a) and (b) are satisfied by definition Bf, condition (iii) and correctness of
Bprefix_eq (L€MMa 2).

Note that condition (i) orHolds and Cause3$(~) is the same condition used to show
that such an interpretation of these predicates is a mod8iQoD;) (see the proof of
Proposition 1), thus axionf8Q(D;) are satisfied.

It remains to be shown that1,, satisfies axioms (D) and is a minimal model with
respect to the circumscription policy.

F at S € D: (D) includes the axiontolds(F, Sit map(S)).

By the same fact fronD, F € ¥ (X (S)). By condition (iv) onSit mapand condition (ii),
F e w(X(S)) implies thatM , = HoldS F, «), wherew is the same sequence 8%S).
a occurs_atS € D: (D) includes the axiom

(3B).ConcatenatéSit map(S), o, B) A Prefix_eq(8, Sit map(Sy)).

By the same fact fron, « concatenated witl' (S) is a prefix of X' (Sy). By condition (iv)
on Sit_map Sit map(S) andSit map(Sy) are the same sequences?&S) and X (Sy).
By correctness 0Bconcatenat@Nd Bprefix_eq the axiom is satisfied.

S1 precedesS; € D: (D) includes the axiom

Prefix_eq(Sit map(S1), Sit map($2)) A
—Prefix eq(Sit map(S2), Sit map(S1)).
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By the same fact fromD, X'(S1) is a proper prefix ofX(S2). By condition (iv) and
correctness oBprefix_eq, the axiom is satisfied.

Finally, the value minimization axiom (c) captures exactly the minimality condition (see
Section 5 for a detailed discussion), with respect to ordesigsequengemposed on
X (Sy) by the definition of models of domain descriptionsdn

(<) Let M be a model off (D). By Proposition 1 there is a causal modekuch that
forall F,«,

W (o) = {F: M [=Holds(F, «)}. (36)
Let ¥ be such a causal model and Btbe a situation assignment such that for eSich
2(S) =[A1, ..., A1 & M[Sit mapl(S) = Ap,o0---0Ajoe. (37)

Let us showV = (¥, X) is a model ofD.
First of all, by axiom

Sit mapSp) = ¢
we haveX (So) =[], and by axiom
Prefix eq(Sit map(s), Sit map(Sx))

we have that, for all situationsin the language oD, X'(S) is a prefix of ¥ (Sy); thus, X
is a situation assignment. Since we assume#hit defined on all sequences (X (Sy))
is defined and thereforg and X form an interpretation oD.

It only remains to be shown that facts ib are true inM and that there is no
N’ = (¥, ') such that¥’(Sy) <« X(Sy) andN’ is a model ofD.

(F at§) e D.
Then, M = Holds(F, Sit map(S)). By (37), Sit map(S) in M is the same sequence as
X (9), thus, by (36)F € ¥ (X (S)). Therefore(F at S) is true inM. The same argument
holds for negated fluent facts.

(o occurs_atS) € D.
Then, M & (ConcatenatéSit map(S), a, 8) A Prefix eq(8, Sit mapSy)), for someg.
Let g and ay be the same sequences &g map(S) and Sit mapSy) in M. By
correctness oBconcatenatdLemMma 6),8 is the same sequenceas concatenated with.
By correctness 0Bprefix eq (Lemma 2),8 is a prefix of sequencey. By Condition (37)
on X, B is equal toX(S) concatenated witkx and 8 is a prefix of X (Sy). Therefore,
(o occurs_atS) is true inM.

(81 precedesSy) € D: then,

M = Prefix_eq(Sit_ map(S1), Sit map(S2)) A
—Prefix_eq(Sit_map(S2), Sit map(S1)).

By correctness ofBprefix eq and (37), X(S1) is a proper prefix ofX(S2). Therefore,
(51 precedesSy) is true inM.

Finally, we need to show there is no interpretatdn= (¥, X’) of D such that~’(Sy)
is a subsequence (not equal)X{Sy) andN’ is a model ofD. Assume that there is such
amodelN’. Then, by part£) of this lemma, there would be a model’ of T (D) which
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differs from M only on the interpretation of functio8it map and such that sequence
M[[Sit_map](Sy) is subsequence (not equal) #f[[Sit map](Sy). This contradicts
our assumption thaM is a model of7 (D) sinceT (D) includes value minimization of
Sit map(Sy) with respect to ordering subsequence (see Sectiond).

Proposition 3. For any domain descriptio® and hypothesig in the language oD:
DL ¢ T(D)Et(@).
Proof (Sketch. Let F after o be an arbitrary hypothesis in the languag&ofWe need to
show that for all model§¥, X) of D, F € ¥ (X (Sy) - «) iff for all models M of T(D),
(38).Concatenatésit mapSy), «, 8) D H(F, B).
This can be proved by following the proof of Proposition 2 where we show how to

construct a modeM of T(D) from a model(¥, X) of D, and vice versa, such that the
following holds: for all F, «

F e ¥ () & M = HoldS(F, o),
Y (Sy) =a & M = (Sit mapSy) = a). ]

Appendix B. Correctness of translationT,
Lemma 8. Let M be a model oBempedded Then, for alla1, a2,« and B,
(a1o0é&,az0¢) € M[Embeddefl= (Va).a € a1 = a € ay, (38)

(a1 0 B, az oa) € M[[Embeddefl =
[(B, @) € M[[Embeddefl, (a10¢,ar0¢) e M[[Embeddef].

(39)

Proof. Similar to the proof of Lemma 1. O

Lemma 9. Let M be a model oBempedded Then, for alle, 8, M = Embeddeg, g) iff
o CB.

Proof. This can be proved by induction on the length of the sequences and Lemma 8.
Lemma 10. Let M be a model oBembsubseqThen, for alle, B,

{a, B) € M[[Embsubselfj=
3y) .o, y) € M[[Embeddefl A (y, 8) € M[[Subsequende

(40)

Proof. Similar to the proof of Lemma 1. O

Lemma 11. Let M be a model 0Bempsubseq Then, for alle, 8, M = Embsubse@, B)
iff @ is an embedded-subsequencgin
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Proof. (=) Let M be a model ofBembsubseind lete, B be sequences such th&éd =
Embsubse@, ). Then, by (40) we havé1 = Embeddegy, ) A Subsequenc¢e, ) for
some sequence. By correctness oBempeddedL€MmMa 9) we have that is embedded in
v, and by correctness dsubsequencéLemma 4) thaty is a subsequence @f. Therefore,
a is an embedded-subsequencgof

(<) Let M be a model ofBembsubseq@nd leta, B be sequences such thatis an
embedded-subsequence @f Then, by definition of embedded-subsequence, there is a
sequences such thaty is a subsequence ¢ andwa is embedded iry. By correctness
of BsubsequencéLemma 4) we have thaMt = Subsequencg, ) and by correctness of
Bembedded Lemma 9) thatM = Embeddedy, y). Therefore, by axiom

Embedde(l, ) A Subsequenc€g, y) > Embsubse@, y)
Of BembsubsegM = Embsubse@, 8). O

Lemma 12. The block which defines Inherits?):
{min Inherits™ ™ :
b €a A Causes' ™) (b, f,a) O Inherits*(a, f, )
}
is equivalent to the following formula
(Va, f,a).[(3b).b € a A Caused ) (b, f,a)] = Inherits" 7 (a, f, «). (41)

Proof. It follows from Proposition 3.1.1 of [25] which shows under what conditions a
circumscription formula can be simplified Ipyedicate completion O

Lemma 13. Let M be a model of

{min Undef:
Inherits" (a, f, @) A Inherits™ (a, f, @) D Undef(a o @)
Undef(a) D Undef(a o )

(42)

}

Then, for alla, o,

{a oy € M[[Undef]| =
[(3f).(a, f,a) € M[[Inherits']| A (a, f,«) € M[[Inherits™ ) v
() € M[[Undef] ]. (43)

Proof. Similar to proof of Lemma 1. O
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Proposition 4.
(1) For every causal mode¥ of D; there exists a modeV1sc of SG.(D;) such that for
al F, «,

F e ¥ (o) & Msc = Holds(F, a), and
¥ (@) is undefineds> Msc = Undef(a).

(2) For every modelMsc of SG(D;) there exists a causal modé#l of D; such that
(44)holds.

(44)

Proof. (1) Let¥ be a causal model d?;. Let Mgsc be an interpretation &$C.(D;) such
that
(i) MscllUndef]] = {o: ¥ (@) is undefined

(i) Mscl[Causes™ ] ={(A, F,«): F is animmediate effect of in ¥ (a)},

(iiiy MscllInherits™ 1 = {(A, F,a): F e Ef7 W (a))) 20,

(iv) Mscl[Holds]| = {(F,a): F € ¥(a)}.
Note, that (i) and (iv) correspond to condition (44). We will shawisc is a model of
SCG(Dy).

We showed in Proposition 1 that a model built as above satisfies the blocks which define
predicateCauses$ andCauses.

Given the definition ofE:{(_), it is clear that condition (iii) corresponds exactly to
formula (41), therefore the blocks defining predicatéserits™ andinherits™ are satisfied.

Let us show the block definingndef is satisfied. Assume that there ateF', @ such
that Inherits" (A, F, @) A Inherits (A, F, «) holds in Msc. Then by condition (iii) we
have thatF € EX(“) N E, (a) and thus this intersection is not empty. This implies that
¥ (a) is undefined. By this and condition (i) we have thet = Undef(A o o). Therefore
the first axiom in the block is satisfied byf. Now, suppose («) is undefined for some
a. Then, since¥ is prefix closed, for every actiod, ¥ (a - A) is also undefined and
the second axiom is satisfied. It is easy to see that the extddhdéf is not minimal
only if there existA, @ such thatUndef(A o o) holds while there is naF such that
Inherits™ (A, F, a) A Inherits (A, F, «) holds, norUndef(«) holds in M. This however
contradicts Lemma 13, thus the extentbfdef must be minimal and therefore this block
is satisfied byM.

It is easy to see that the axioms

—Inherits* (a, f, ) A —Inherits (a, f, «) D [Holds( f, &) = HoldS( f, a o o)1,
—Undef(a o a) A Inherits' (a, f, @) D Holds( f, a o a),
—Undef(a o @) A Inherits (a, f,«) D —Hold(f, a o ),

of SG.(Dy) are satisfied byM sc.
(2) Let Msc be a model o8C.(D;). Let¥ be a transition function such that (44) holds.
We showy to be a causal model db;.

20 Recall that the meaning cEX(f) (o) is now different from that in previous proofs. It stands for the set of
fluents that become true (false) after executing a concurrent agtion
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Consider the axioms in the block foindef. Note, that the consequences of both axioms
necessarily involve a nonempty sequence. Hence for any interpretatiomasf that
containse and satisfies the axioms we can obtain another interpretation that satisfies
the axioms and is a subset. Since the block chooses a minimal interpretatibrdef,
Undef(¢) does not hold il sc. Thus,¥ ([]) is defined.

Let us show that is prefix-closed. Assume the contrary anddetnd 8 be sequences
such thatx is a prefix of8 and¥ (8) is defined while («) is undefined. By construction
of ¥, it follows thatUndef(«) and—Undef(B) hold in Msc. However, from axiom

(Yo, a).Undef(e) D Undef(a o )

and the fact thatr is a prefix of 8, we conclude thatndef(8) holds in Msc, which
contradicts our assumption. Therefogejs prefix-closed.

Now, let us show that for all, «, if EX(O() N E, () # ¥ theny is undefined on
sequencel o a.

SupposeF € E;\L (o) andF e E, («) for fluent F, actionA and sequence. This means
that F and—F are effects ofd in ¥ (a), i.e., there exist causal laws

B causesF if Pyq,..., P

/ | (45)
B’ causes—F if Q01,..., 0

in D;, whereB € A andB’ € A and such that’;, (i =1,...,k)andQ; (i =1,...,])
are true in¥ («). From this and construction of it follows that Msc = H(P;, )
i=1,....,k)andMsckE H(Q;,a) (i=1,...,1), for any pair of causal laws of the form
(45). This implies thaCause$ (B, F, «) andCauses (B’, F, @) hold in Msc. By axiom

b €a A Causes' ™) (b, f,a) O Inheritst ) (a, f, )
we have thatnherits™ (4, F, «) andInherits™ (A, F, @) hold in Msc, and by axiom
Inherits" (a, f, @) A Inherits™ (a, f, @) D Undef(a o «)

we have thatJndef(A o o) holds in Msc. Therefore, by construction af, ¥ (« - A) is
undefined.

Now, let us show that for all, &, if Ef(e) N E; () =@, then¥ (o - A) = ¥ () U
EX(“) \ E, (). This proof is very similar to that of Proposition 1. We will prove the base
case only.

Base casdength of« is 0. We will show

A= ([(DUEL(¥ID)\E;@D).

@A) 2¥[DUEL@IN\E; ().
Assume thatF e ¥ ([]) U EX(lI/([])) \ E,(¥([]). Let us showF € ¥ ([A]). Clearly,
F ¢ E, (¥([])). This implies that there does not exist an atomic acBoim A such that
—F is animmediate effect a8. Again, this implies thatMisc = —Causes (B, F, ¢). And
since this holds for alb such that € A, Msc = —Inherits (A, F, ¢).

Now, there are two cases of interest:

() FeE;w(qD),
(i) F¢EF ().
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Consider case (i). There must be an actfim A such that
B causesF' if P1,..., P, € Dy

and the preconditions hold ([ ]). As shown in the first part of this proof, this implies
that Msc = Cause3 (B, F, £) and by axiom

b € a A Causes (b, f,a) D Inheritst (a, f, «)

Msc = Inheritst (A, F, ). Since we are considering the case whéimdef(A o o) holds
in Mscfor all @, by axiom

—Undef(a o a) A Inherits" (a, f, «) D Holds(f, a o )

we get thatM sc = HoldS(F, A o €), which by construction o implies thatF € ¥ ([A]).
Now consider case (ii). SincE ¢ E:{(lI/([ 1)), we haveF € ¥ ([ ]), which by construc-
tion of ¥ implies thatMsc = Holds(F, ). We showed above that frofi ¢ E, (¥ ([]))
it follows that Msc = —Inherits (A, F, ). The same can be shown for positive effects,
i.e., that fromF ¢ E (@ ([])) it follows that Msc = —Inheritst (A, F, ¢).
Thus, we have thatlolds(F, ¢), —=Inherits™ (A, F, ¢), and—=Inherits (A, F, ) hold in
Msc. Then, by the axiom

—Inherits" (a, f, @) A —=Inherits (a, f, @) D [Holds( f, «) = Holds( f, a o «)]

it follows that M sc = HoldY(F, A o ¢) and—by construction o —F € ¥ ([a]).
b)Y ([a) CY(DVEF@II\E; (F([]).

Let F € w([A]). Let us show thatF € w([]) U EX(W(]) \ E; (¥ (]). By
construction ofY, Msc = Hold9F, A o €). Since we are considering the case when
Msc = —Undef(A o ¢), Msc = —Inherits™ (A, F, &) would imply, by the axiom

—Undef(a o @) A Inherits™ (a, f, o) D —Holds(f, a o )

that Msc &= —HoldS(F, A o ¢). Therefore, Msc = —Inherits (A, F,e). Then, by
Lemma 12, we have that for eveB/e A, Msc = —Causes (B, F, ¢). Consequently, for
everyB € A such thatB causes~F if Qg,..., 0., € Dy, the preconditions do not hold in
Y ([ ]). From this it follows thatF’ ¢ E, (¥ ([])). Now, there are two cases of interest:
(i) Msc = Inherits™(4, F, ¢),

(i) Msc = —Inherits™(A, F, ¢).
Consider case (i). By Lemma 12 we have that there exists an astierd such that
Msc = Causes (B, F, ¢) and by Lemma 7 that there is a causal lBwausesF if Py, ...,
P, € D; such thatMsc = H(P;,¢) fori =1,...,n. By construction of¥, all P, must
hold inw([]). Therefore F € E} (¥ ([])). From this andF ¢ E, (¥ ([])), shown above,
we conclude that e w ([]) U Eﬁ(l]/([])) \E,(&(]).

Now consider case (ii). By virtue of the first axiom &GC.(D;), HoldqF, ¢). By
construction of¥, F € ¥([]). SinceF ¢ E, (¥([])) was shown abovef e ¥([]) U
EXW(IIM\E;(®(]). O

Proposition 5. For any domain descriptiom, if interpretation (¥, X) is a model of D
then there exists a modat of T, (D) such that for every faep in the language oD:

W2 Ec. o MET(@) (46)
and if M is a model off. (D) then there exists a model, X) of D such tha{46) holds.
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Proof. (=) LetM = (¥, X) be amodel oD. Let M, be an interpretation df. (D) such
that:
(i) The universe ofluentsandsituationsconsist of the symbols in the sefsandsS of
D, respectively. The universe efactionsis 24 — {#/}. The universe ofequences
consists of a unique object for each possible sequenceaofions

(iiy Mpy[Undef]] = {o: ¥ (@) is undefinegl

(i) Muyl[Causes ) ={(A, F,«): F is animmediate effect of in ¥ (a)}.

(iv) MpyllInherits™ 1 = {(A, F,a): F € Ef7 W (@)).

(v) My[Holds] = {(A, F,«): F € ¥(a)}.

(vi) All action, fluent and situation constants are interpreted as their corresponding
universe element. Predicateeefix eq Subsequen¢€oncatenateEmbeddednd
Embsubseare interpreted as the intended relation.

(vii) ForeachS, My [[Sit map](S) = A, 0---0Aj0¢if X(s) =[A1,...,An].

We will show thatM,, is a model ofT. (D).

The blocks defining relations on sequende®fix eq etc.) have been shown to capture

the intended relations. The framework axioms are trivially satisfied.

By definition of models ofD, ¥ is defined on¥' (Sy), thus by conditions (i) and (vii)

on M, axiom—=Undef(Sit map(Sy)) is satisfied.

By definition of situation assignmenkg (Sp) =[] and for eachS, X'(S) is a prefix of

X (Sn). Thus, by condition (vii) onM ,, axioms

Sit mapSp) =&,
Prefix_eq(Sit_map(s), Sit mapSy))

are satisfied.

Note, that conditions (ii), (iii), (iv) and (v) on predicatésdef, Causes~, Inherits™™
andHolds are the same as those used to show that such an interpretation of these predicates
is a model ofSG.(D;) (see the proof of Proposition 4), theref@€, (D) is satisfied.

Fluent facts and precedence facts are translated into the same sentencésad tan
be shown to be satisfied as in the proof of Proposition 2.

a occurs_atS € D: (D) includes an axiom:

(3B, v).Embeddedl, 8) A ConcatenateSit map(S), 8, v) A
Prefix eq(y. Sit map(Sy)).

By the same fact inD, there isg s.t. X(S) - B is a prefix of ¥(Sy) anda C 8.
Let y stand for the sequencE(S) - 8. By condition (vii) if X(S) = as and X (Sy) =
ay then Sit mapS) = os and Sit mapSy) = ay hold in My,. By correctness of
BembeddedLemma 9) Embeddedy, 8) holds and by correctness BfoncatenatdLemma 6),
Concatenat@rs, 8, y) holds. Moreover, by correctness Bfrefix_eq (Lemma 2) Prefix eq
(y, an) holds. Therefore, axiomf() is satisfied byM ;.

Finally, value minimization axiom (I exactly captures the minimality condition, with
respect to orderingmbedded-subsequeniteposed on sequendg(Sy) by the definition
of models of domain descriptions if..
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(<) Let M be a model off,. (D). By Proposition 4 there exists a causal mogetuch
that for all F, «,

F e ¥ () iff M =HoldqF,«), and
¥ (@) is undefined iffMsc = Undef(a).

(47)

Let ¥ be such a causal model aatbe a situation assignment such that for eviry

2(S)=as & M[Sit mag](S) = as. (48)
We will show M = (¥, X) is a model ofD. As before, by (48) and axiom
Sit mapSp) =¢

we haveX (Sp) =[], and by axiom
Prefix eq(Sit map(s), Sit map(Sx))

we haveX'(S) is a prefix of X' (Sy) for any situation symba$ in the language ob. Thus,
X is a situation assignment. By (47) and axiom

—Undef(Sit map(Sy))

of T.(D) we have that”' (Sy) belongs to the domain a¥. Therefore, X and¥ form an
interpretation ofD.

It only remains to be shown that facts i are true inM and that there is no
N’ = (¥, X’) such that¥’(Sy) is an embedded-subsequencexfSy) and N’ is a model
of D.

Fluent and precedence facts are translated into the same sentenc&saamliit can be
shown as in the proof of Proposition 2 thitsatisfies these types of fact.

We need to show/ satisfies facts of the forma occurs_atS. Suppose

(o occurs_atS) € D.
ThenM entails
(38, v).Embedded, ) A ConcatenatSit map(S), B, ¥)A
Prefix eq(y. Sit map(Sy)).

Let B,y be sequences such that the above sentence holds and camgidgr s.t.
Sit mapS) = as and Sit map(Sy) = an hold in M. Then, by correctness @embedded
(Lemma 9), we have that C g, by correctness oBconcatenatdLemma 6),y is equal to
as concatenated witl#, and by correctness dfprefix eq (Lemma 2),y is a prefix ofay .

By (48), X (S) = as and X (Sy) = an. HenceX (S) - B is a prefix of X' (Sy). By this and
a C B, M satisfieg« occurs_atS).

Finally, we need to show there is no interpretativh = (¥, X’) of D such that
3'(Sy) is an embedded-subsequence (not equalf@$y) and N’ is a model ofD.
Suppose there is such a modél. Then, by part £) of this lemma, there is a model
M’ of T.(D) which differs from M only on the interpretation of functio®it map
and such that sequencet’[Sit map](Sy) is an embedded-subsequence (not equal) of
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MI[Sit_ map](Sy). This contradicts our assumption th&t is a model of7T.(D), since
T.(D) includes value minimization obit mapSy) with respect to orderingmbedded-
subsequenc@ee Section 5). O
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