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Abstract
Logic Programming Update Languages were proposed as an extension of logic

programming, which allow for modelling the dynamics of knowledge bases where
both extensional knowledge (facts) as well as intentional knowledge (rules) may
change over time due to updates, with important application Multi-Agent Systems
(MAS).

Despite their generality, these languages do not provide means to directly ac-
cess past states of the evolving knowledge. They only allow for so-called Marko-
vian changes i.e. changes determined entirely by the current state. This is a draw-
back in several situation.

In this paper, after motivating the need for non-Markovian changes, we extend
EVOLP – The Logic Programming Update Language at the heart of an existing
MAS – with LTL-like temporal operators that allow referring to the history of the
evolving agent. We then show that with a suitable introduction of new propo-
sitional variables it is possible to embed the extended EVOLP into the original
one, thus demonstrating that EVOLP itself can already be used for non-Markovian
changes. While showing how to use EVOLP for encoding non-Markovian changes,
this embedding sheds light into the relationship between Logic Programming Up-
date Languages and Modal Temporal Logics, of particular importance in MAS.

1 Introduction
With the promise to uniformly integrate the tasks of specifying, programming and ver-
ifying Multi-Agent Systems (MAS), Computational Logic (CL) and Logic Program-
ming (LP) have been used as the privileged driving vehicles to describe the informa-
tional, motivational and dynamic dimensions of several such systems [25, 11, 18, 9, 7,
17, 21]. For surveys on some of these and others see [23, 8].

Agents must keep beliefs about their goals, intentions, capabilities and the environ-
ment in which they are situated. These beliefs must be dynamic, not only because the



agent may learn about static features of its environment and new ways to behave, but
also because of the intrinsic dynamic character of the environment. This rich dynamic
character of MAS called for the development of LP based languages that are capable of
dealing with updates that go beyond the simple addition and deletion of fluents. These
languages are usually referred to as LP Update Languages and include LUPS [5], EPI
[12], KABUL [20] and EVOLP [3].

LP Update Languages are extensions of LP designed to allow the modelling of the
dynamics of non-monotonic knowledge represented by logic programs where both their
extensional part (set of facts) as well as their intentional part (set of deductive rules)
may change over time due to updates. Each defines special types of rules that specify
the transition to subsequent states of knowledge through the update of the current one.
While LUPS, EPI and KABUL offer a very diverse set of update commands, each
specific for one particular kind of update (assertion, retraction, etc), EVOLP – the
language we focus on – follows a simpler approach that stays closer to traditional logic
programming.

EVOLP (Evolving Logic Programming) generalizes Answer-set Programming [16]
to allow for the specification of a program’s own evolution, arising both from self (i.e.
internal to the program) updating, and external updating originating in the environment.
From the syntactical point of view, evolving programs are generalized logic programs,
extended with (possibly nested) assertions in either heads or bodies of rules. From the
semantical point of view, a model-theoretic characterization is offered of the possible
evolutions of programs by means of evolving stable models which are sequences of
interpretations. Each interpretation in the sequence describes, at the corresponding
evolution step, what is true, and the possible next-step evolutions.

EVOLP is at the heart of the MAS presented in [21], where it is used to represent
the dynamics of both beliefs and capabilities of agents. The use of EVOLP has also
been illustrated in Role Playing Games to represent the dynamic behaviour of Non-
Playing Characters [19] and Knowledge Bases to describe their update policies [12].
Furthermore, it was shown that Logic Programming Update Languages are able to
capture Action Languages A, B and C, making them suitable for describing domains
of actions [1].

Despite their generality concerning the kinds of updates possible, these LP Update
Languages do not provide means to directly access past states of the evolving knowl-
edge base i.e. states other than the current one. They were designed for situations
where all knowledge updates are Markovian i.e. determined by the current state of
affairs.

However, there are many scenarios that require non-Markovian updates i.e. updates
that depend on conditions encompassing past states of knowledge.

Suppose that we want to build agents that control user access for a number of
computers at different locations. A login policy for example may say that after the first
failed login the user is warned by sms and if there is another failed login the account is
blocked. This policy could be expressed by the following two rules:

sms(U)← �(not sms(U)), fLog(U, IP ).
block(U)← ♦(sms(U)), fLog(U, IP ).

where we assume that fLog(U, IP ) is an external event representing a failed login by



user U from address IP . A feature of EVOLP is the ability to represent such external
influence on the contents of a knowledge base and its updates. The symbols ♦ and
� represent operators similar to the Past LTL operators where ♦ϕ means that there is
a state in the past where ϕ was true and �ϕ means that ϕ was true in all past states.
Now suppose that we want to model the updates made by the system administrator. For
example, the new policy consists in blocking a user after the first failed login attempt
if the user has an IP address from a “bad domain”, and not send him an sms. The new
policy is represented by the following rules:

block(U)← fLog(U, IP ), dom(IP,D).
not sms(U)← fLog(U, IP ), dom(IP,D).

with D instantiated to the domain in question.
Whether a domain is bad or not, however, depends on the particular agent. In this

case, the sys admin may want to send an update to all agents so that the above rules are
added to each agent’s policy only for domains which are bad according to the agent’s
current history. The sys admin issues the following update to every agent, saying that
the above new rules are to be asserted if the domain has been considered a bad one
since the last failed attempt:

assert(block(U)← fLog(U, IP ), dom(IP,D))←
S(badDom(D), fLog(U2, IP2)), dom(IP2, D).

assert(not sms(U)← fLog(U, IP ), dom(IP,D))←
S(badDom(D), fLog(U2, IP2)), dom(IP2, D).

where badDom(D) is a predicate defined locally and the symbol S above represents
an operator similar to the Past LTL operator “since”. The intuitive meaning of S(ψ,ϕ)
is that at some point in the past ϕ was true, and ψ has always been true since then. The
assert construct is one of the main features of EVOLP which allows one to specify
updates to the agent, leaving to its semantics the task of dealing with contradictory
rules such as the one that specifies that an sms should be sent if it is the first failure,
and the one that specifies otherwise if the domain is bad.

The ability to refer to the past is lacking in EVOLP. [12] suggests that LP Lan-
guages of Updates need a prev() predicate to access the previous state. In this paper,
we go beyond that and introduce LTL-like temporal operators that allow more flexibil-
ity in referring to the history of the evolving knowledge base. We proceed by showing
that with the introduction of new propositional variables, it is possible to embed the
extended EVOLP into the original one, demonstrating that EVOLP itself can already
be used for non-Markovian changes. This embedding proves interesting as it shows
how to use EVOLP for encoding non-Markovian changes, while shedding light into
the relationship between LP Update Languages and modal temporal logics.

2 Preliminaries
EVOLP [3] is a logic programming language extended with the special predicate assert/1
used for specifying updates, and with the possibility of having negated rule heads.



An EVOLP program consists of a set of rules of the form L0 ← L1, . . . , Ln where
L0, L1 . . . , Ln are literals (i.e. propositional atoms possibly preceeded by the negation-
as-failure operator not ) including literals of the assert/1 predicate. An atom assert(R)
takes a rule R as an argument and intuitively represents that the argument R belongs to
the next program in the evolution.

An EVOLP program containing rules with assert in the head is capable of going
through a sequence of changes even without influence from outside. External influence
can also be captured in EVOLP. This is done by means of a sequence of programs each
of which represents external events. The next definitions make these intuitions precise.

Definition 1 LetL be any propositional language (not containing the predicate assert/1).
The extended language Lassert is defined inductively as follows: – All propositional
atoms in L are propositional atoms in Lassert; – If each of L0, . . . , Ln is a literal
in Lassert (i.e. a propositional atom A or its default negation notA), then L0 ←
L1, . . . , Ln is a generalized logic program rule over Lassert; – If R is a rule over
Lassert then assert(R) is a propositional atom of Lassert; – Nothing else is a propo-
sitional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of logic
program rules over Lassert.

Nesting of assert/1 permits updating the knowledge base with rules that may, in
turn, further update it. This language alone is enough to model a knowledge base
allowing for internal updating actions changing it. But EVOLP goes beyond such self-
evolution in that it also allows change to be caused by external events, where these may
be: observation of facts (or rules) that are perceived at some state; assertion commands
directly imparting the assertion of new rules on the evolving program. Both can be
represented as EVOLP rules: the former by rules without the assert predicate in the
head, and the latter by rules with it. To represent outside influence as a sequence of
EVOLP rules:

Definition 2 Let P be an evolving program over the language L. An event sequence
over P is a sequence of evolving programs over L.

Given this syntax, the semantics issue is that of, given an initial EVOLP program
and a sequence of EVOLP programs as events, determining what is true and what
is false after each of these events. Precisely, the meaning of a sequence of EVOLP
programs is given by a set of evolution stable models, each of which is a sequence
of interpretations or states 〈I1, . . . , In〉. Each evolution stable model describes some
possible evolution of one initial program after a number n of evolution steps, given
the events in the sequence. Each evolution is represented by a sequence of programs
〈P1, . . . , Pn〉, each program corresponding to a knowledge state constructed as follows:
regarding head asserts, whenever the atom assert(Rule) belongs to an interpretation
in a sequence, i.e. belongs to a model according to the stable model semantics of the
current program, then Rule must belong to the program in the next state; asserts in
bodies are treated as any other predicate literals.



Definition 3 An evolution interpretation of length n of an evolving program P over
L is a finite sequence I = 〈I1, I2, . . . , In〉 of sets of propositional atoms of Lassert.
The evolution trace associated with an evolution interpretation I is the sequence of
programs 〈P1, P2, . . . , Pn〉 where P1 = P and Pi = {R | assert(R) ∈ Ii−1} for
2 ≤ i ≤ n.

The sequences of programs are then treated as in dynamic logic programming [4],
where the most recent rules are set in force, and previous rules are valid (by inertia)
insofar as possible, i.e. they are kept for as long as they do not conflict with more recent
ones. The semantics of dynamic logic programs is a generalisation of the answer-set
semantics of [22] (in the sense that if the sequence consists of a single program, the
semantics coincides with answer-sets), and is defined as follows [2]:

Definition 4 Let P = 〈P1, . . . , Pn〉 be a sequence of programs (or dynamic logic
program) over language Lassert. A set of propositional atoms in Lassert, M , is a
dynamic stable model of P at state s, 1 ≤ s ≤ n iff

M ′ = least([ρs(P)−Rejs(P,M)] ∪Defs(P,M)) and
Defs(P,M) = {notA | @r ∈ ρs(P), H(r) = A,

M � B(r)}

Rejs(P,M) = {r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j ≤ s, r on r′,
M � B(r′)}

where A is an objective literal; ρs(P) denotes the multiset of all rules appearing in
the programs P1, ..., Ps; if r is a rule of the form L0 ← L1, . . . , Ln then H(r) = L0

(dubbed the head of the rule) and B(r) = L1, . . . , Ln (dubbed the body of the rule);
r on r′ (conflicting rules) iff H(r) = A and H(r′) = notA or H(r) = notA and
H(r′) = A; least(.) denotes the least model of the definite program obtained from the
argument program by replacing every default literal notA by a new atom not A; and
M ′ = M ∪ {not A | A 6∈M}.

Going back to EVOLP, the events received at each state must be added to the cor-
responding program of the trace, before testing the stability condition of stable models
of the evolution interpretation.

Definition 5 (Evolution Stable Model) Let I = 〈I1, ..., In〉 be an evolution interpre-
tation of an EVOLP program P and 〈P1, P2, . . . , Pn〉 be the corresponding execution
trace. Then I is an evolution stable model of P given event sequence 〈E1, E2, . . . , En〉
iff for every i (1 ≤ i ≤ n), Ii is a stable model of 〈P1, P2, . . . , (Pi ∪ Ei)〉.

3 EVOLP with Temporal Operators
EVOLP programs have the limitation that rules cannot refer to past states in the evo-
lution of a program. In other words, they do not allow one to specify behavior that is
conditional on the full evolution of the system being modelled. Despite the fact that
the whole evolution is available as a sequence of evolving programs, the body of a rule



at any state is always evaluated in that state. In fact, a careful analysis of the above
definition of the semantics of dynamic logic programs, makes this evident: note that
in the definitions of both Defs(P,M) and Rejs(P,M), rules in previous states are
taken into account, but rule bodies are always evaluated with respect to a single model
M .

Our goal here is to extend the syntax and semantics of EVOLP to overcome this
limitation, defining a new language called EVOLPT . Our approach is similar to the ap-
proach in [14] where Basic Action Theories in the Situation Calculus are generalized
with non-Markovian control. In particular, we extend the syntax of EVOLP with Past
LTL modalities ©(G), ♦(G) �(G), and S(G1, G2), which intuitively mean, respec-
tively: G is true in the previous state; there is a state in the past in which G is true; G
is always true in the past; and G2 is true at some state in the past, and since then until
the current state G1 is true.

Moreover, we allow arbitrary nesting of these operators as well as negation-as-
failure in front of their arguments. Unlike not , however, temporal operators are not
allowed in the head of rules. The only restriction on the body of rules is that negation is
allowed to appear in front of atoms and temporal operators only. The formal definition
of the language and programs in EVOLPT is as follows.

Definition 6 (EVOLP with Temporal Operators) LetL be any propositional language
(not containing the predicates assert/1,©/1, ♦/1, S/2 and �/1). The extended tem-
poral language LassertT and the set of b-literals1 G are defined inductively as follows:
• All propositional atoms in L are propositional atoms in LassertT and b-literals in G.
• If G1 and G2 are b-literals in G then ©(G1), ♦(G1), S(G1, G2) and �(G1) are
t-formulae2, and are also b-literals in G. • If G is a t-formula or an atom in LassertT

then notG is a b-literal in G. • If G1 and G2 are b-literals in G, then (G1, G2) is a b-
literal in G. • If L0 is a propositional atomA in LassertT or its default negation notA,
and each of G1, . . . Gn is a b-literal, then L0 ← G1, . . . , Gn is a generalised logic
program rule over LassertT and G. • If R is a rule over LassertT then assert(R) is a
propositional atom of LassertT . • Nothing else is a propositional atom in Lassertor a
b-literal in G.

An evolving logic program with temporal operators over a languageL is a (possibly
infinite) set of generalised logic program rules over LassertT and G.

Note that under this definition, e.g. the following is a legal EVOLPT rule:

assert(a← not♦(b))←
not�(not♦(b, not assert(c← d))).

Notice the nesting of temporal operators and the appearance of negation, conjunction
and assert under the scope of the temporal operators.
In contradistinction, e.g. the following rules are not allowed: assert(�(b)← a)← b.
a← ♦(not (a, b)). a← not not b.

1Intuitively, b-literal stands for body-literal.
2Intuitively, t-formula stands for temporal-formula.



In the first rule, �(b) appears in the argument rule �(b) ← a, but temporal op-
erators are not allowed in the head of rules. The second rule applies negation to a
conjunctive b-literal, and the third rule has double negation. But negation is only al-
lowed in front of atoms and t-formulae.

As in EVOLP, the definition of the semantics is based on sequences of interpreta-
tions or states 〈I1, . . . , In〉 (or evolution interpretation). Each interpretation in a se-
quence stands for the propositional atoms (of LassertT ) that are true at the state, and
a sequence stands for a possible evolution of an initial program after a given number
n of evolution steps. However, whereas in the original EVOLP language the satis-
fiability of rule bodies in one such interpretation Ii can easily be defined in terms
of set inclusion—all the positive atoms must be included in Ii, all the negative ones
excluded—in EVOLPT satisfiability is more elaborate as it must account for the Past
LTL modalities.

Definition 7 (Satisfiability of b-literals) Let I = 〈I1, ..., In〉 be an evolution inter-
pretation of length n of a program P over LassertT , and let G and G′ be any b-literals
in G. The satisfiability relation is defined as:

I |= A iff A ∈ In ∧A ∈ LassertT

I |= notG iff 〈I1, ..., In〉 6|= G
I |= G,G′ iff 〈I1, ..., In〉 |= G ∧ 〈I1, ..., In〉 |= G′

I |=©(G) iff n ≥ 2 ∧ 〈I1, ..., In−1〉 |= G
I |= ♦(G) iff n ≥ 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G
I |= S(G,G′) iff n > 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G′∧

∀i < k < n : 〈I1, ..., Ik〉 |= G
I |= �(G) iff ∀i < n : 〈I1, ..., Ii〉 |= G

Given an evolution interpretation, an evolution trace (defined below) represents one
of the possible evolutions of the knowledge base. In EVOLPT , whether an evolution
trace is one of these possible evolutions additionally depends on the satisfaction of
the t-formulae that appear in rules. Towards formally defining evolution traces, we
first define an elimination procedure which evaluates satisfiability of t-formulae and
replaces them with a corresponding truth constant.

Definition 8 (Elimination of Temporal Operators) Let I = 〈I1, . . . , In〉 be an evo-
lution interpretation and L0 ← G1, . . . , Gn a generalised logic program rule. The rule
resulting from the elimination of temporal operators given I,El(I, L0 ← G1, . . . , Gn)
is obtained by replacing by true every t-formula Gt in the body such I |= Gt and by
replacing all remaining t-formulae by false, where constants true and false are de-
fined, as usual, such that the former is true in every interpretation and the latter is not
true in any interpretation.

The program resulting from the elimination of temporal operators given I,El(I, P )
is obtained by applying El to each of the program’s rules.

An evolution trace is then defined as in Def. 3, except t-formulae are eliminated by
applying El.



Definition 9 (Evolution Trace) Let P be an EVOLPT program and I = 〈I1, . . . , In〉
an interpretation. The evolution trace of P under I is the sequence of programs
〈P1, P2, . . . , Pn〉whereP1 = El(〈I1〉, P ) andPi = El(〈I1, . . . , Ii〉, {R | assert(R) ∈
Ii−1}) for 2 ≤ i ≤ n.

Since the programs in an evolution trace do not mention t-formulae, the definition
of evolution stable models can be done in a similar way as in Def. 5, only taking into
account that the temporal operators must also be tested for satisfiability, and eliminated
accordingly, from the evolution trace and also from the external events. Here, events
are simply sequences of EVOLPT programs.

Definition 10 (Evolution Stable Model with Temp. Ops.) Let I = 〈I1, . . . , In〉 be
an evolution interpretation of an EVOLPT program P and 〈P1, P2, . . . , Pn〉 be the
corresponding execution trace. Then I is an evolution stable model of P given event
sequence 〈E1, E2, . . . , En〉 iff Ii is a stable model of 〈P1, P2, . . . , (Pi∪E∗i )〉 for every
i (1 ≤ i ≤ n), where E∗i = {El(〈I1, . . . , Ii〉, r) | r ∈ Ei}.

Since various evolutions may exist for a given length, evolution stable models alone
do not determine a truth relation. But one such truth relation can be defined, as usual,
based on the intersection of models:

Definition 11 (Stable Models after n Steps given Events) LetP be an EVOLPT pro-
gram over the language L. We say that a set of propositional atoms M over LassertT

is a stable model of P after n steps given the sequence of events E iff there exist
I1, . . . , In−1 such that 〈I1, . . . , In−1,M〉 is an evolution stable model of P given SE.
We say that propositional atom A of LassertT is: • true after n steps given E iff all
stable models after n steps contain A; • false after n steps given E iff no stable model
after n steps contains A; • unknown after n steps given E otherwise.

It is worth noting that basic properties of Past LTL operators carry over to EVOLPT .
In particular, in EVOLPT , as in LTL, some of the operators are not strictly needed,
since they can be rewritten in terms of the others:

Proposition 1 Let t I = 〈I1, . . . , In〉 be an evolution stable model of an EVOLPT

program given a sequence of events E . Then, for every G ∈ G:
• I |= �(G) iff I |= not♦(notG);
• I |= ♦(G) iff I |= S(true,G)

Moreover, it should also be noted that EVOLPT is an extension of EVOLP in the
sense that when no temporal operators appear in the program and in the sequence of
events, then evolution stable models coincide with those of the original EVOLP. As an
immediate consequence of this fact, it can also be noted that EVOLPT coincides with
answer-sets when, moreover, the sequence of events is empty and predicate assert/1
does not occur in the program.



4 Embed Temporal Operators in EVOLP
In this section we show that it is possible to transform EVOLPT programs into regu-
lar EVOLP programs. This transformation is important for at least two reasons. On
one hand, it shows that EVOLP is expressive enough to deal with non-Markovian con-
ditions, although not immediately nor easily. On the other hand, given the existing
implementations of EVOLP, the transformation readily provides a means to implement
EVOLPT , and this way to easily and directly express non-Markovian conditions over
evolving logic programs3.

Similar transformations have been used for theories of action in the situation cal-
culus [15] and for temporal queries in databases [10]. They replace t-formulae with
new propositional atoms and rules that encode the dynamics of the temporal operators.
First we introduce the target language.

Definition 12 (Transformation Language) Let L be any propositional language, and
letLassertT and G be, respectively, the extended language and the set of b-literals given
L. The transformed propositional language L∗ is L augmented with a propositional
variable ′G′ for each b-literal G in G. Here by ′G′ we mean a propositional variable
whose name is the (atomic) string of characters that compose the formula G. Further-
more, it is assumed that none of these new propositional variables already occur in
L.

In fact, as it will become clear in the sequel, the transformation language could be
made simpler by adding new propositional variables only for those b-literals that appear
in either the program or the sequence of events. Indeed, the aforementioned implemen-
tation uses the shorter transformation language, only adding the rules of the transfor-
mation (below) for those b-literals that appear in the program, and further adding then
to those appearing in the events, along with the arrival of events. However, since in
this paper we do not focus on the complexity of the transformation, in order to keep the
definition as simple as possible we opted for not further restricting the transformation
language.

Definition 13 (Transformed EVOLP program) Let P be an EVOLP program with
temporal operators over L. Then Tr(P ) is an EVOLP program (without temporal
operators) in language L∗ obtained from P by replacing every t-formulaG in the body
of rules by the new propositional variable ′G′ and adding the rules:
• assert(′©(G)′)←′ G′. and
assert(not ′© (G)′)← not ′G′.
for every b-literal©(G) appearing in P ;

• assert(′♦(G)′)←′ G′.
for every b-literal ♦(G) appearing in P ;

• assert(′S(G1, G2)′)←′ G′1,′©(G2)′. and
assert(assert(not′S(G1, G2)

′)← not
′
G′1)←

assert(′S(G1, G2)
′).

for every b-literal S(G1, G2) appearing in P ;

3Implementation available at http://centria.fct.unl.pt/˜jja/updates/



• ′�(G)′ ←′ G′, not © true. and
assert(not ′�(G)′)← not ′G′.
for every b-literal �(G) appearing in P ;
•′notG′ ← not ′G′.

for every b-literal notG appearing in P ;
• ′G1, G

′
2 ←′ G′1,′G′2. and

′G2, G
′
1 ←′ G′1,′G′2.

for every pair of b-literals G1 and G2 appearing in P .

Before establishing the correctness of this transformation with respect to EVOLPT ,
it is worth giving some intuition on how the rules added in the transformed program
indeed capture the meaning of the temporal operators.

The rule for ♦(G) guarantees that whenever ′G′ is true at some state, the fact ′♦(G)′

is added to the subsequent program. So, since no rule for not ′♦(G)′ is added in the
transformation, and no rule head in the EVOLPT program contains ♦(G), from then
onwards ′♦(G)′ is true. The first rule for©(G) is similar to the one for ♦(G). But the
second adds the fact not © (G) in case notG is true. So, ′© (G)′ will be true in the
state after the one in which ′G′ is true, and will become false in a state immediately
after one in which ′G′ is false, as desired.

The rules for �(G) are also easy to explain, and in fact result from the dualisation
of the ♦(G) operator. More interesting are the rules for S(G1, G2). The first simply
caters for the condition for which ′S(G1, G2)′ starts to be true: it adds a fact for it,
in the state immediately after one in which ′G′1 is true and which is preceded by one
in which ′G′2 is true. With the addition of this fact, according to the semantics of
EVOLP, ′S(G1, G2)′ will remain true by inertia in subsequent states until some rule
for not ′S(G1, G2)′. We want this to happen until a state immediately after one in
which ′G′1 becomes false. This effect is obtained with the second rule by adding, along
with the fact ′S(G1, G2)′, a rule stating that the falsity of ′G′1 leads to the assertion of
not ′S(G1, G2)′.

The nesting of temporal operators is dealt with in the transformation by adding the
above rules for all possible nestings. However, since this nesting can be combined with
conjunction and negation, as per the definition of the syntax of EVOLPT (Def. 6), care
must be taken with the new propositional variables that stand for those conjunctions
and negations. For this, the last rules of the transformation are added, guaranteeing
that a new atom with a conjunction is true in case the b-literals in the conjunction are
true, and that a new atom with the negation of a b-literal is true in case the negation of
the b-literal is true.

These intuitions form the basis to prove the next theorem. The proof, that cannot be
added here due to lack of space, proceeds by induction on the length of the sequence
of interpretations, showing that the transformed atoms corresponding to t-formulae
satisfied in each state, and some additional assert-literals guarantying the assertion of
t-formulae, belong to the interpretation state.

Theorem 2 (Embedding of Temporal Operator) LetP be an evolving logic program
with temporal operators over language L, and let Tr(P ) be the transformed evolving
logic program over language L∗. Then M = 〈I1, . . . , In〉 is an evolving stable model



of P iff there exists an evolving stable model M ′ = 〈I ′1, . . . , I ′n〉 of Tr(P ) such that
I1 = (I ′1∩Lassert), . . . , In = (I ′n∩Lassert).

Since events are also EVOLPT programs, we can easily deal with events by apply-
ing the same transformation. First, when transforming the main program P , we take
into account the t-formulae in the event sequence. Then the transformation is applied
to the events themselves.

Definition 14 (Transformed EVOLP and Event Sequence) LetP be an evolving pro-
gram with temporal operators and 〈E1, . . . , Ek〉 be an event sequence, both over L.
Then Tr(P, 〈E1, . . . , Ek〉) is an EVOLP program (without temporal operators) in lan-
guage L∗ obtained from P by applying exactly the same procedure as in Definition 13,
only replacing “appearing in P ” by “either appearing in P or in any of the Ei’s”.

Theorem 3 (Embedding of Temp. Op. with Events) Let P be an evolving logic pro-
gram with temporal operators over language L, and let Tr(P ) be the transformed
evolving logic program over language L∗. Then M = 〈I1, . . . , In〉 is an evolving
stable model of P given 〈E1, . . . , Ek〉 iff there exists an evolving stable model M ′ =
〈I ′1, . . . , I ′n〉 of Tr(P, 〈E1, E2, . . . , Ek〉) given the sequence 〈Tr(E1), . . . , T r(Ek)〉
such that I1 = (I ′1∩Lassert), . . . , In = (I ′n∩Lassert).

5 Related Work and Conclusions
We have introduced the language EVOLPT for representing and reasoning about evolv-
ing knowledge bases with non-Markovian dynamics. The language generalizes its pre-
decessor EVOLP by providing rules that may refer to the past states in a knowledge
base evolution through Past LTL modalities. In addition to defining a syntax and se-
mantics for the new language, we show, through a syntactic transformation, that an
evolving logic program in EVOLPT can be compiled into a regular program in EVOLP.
The latter is thus proved to be expressive enough to capture non-Markovian, evolving
knowledge bases as defined above.

The use of temporal logic in computer science is widespread. Here we would like
to mention some of the most closely related work. Eiter et al. [13] present a very gen-
eral framework for reasoning about evolving knowledge bases. This abstract frame-
work allows the study of different approaches to logic programming knowledge base
update, including those specified in LUPS, EPI, and KABUL. For the purpose of veri-
fying properties of evolving knowledge bases in this language, they define a syntax and
semantics for Computational Tree Logic (CTL), a branching temporal logic, modali-
ties. While in [13] temporal logic is only used for verifying meta-level properties, in
EVOLPT temporal operators are used in the object language to specify the behavior of
an evolving knowledge base.

In the area of reasoning about actions, [24] describes an extension of the action
language A with Past LTL operators, which allows formalizing actions whose effects
depend on the evolution of the described domain. On a similar vein but in the more
expressive situation calculus, [14] shows a generalization of Reiter’s Basic Action The-
ories for systems with non-Markovian dynamics. Both of these formalisms provide



languages that can refer to past states in the evolution of a dynamic system. However,
the focus of these formalisms is on solving the projection problem, i.e., reasoning about
what will be true in the resulting state after executing a sequence of actions. On the
other hand, the focus in the EVOLPT language is specifying updates to the system’s
knowledge base itself due to internal or external influence. For example, a system
formalized in EVOLPT would be able to modify the description of its own behavior,
which is not possible in A or in Basic Action Theories.

Also designed for specifying dynamic systems using temporal logic is METATEM
[7]. A program in this language consists of rules of the form P ⇒ F , where P is a Past
LTL formula and F is a Future LTL formula. Intuitively, such a rule evaluated in a state
specifies that if the evolution of the system up to this state satisfies P , then the system
must proceed in such a way that F be satisfied. EVOLPT does not include Future
LTL connectives (our future work) so METATEM is more expressive in that sense. On
the other hand, METATEM does not have a construct for updates and it is monotonic,
unlike EVOLPT . In [6] the authors propose a non-monotonic extension of LTL with
the purpose of specifying agent’s goals. Whereas [6] share with our work the the use
of LTL operators and non-monotonicity, like METATEM it provides future operators,
but the non-monotonic character in [6] is given by limited explicit exceptions to rules,
thus appearing to be less general than our proposal.
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