
Chapter 5

Algorithm Analysis and Asymptotic

Notation

5.1 Correctness, running time of programs

So far we have been proving statements about databases, mathematics and arithmetic, or sequences of

numbers. Though these types of statements are common in computer science, you'll probably encounter

algorithms most of the time. Often we want to reason about algorithms and even prove things about them.

Wouldn't it be nice to be able to prove that your program is correct? Especially if you're programming a

heart monitor or a NASA spacecraft?

In this chapter we'll introduce a number of tools for dealing with computer algorithms, formalizing their

expression, and techniques for analyzing properties of algorithms, so that we can prove correctness or prove

bounds on the resources that are required.

5.2 Binary (base 2) notation

Let's �rst think about numbers. In our everyday life, we write numbers in decimal (base 10) notation

(although I heard of one kid who learned to use the �ngers of her left hand to count from 0 to 31 in base

2). In decimal, the sequence of digits 20395 represents (parsing from the right):

5 + 9(10) + 3(100) + 0(1000) + 2(10000) =

5(100) + 9(101) + 3(102) + 0(103) + 2(104)

Each position represents a power of 10, and 10 is called the base. Each position has a digit from [0; 9]

representing how many of that power to add. Why do we use 10? Perhaps due to having 10 �ngers

(however, humans at various times have used base 60, base 20, and mixed base 20,18 (Mayans)). In the last

case there were (105)20;18 days in the year. Any integer with absolute value greater than 1 will work (so

experiment with base �2).
Consider using 2 as the base for our notation. What digits should we use?1 We don't need digits 2 or

higher, since they are expressed by choosing a di�erent position for our digits (just as in base 10, where

there is no single digit for numbers 10 and greater).

Here are some examples of binary numbers:

(10011)2

represents

1(20) + 1(21) + 0(22) + 0(23) + 1(24) = (19)10

49

Course notes for csc 165 h

We can extend the idea, and imitate the decimal point (with a \binary point"?) from base 10:

(1011:101)2 = 19
5

8

How did we do that?2 Here are some questions:

� How do you multiply two base 10 numbers?3 Work out 37� 43.

� How do you multiply two binary numbers?4

� What does \right shifting" (eliminating the right-most digit) do in base 10?5

� What does \right shifting" do in binary?6

� What does the rightmost digit tell us in base 10? In binary?

Convert some numbers from decimal to binary notation. Try 57. We'd like to represent 57 by adding either

0 or 1 of each power of 2 that is no greater than 57. So 57 = 32 + 16 + 8 + 1 = (111001)2. We can also �ll

in the binary digits, systematically, from the bottom up, using the % operator from Python (the remainder

after division operator, at least for positive arguments):

57 % 2 = 1 so (?????1)2

(57� 1)=2 = 28 % 2 = 0 so (????01)2

28=2 = 14 % 2 = 0 so (???001)2

14=2 = 7 % 2 = 1 so (??1001)2

(7� 1)=2 = 3 % 2 = 1 so (?11001)2

(3� 1)=2 = 1 % 2 = 1 so (111001)2

Addition in binary is the same as (only di�erent from. . .) addition in decimal. Just remember that (1)2 +

(1)2 = (10)2. If we add two binary numbers, this tells us when to \carry" 1:

1011

+ 1011

10110

5.3 log2

How many 5-digit binary numbers are there (including those with leading 0s)? These numbers run from

(00000)2 through (11111)2, or 0 through 31 in decimal|32 numbers. Another way to count them is to

consider that there are two choices for each digit, hence 25 strings of digits. If we add one more digit we get

twice as many numbers. Every digit doubles the range of numbers, so there are two 1-digit binary numbers

(0 and 1), four 2-digit binary numbers (0 through 3), 8 3-digit binary numbers (0 through 7), and so on.

Reverse the question: how many digits are required to represent a given number. In other words, what

is the smallest integer power of 2 needed to exceed a given number? log2 x is the power of 2 that gives

2log2 x = x. You can think of it as how many times you must multiply 1 by 2 to get x, or roughly the number

of digits in the binary representation of x. (The precise number of digits needed is dlog2(x+ 1)e|which

happens to be equal to b(log2 x) + 1c for all positive values of x).

5.4 Loop invariant for base 2 multiplication

Integers are naturally represented on a computer in binary, since a gate can be in either an on or o� (1 or

0) position. It is very easy to multiply or divide by 2, since all we need to do is perform a left or right shift

(an easy hardware operation). Similarly, it is also very easy to determine whether an integer is even or odd.

Putting these together, we can write a multiplication algorithm that uses these fast operations:

50

Chapter 5. Algorithm Analysis and Asymptotic Notation

def mult(m,n):

""" Multiply integers m and n. """

Precondition: m >= 0

x = m

y = n

z = 0

loop invariant: z = mn - xy

while x != 0:

if x % 2 == 1: z = z + y # x is odd

x = x >> 1 # x = x / 2 (right shift)

y = y << 1 # y = y * 2 (left shift)

post condition: z = mn

return z

After reading this algorithm, there is no reason you should believe it actually multiplies two integers: we'll

need to prove it to you. Let's consider the precondition �rst. So long as m is a positive natural number, and

n is an integer, the program claims to work. The postcondition states that z, the value that is returned, is

equal to the product of m and n (that would be nice, but we're not convinced).

Let's look at the stated loop invariant. A loop invariant is a relationship between the variables that is

always true at the start and at the end of a loop iteration (we'll need to prove this). It's su�cient to verify

that the invariant is true at the start of the �rst iteration, and verify that if the invariant is true at the start

of any iteration, it must be true at the end of the iteration. Before we start the loop, we set x = m, y = n

and z = 0, so it is clear that z = mn � xy = mn �mn = 0. Now we need to show that if z = mn � xy

before executing the body of the loop, and x 6= 0, then after executing the loop body, z = mn� xy is still

true (can you write this statement formally?). Here's a sketch of a proof:

Assume xi; yi; zi; xi+1; yi+1; zi+1;m; n 2 Z, where xi represents the value of variable x at the beginning
of the ith iteration of the loop, and similarly for the other variables and subscripts. (Note that there

is no need to subscript m;n, since they aren't changed by the loop.)

Assume zi = mn� xiyi.

Case 1: Assume xi odd.

Then zi+1 = zi + yi, xi+1 = (xi � 1)=2, and yi+1 = 2yi.

So

mn� xi+1yi+1 = mn� (xi � 1)=2 � 2yi (since xi is odd)

= mn� xiyi + yi

= zi + yi

= zi+1

Case 2: Assume xi even.

Then zi+1 = zi, xi+1 = xi=2, and yi+1 = 2yi.

So

mn� xi+1yi+1 = mn� xi=2 � 2yi
= mn� xiyi

= zi

= zi+1

Since xi is either even or odd, in all cases mn� xi+1yi+1 = zi+1

51

Course notes for csc 165 h

Thus mn� xiyi = zi)mn� xi+1yi+1 = zi+1.

Since xi; xi+1; yi; yi+1; zi; zi+1;m; n are arbitrary elements,

8xi; xi+1; yi; yi+1; zi; zi+1;m; n 2 Z;mn� xiyi = zi)mn� xi+1yi+1 = zi+1.

We should probably verify the postcondition to fully convince ourselves of the correctness of this algorithm.

We've shown the loop invariant holds, so let's see what we can conclude when the loop terminates (i.e.,

when x = 0). By the loop invariant, z = mn � xy = mn � 0 = mn, so we know we must get the right

answer (assuming the loop eventually terminates).

We should now be fairly convinced that this algorithm is in fact correct. One might now wonder, how

many iterations of the loop are completed before the answer is returned?

Also, why is it necessary for m > 0? What happens if it isn't?

5.5 Running time of programs

For any program P and any input x, let tP (x) denote the number of \steps" P takes on input x. We need to

specify what we mean by a \step." A \step" typically corresponds to machine instructions being executed,

or some indication of time or resources expended.

Consider the following (somewhat arbitrary) accounting for common program steps:

method call: 1 step + steps to evaluate each argument + steps to execute the method.

return statement: 1 step + steps to evaluate return value.

if statement: 1 step + steps to evaluate condition.

assignment statement: 1 step + steps to evaluate each side.

arithmetic, comparison, boolean operators: 1 step + steps to evaluate each operand.

array access: 1 step + steps to evaluate index.

member access: 2 steps.

constant, variable evaluation: 1 step.

Notice that none of these \steps" (except for method calls) depend on the size of the input (sometimes

denoted with the symbol n). The smallest and largest steps above di�er from each other by a constant of

about 5, so we can make the additional simplifying assumption that they all have the same cost|1.

5.6 Linear search

Let's use linear search as an example.

def LS(A,x):

""" Return an index i such that x == L[i]. Otherwise, return -1. """

i = 0 # (line 1)

while i < len(A): # (line 2)

if A[i] == x: # (line 3)

return i # (line 4)

i = i + 1 # (line 5)

return -1 # (line 6)

Let's trace a function call, LS([2,4,6,8],4):

Line 1: 1 step (i=0)

52

Chapter 5. Algorithm Analysis and Asymptotic Notation

Line 2: 1 step (0 < 4)

Line 3: 1 step (A[0] == 4)

Line 5: 1 step (i = 1)

Line 2: 1 step (1 < 4)

Line 3: 1 step (A[1] == 4)

Line 4: 1 (return 1)

So tLS([2; 4; 6; 8]; 4) = 7. Notice that if the �rst index where x is found is j, then tLS(A; x) will count lines

2, 3, and 5 once for each index from 0 to j � 1 (j indices), and then count lines 2, 3, 4 for index j, and so

tLS(A; x) will be 1 + 3j + 3.

If x does not appear in A, then tLS(A; x) = 1+3 len(A)+ 2, because line 1 executes once, lines 2, 3, and

5 executes once for each index from 0 to len(A)� 1, and then lines 2 and 6 execute.

We want a measure that depends on the size of the input, not the particular input. There are three

standard ways. Let P be a program, and let I be the set of all inputs for P . Then:

Average-case complexity: the weighted average over all possible inputs of size n.

In general

AP (n) =
X

x of size n

tP (x) � p(x)

where p(x) is the probability that input x is encountered.

Assuming all the inputs are equally likely, this \simpli�es" to

AP (n) =

P
x of size n tP (x)

number of inputs of size n

(Di�cult to compute.)

Best-case complexity: min(tP (x)), where x is an input of size n.

In other words, BP (n) = minftP (x) j x 2 I ^ size(x) = ng.
(Mostly useless.)

Worst-case complexity: max(tP (x)), where x is an input of size n.

In other words, WP (n) = maxftP (x) j x 2 I ^ size(x) = ng.
(Relatively easy to compute, and gives a performance guarantee.)

What is meant by \input size"? This depends on the algorithm. For linear search, the number of elements

in the array is a reasonable parameter. Technically (in csc 463 h, for example), the size is the number of

bits required to represent the input in binary. In practice we use the number of elements of input (length of

array, number of nodes in a tree, etc.)

5.7 Run time and constant factors

When calculating the running time of a program, we may know how many basic \steps" it takes as a function

of input size, but we may not know how long each step takes on a particular computer. We would like to

estimate the overall running time of an algorithm while ignoring constant factors (like how fast the CPU

is). So, for example, if we have 3 machines, where operations take 3�s, 8�s and 0.5�s, the three functions

measuring the amount of time required, t(n) = 3n2, t(n) = 8n2, and t(n) = n2=2 are considered the same,

53

Course notes for csc 165 h

ignoring (\to within") constant factors (the time required always grows according to a quadratic function

in terms of the size of the input n).

To view this another way, think back to the linear search example in the previous section. The worst-case

running time for that algorithm was given by the function

W (n) = 3n+ 3

But what exactly does the constant \3" in front of the \n" represent? Or the additive \+3"? Neither value

corresponds to any intrinsic property of the algorithm itself; rather, the values are consequences of some

arbitrary choices on our part, namely, how many \steps" to count for certain Python statements. Someone

counting di�erently (e.g., counting more than 1 step for statements that access list elements by index) would

arrive at a di�erent expression for the worst-case running time. Would their answer be \more" or \less"

correct than ours? Neither: both answers are just as imprecise as one another! This is why we want to come

up with a tool that allows us to work with functions while ignoring constant multipliers.

The nice thing is that this means that lower order terms can be ignored as well! So f(n) = 3n2 and

g(n) = 3n2 + 2 are considered \the same," as are h(n) = 3n2 + 2n and j(n) = 5n2. Notice that

8n 2 N; n > 1) f(n) 6 g(n) 6 h(n) 6 j(n)

but there's always a constant factor that can reverse any of these inequalities.

Really what we want to measure is the growth rate of functions (and in computer science, the growth

rate of functions that bound the running time of algorithms). You might be familiar with binary search and

linear search (two algorithms for searching for a value in a sorted array). Suppose one computer runs binary

search and one computer runs linear search. Which computer will give an answer �rst, assuming the two

computers run at roughly the same CPU speed? What if one computer is much faster (in terms of CPU

speed) than the other, does it a�ect your answer? What if the array is really, really big?

How large is \sufficiently large?"

Is binary search a better algorithm than linear search?7 It depends on the size of the input. For example,

suppose you established that linear search has complexity L(n) = 3n and binary search has complexity

B(n) = 9 log2 n. For the �rst few n, L(n) is smaller than B(n). However, certainly for n > 10, B(n) is

smaller, indicating less \work" for binary search.

When we say \large enough" n, we mean we are discussing the asymptotic behaviour of the complexity

function (i.e., the behaviour as n grows toward in�nity), and we are prepared to ignore the behaviour near

the origin.

5.8 Asymptotic notation: Making Big-O precise

We de�ne R>0 as the set of nonnegative real numbers, and de�ne R+ as the set of positive real numbers.

Here is a precise de�nition of \The set of functions that are eventually no more than f , to within a constant

factor":

Definition: For any function f : N! R>0 (i.e., any function mapping naturals to nonnegative reals), let

O(f) = �g : N! R>0 j 9c 2 R+; 9B 2 N;8n 2 N; n > B) g(n) 6 cf(n)
	
:

Saying g 2 O(f) says that \g grows no faster than f" (or equivalently, \f is an upper bound for g"), so

long as we modify our understanding of \growing no faster" and being an \upper bound" with the practice

of ignoring constant factors. Now we can prove some theorems.

54

Chapter 5. Algorithm Analysis and Asymptotic Notation

Suppose g(n) = 3n2 + 2 and f(n) = n2. Then g 2 O(f). To be more precise, we need to prove the

statement 9c 2 R+; 9B 2 N; 8n 2 N; n > B) 3n2 + 2 6 cn2. It's enough to �nd some c and B that \work"

in order to prove the theorem.

Finding c means �nding a factor that will scale n2 up to the size of 3n2+2. Setting c = 3 almost works,

but there's that annoying additional term 2. Certainly 3n2+2 < 4n2 so long as n > 2, since n > 2)n2 > 2.

So pick c = 4 and B = 2 (other values also work, but we like the ones we thought of �rst). Now concoct a

proof of

9c 2 R+; 9B 2 N; 8n 2 N; n > B) 3n2 + 2 6 cn2:

Let c0 = 4 and B0 = 2.

Then c0 2 R+ and B0 2 N.
Assume n 2 N and n > B0. # direct proof for an arbitrary natural number

Then n2 > B02 = 4. # squaring is monotonic on natural numbers

Then n2 > 2.

Then 3n2 + n2 > 3n2 + 2. # adding 3n2 to both sides of the inequality

Then 3n2 + 2 6 4n2 = c0n2 # re-write

Then 8n 2 N; n > B0) 3n2 + 2 6 c0n2 # introduce 8 and)
Then 9c 2 R+; 9B 2 N; 8n 2 N; n > B) 3n2 + 2 6 cn2. # introduce 9 (twice)

So, by de�nition, g 2 O(f).

A more complex example

Let's prove that 2n3 � 5n4 + 7n6 is in O(n2 � 4n5 + 6n8). We begin with:

Let c0 = . Then c0 2 R+.

Let B0 = . Then B0 2 N.
Assume n 2 N and n > B0. # arbitrary natural number and antecedent

Then 2n3 � 5n4 + 7n6 6 : : : 6 c0(n2 � 4n5 + 6n8).

Then 8n 2 N; n > Bi0) 2n3 � 5n4 + 7n6 6 c0(n2 � 4n5 + 6n8). # introduce) and 8
Hence, 9c 2 R+; 9B 2 N; 8n 2 N; n > B) 2n3 � 5n4 + 7n6 6 c(n2 � 4n5 + 6n8). # introduce 9

To �ll in the � � � we try to form a chain of inequalities, working from both ends, simplifying the expressions:

2n3 � 5n4 + 7n6 6 2n3 + 7n6 (drop �5n4 because it doesn't help us in an important way)

6 2n6 + 7n6 (increase n3 to n6 because we have to handle n6 anyway)

= 9n6

6 9n8 (simpler to compare)

= 2(9=2)n8 (get as close to form of the simpli�ed end result: now choose c0 = 9=2)

= 2cn8

= c0(�4n8 + 6n8) (reading bottom up: decrease �4n5 to �4n8 because we have to
handle n8 anyway)

6 c0(�4n5 + 6n8) (reading bottom up: drop n2 because it doesn't help us in an

important way)

6 c0(n2 � 4n5 + 6n8)

We never needed to restrict n in any way beyond n 2 N (which includes n > 0), so we can �ll in c0 = 9=2,

B0 = 0, and complete the proof.

Let's use this approach to prove n4 =2 O(3n2). More precisely, we have to prove the negation of the

statement 9c 2 R+; 9B 2 N; 8n 2 N;n > B) n4 6 c3n2.

55

Course notes for csc 165 h

Assume c 2 R+ and B 2 N. # arbitrary positive real number and natural number

Let n0 = .
...

So n0 2 N.
...

So n0 > B.
...

So n4
0 > c3n2

0.

Then 8c 2 R+; 8B 2 N; 9n 2 N; n > B ^ n4 > c3n2.

Here's our chain of inequalities (the third
...):

And n4
0 > n3

0 (don't need full power of n4
0)

= n0 � n2
0 (make form as close as possible)

> c � 3n2
0 (if we make n0 > 3c and n0 > 0)

Now pick n0 = max(B; d3c+ 1e).
The �rst

... is:

Since c > 0, 3c+ 1 > 0, so d3c+ 1e 2 N.
Since B 2 N, max(B; d3c+ 1e) 2 N.

The second
... is:

max(B; d3c+ 1e) > B.

We also note just before the chain of inequalities:

n0 = max(B; d3c+ 1e) > d3c+ 1e > 3c+ 1 > 3c.

Some points to note are:

� Don't \solve" for n until you've made the form of the two sides as close as possible.

� You're not exactly solving for n: you are �nding a condition of the form n > that makes the desired

inequality true. You might �nd yourself using the \max" function a lot.

Other bounds

In analogy with O(f), consider two other de�nitions:
Definition: For any function f : N! R>0, let

(f) =
�
g : N! R>0 j 9c 2 R+;9B 2 N; 8n 2 N; n > B) g(n) > cf(n)

	
:

To say \g 2
(f)" expresses the concept that \g grows at least as fast as f" (f is a lower bound on g).

Definition: For any function f : N! R>0, let

�(f) =
�
g : N! R>0 j 9c1 2 R+; 9c2 2 R+; 9B 2 N;8n 2 N; n > B) c1f(n) 6 g(n) 6 c2f(n)

	
:

To say \g 2 �(f)" expresses the concept that \g grows at the same rate as f" (f is a tight bound for g, or

f is both an upper bound and a lower bound on g).

56

Chapter 5. Algorithm Analysis and Asymptotic Notation

Induction interlude

Suppose P (n) is some predicate of the natural numbers, and:

(�) P (0) ^ (8n 2 N; P (n)) P (n+ 1)):

You should certainly be able to show that (�) implies P (0), P (1), P (2), in fact P (n) where n is any natural

number you have the patience to follow the chain of results to obtain. In fact, we feel that we can \turn the

crank" enough times to show that (�) implies P (n) for any natural number n. This is called the Principle

of Simple Induction (PSI). It isn't proved, it is an axiom that we assume to be true.

Here's an application of the PSI that will be useful for some big-Oh problems.

P (n): 2n > 2n.

I'd like to prove that 8n; P (n), using the PSI. Here's what I do:

Prove P (0): P (0) states that 20 = 1 > 2(0) = 0, which is true.

Prove 8n 2 N; P (n)) P (n+ 1):

Assume n 2 N. # arbitrary natural number

Assume P (n), that is 2n > 2n. # antecedent

Then n = 0 _ n > 0. # natural numbers are non-negative

Case 1 (assume n = 0): Then 2n+1 = 21 = 2 > 2(n+ 1) = 2.

Case 2 (assume n > 0): Then n > 1. # n is an integer greater than 0

Then 2n > 2. # since n > 1, and 2n is monotone increasing

Then 2n+1 = 2n + 2n > 2n+ 2 = 2(n+ 1). # by previous line and IH P (n)

Then 2n+1 > 2(n+ 1), which is P (n+ 1). # true in both possible cases

Then P (n)) P (n+ 1). # introduce)
Then 8n 2 N; P (n)) P (n+ 1). # introduce 8

I now conclude, by the PSI, 8n 2 N; P (n), that is 2n > 2n.

Here's a big-Oh problem where we can use P (n). Let g(n) = 2n and f(n) = n. I want to show that

g 62 O(f).

Assume c 2 R+, assume B 2 N. # arbitrary values

Let k = max(0; dlog2(c)e) + 1 +B, and let n0 = 2k.

Then n0 2 N. # dxe; 1; 2; B 2 N, N closed under max;+; �
Then n0 > B. # at least twice B

Then 2k > c. # choice of k, 2x is increasing function

Then

g(n0) = 2n0 = 2k � 2k # by choice of k

> 2k � 2k # by P (2k)

= 2k � n0 > cn0 # since n0 = 2k and 2k > c

= cf(n0):

Then n0 > B ^ g(n0) > cf(n0). # introduce ^
Then 9n 2 N; n > B ^ g(n) > cf(n). # introduce 9

Then 8c 2 R; 8B 2 N; 9n 2 N; n > B ^ g(n) > cf(n). # introduce 8

So, I can conclude that g 62 O(f).

57

Course notes for csc 165 h

What happens to induction for predicates that are true for all natural numbers after a certain point, but

untrue for the �rst few natural numbers? For example, 2n grows much more quickly than n2, but 23 is not

larger than 32. Choose n big enough, though, and it is true that:

P (n) : 2n > n2:

You can't prove this for all n, when it is false for n = 2; n = 3, and n = 4, so you'll need to restrict the

domain and prove that for all natural numbers greater than 4, P (n) is true. We don't have a slick way to

restrict domains in our symbolic notation. Let's consider three ways to restrict the natural numbers to just

those greater than 4, and then use induction.

Restrict by set difference: One way to restrict the domain is by set di�erence:

8n 2 N n f0; 1; 2; 3; 4g; P (n)

Again, we'll need to prove P (5), and then that 8n 2 N n f0; 1; 2; 3; 4g; P (n)) P (n+ 1).

Restrict by translation: We can also restrict the domain by translating our predicate, by lettingQ(n) =

P (n+ 5), that is:

Q(n) : 2n+5 > (n+ 5)2

Now our task is to prove Q(0) is true and that for all n 2 N, Q(n))Q(n+1). This is simple induction.

Restrict using implication: Another method of restriction uses implication to restrict the domain where

we claim P (n) is true| in the same way as for sentences:

8n 2 N; n > 5) P (n):

The expanded predicate Q(n) : n > 5) P (n) now �ts our pattern for simple induction, and all we

need to do is prove:

1. Q(0) is true (it is vacuously true, since 0 > 5 is false).

2. 8n 2 N; Q(n))Q(n+ 1). This breaks into cases.

� If n < 4, then Q(n) and Q(n+1) are both vacuously true (the antecedents of the implication

are false, since n and n+1 are not greater than, nor equal to, 5), so there is nothing to prove.

� If n = 4, then Q(n) is vacuously true, but Q(n+1) has a true antecedent (5 > 5), so we need

to prove Q(5) directly: 25 > 52 is true, since 32 > 25.

� If n > 4, we can depend on the assumption of the consequent of Q(n� 1) being true to prove

Q(n):

2n = 2n�1 + 2n�1 (de�nition of 2n)

> 2(n� 1)2 (antecedent of Q(n� 1))

= 2n2 � 2n+ 2 = n2 + n(n� 2) + 2 > n2 + 2 > n2 (since n > 4 > 2)

After all that work, it turns out that we need prove just two things:

1. P (5)

2. 8n 2 N, If n > 4, then P (n)) P (n+ 1).

This is the same as before, except now our base case is P (5) rather than P (0), and we get to use the fact

that n > 5 in our induction step (if we need it).

Whichever argument you're comfortable with, notice that simple induction is basically the same: you

prove the base case (which may now be greater than 0), and you prove the induction step.

58

Chapter 5. Algorithm Analysis and Asymptotic Notation

Some theorems

Here are some general results that we now have the tools to prove.

� f 2 O(f).
� (f 2 O(g) ^ g 2 O(h))) f 2 O(h).
� g 2
(f), f 2 O(g).
� g 2 �(f), g 2 O(f) ^ g 2
(f).

Test your intuition about Big-O by doing the \scratch work" to answer the following questions:

� Are there functions f; g such that f 2 O(g) and g 2 O(f) but f 6= g?8

� Are there functions f; g such that f 62 O(g), and g 62 O(f)?9

To show that (f 2 O(g) ^ g 2 O(h))) f 2 O(h), we need to �nd a constant c 2 R+ and a constant B 2 N,
that satisfy:

8n 2 N; n > B) f(n) 6 ch(n):

Since we have constants that scale h to g and then g to f , it seems clear that we need their product to scale

g to f . And if we take the maximum of the two starting points, we can't go wrong. Making this precise:

Theorem 5.1: For any functions f; g; h : N! R>0, we have (f 2 O(g) ^ g 2 O(h))) f 2 O(h).
Proof:

Assume f 2 O(g) ^ g 2 O(h).
So f 2 O(g).
So 9c 2 R+; 9B 2 N;8n 2 N; n > B) f(n) 6 cg(n). # by def'n of f 2 O(g)
Let cg 2 R+; Bg 2 N be such that 8n 2 N; n > Bg) f(n) 6 cgg(n).

So g 2 O(h).
So 9c 2 R+; 9B 2 N;8n 2 N; n > B) g(n) 6 ch(n). # by def'n of g 2 O(h)
Let ch 2 R+; Bh 2 N be such that 8n 2 N; n > Bh) g(n) 6 chh(n).

Let c0 = cgch. Let B
0 = max(Bg; Bh).

Then, c0 2 R+ (because cg; ch 2 R+) and B0 2 N (because Bg; Bh 2 N).
Assume n 2 N and n > B0.

Then n > Bh (by de�nition of max), so g(n) 6 chh(n).

Then n > Bg (by de�nition of max), so f(n) 6 cgg(n) 6 cgchh(n).

So f(n) 6 c0h(n).

Hence, 8n 2 N; n > B0) f(n) 6 c0h(n).

Therefore, 9c 2 R+; 9B 2 N; 8n 2 N; n > B) f(n) 6 ch(n).

So f 2 O(g), by de�nition.

So (f 2 O(g) ^ g 2 O(h))) f 2 O(h).
To show that g 2
(f), f 2 O(g), it is enough to note that the constant, c, for one direction is positive,

so its reciprocal will work for the other direction.10

Theorem 5.2: For any functions f; g : N! R>0, we have g 2
(f), f 2 O(g).
Proof:

g 2
(f)

() 9c 2 R+; 9B 2 N;8n 2 N; n > B) g(n) > cf(n) (by de�nition)

() 9c0 2 R+; 9B0 2 N; 8n 2 N; n > B0) f(n) 6 c0g(n) (letting c0 = 1=c and B0 = B)

() f 2 O(g) (by de�nition)

To show g 2 �(f), g 2 O(f) ^ g 2
(f), it's really just a matter of unwrapping the de�nitions.

59

Course notes for csc 165 h

Theorem 5.3: For any functions f; g : N! R>0, we have g 2 �(f), g 2 O(f) ^ g 2
(f).

Proof:

g 2 �(f)

, (by de�nition)

9c1 2 R+; 9c2 2 R+; 9B 2 N;8n 2 N; n > B) c1f(n) 6 g(n) 6 c2f(n).

, (combined inequality, and B = max(B1; B2))�9c1 2 R+; 9B1 2 N; 8n 2 N; n > B1) g(n) > c1f(n)
� ^�9c2 2 R+; 9B2 2 N; 8n 2 N; n > B2) g(n) 6 c2f(n)
�

, (by de�nition)

g 2
(f) ^ g 2 O(f)
Here's an example of a corollary that recycles some of the theorems we've already proven (so we don't have to

do the grubby work). To show g 2 �(f),f 2 �(g), I re-use theorems proved above and the commutativity

of ^:
Corollary: For any functions f; g : N! R>0, we have g 2 �(f), f 2 �(g).

Proof:

g 2 �(f)

() g 2 O(f) ^ g 2
(f) (by 5.3)

() g 2 O(f) ^ f 2 O(g) (by 5.2)

() f 2 O(g) ^ g 2 O(f) (by commutativity of ^)
() f 2 O(g) ^ f 2
(g) (by 5.2)

() f 2 �(g) (by 5.3)

A very important note

Note that asymptotic notation (the Big-O, Big-
, and Big-� de�nitions) bound the asymptotic growth rates

of functions, as n approaches in�nity. Often in computer science we use this asymptotic notation to bound

functions that express the running times of algorithms, perhaps in best case or in worst case. Asymptotic

notation does not express or bound the worst case or best case running time, only the functions expressing

these values.

This distinction is subtle, but crucial to understanding both running times and asymptotic notation.

Suppose U is an upper bound on the worst-case running time of some program P , denoted TP (n):

TP 2 O(U)
() 9c 2 R+; 9B 2 N; 8n 2 N; n > B) TP (n) 6 cU(n)

() 9c 2 R+; 9B 2 N; 8n 2 N; n > B)maxftP (x) j x 2 I ^ size(x) = ng 6 cU(n)

() 9c 2 R+; 9B 2 N; 8n 2 N; n > B)8x 2 I; size(x) = n) tP (x) 6 cU(n)

() 9c 2 R+; 9B 2 N; 8x 2 I; size(x) > B) tP (x) 6 cU(size(x))

So to show that TP 2 O(U(n)), you need to �nd constants c and B and show that for an arbitrary input x

of size n, P takes at most c � U(n) steps.
In the other direction, suppose L is a lower bound on the worst-case running time of algorithm P :

TP 2
(L)

() 9c 2 R+; 9B 2 N; 8n 2 N; n > B)maxftP (x) j x 2 I ^ size(x) = ng > cL(n)

() 9c 2 R+; 9B 2 N; 8n 2 N; n > B)9x 2 I; size(x) = n ^ tP (x) > cL(n)

60

Chapter 5. Algorithm Analysis and Asymptotic Notation

So, to prove that Tp 2
(L), we have to �nd constants c, B and for arbitrary n, �nd an input x of size n,

for which we can show that P takes at least cL(n) steps on input x

5.9 Insertion sort example

Here is an intuitive11 sorting algorithm:

def IS(A):

""" Sort the elements of A in non-decreasing order. """

i = 1 # (line 1)

while i < len(A): # (line 2)

t = A[i] # (line 3)

j = i # (line 4)

while j > 0 and A[j-1] > t: # (line 5)

A[j] = A[j-1] # (line 6)

j = j-1 # (line 7)

A[j] = t # (line 8)

i = i+1 # (line 9)

Let's �nd an upper bound for TIS (n), the maximum number of steps to Insertion Sort an array of size n.

We'll use the proof format to prove and �nd the bound simultaneously|during the course of the proof we

can �ll in the necessary values for c and B.

We show that TIS (n) 2 O(n2) (where n = len(A)):

Let c0 = . Let B0 = .

Then c0 2 R+ and B0 2 N.
Assume n 2 N, A is an array of length n, and n > B0.

Then lines 5{7 execute at most n � 1 times, which we can overestimate at 3n steps, plus 1 step

for the last loop test.

Then lines 2{9 take no more than n(5 + 3n) + 1 = 5n+ 3n2 + 1 steps.

So 3n2 + 5n+ 1 6 c0n2 (�ll in the values of c0 and B0 that makes this so|setting c0 = 9; B0 = 1

should do).

Since n is the length of an arbitrary array A, 8n 2 N; n > B0) TIS (n) 6 c0n2 (so long as B0 > 1).

Since c0 is a positive real number and B0 is a natural number,

9c 2 R+;9B 2 N; 8n 2 N; n > B) TIS (n) 6 cn2.

So TIS 2 O(n2) (by de�nition of O(n2)).

Similarly, we prove a lower bound. Speci�cally, TIS 2
(n2):

Let c0 = . Let B0 = .

Then c0 2 R+ and B0 2 N.
Assume n 2 N and n > B0.

Let A0 = [n� 1; : : : ; 1; 0] (notice that this means n > 1).

Then at any point during the outside loop, A0[0::(i�1)] contains the same elements as before but

sorted (i.e., no element from A0[(i+ 1)::(n� 1)] has been examined yet).

Then the inner while loop makes i iterations, at a cost of 3 steps per iteration, plus 1 for the �nal

loop check, since the value A0[i] is less than all the values A0[0::(i � 1)], by construction of the

array.

Then the inner loop makes strictly greater than 2i+ 1, or greater than or equal to 2i+ 2., steps.

Then (since the outer loop varies from i = 1 to i = n� 1 and we have n� 1 iterations of lines 3

and 4, plus one iteration of line 1), we have that tIS (n) > 1+3+5+ � � �+(2n�1)+(2n+1) = n2

(the sum of the �rst n odd numbers), so long as n is at least 4.

61

Course notes for csc 165 h

So there is some array A of size n such that tIS (A) > c0n2.

This means TIS (n) > c0n2 (setting B0 = 4; c0 = 1 will do).

Since n was an arbitrary natural number, 8n 2 N; n > B0) TIS (n) > c0n2.

Since c0 2 R+ and B0 is a natural number, 9c 2 R+; 9B 2 N; 8n 2 N; n > B) TIS (n) > cn2.

So TIS 2
(n2) (by de�nition of
(n2)).

From these proofs, we conclude that TIS 2 �(n2).

Exercises for asymptotic notation

1. Prove or disprove the following claims:

(a) 7n3 + 11n2 + n 2 O(n3)12

(b) n2 + 165 2
(n4)

(c) n! 2 O(nn)
(d) n 2 O(n log2 n)
(e) 8k 2 N; k > 1) logk n 2 �(log2 n)

2. De�ne g(n) =

(
n3=165; n < 165�p

6n5
�
; n > 165

. Note that 8x 2 R; x 6 dxe < x+ 1.

Prove that g 2 O(n2:5).

3. Let F be the set of functions from N to R>0. Prove the following theorems:

(a) For f; g 2 F , if g 2
(f) then g2 2
(f2).

(b) 8k 2 N; k > 1)8d 2 R+; d logk n 2 �(log2 n).
13

Notice that (b) means that all logarithms eventually grow at the same rate (up to a multiplicative

constant), so the base doesn't matter (and can be omitted inside the asymptotic notation).

4. Let F be the set of functions from N to R>0. Prove or disprove the following claims:

(a) 8f 2 F ;8g 2 F ; f 2 O(g)) (f + g) 2 �(g)

(b) 8f 2 F ;8f 0 2 F ; 8g 2 F ; (f 2 O(g) ^ f 0 2 O(g))) (f + f 0) 2 O(g)
5. For each function f in the left column, choose one expression O(g) from the right column such that

f 2 O(g). Use each expression exactly once.

(i) 3 � 2n 2
(ii) 2n4+1

n3+2n�1 2
(iii) (n5 + 7)(n5 � 7) 2
(iv) n4�n log

2
n

n2+1 2
(v) n log

2
n

n�5 2
(vi) 8 + 1

n2 2
(vii) 23n+1 2
(viii) n! 2
(ix) 5 log

2
(n+1)

1+n log
2
3n 2

(x) (n� 2) log2(n
3 + 4) 2

(a) O(1n)
(b) O(1)
(c) O(log2 n)
(d) O(n)
(e) O(n log2 n)
(f) O(n2)

(g) O(n10)

(h) O(2n)
(i) O(10n)
(j) O(nn)

62

Chapter 5. Algorithm Analysis and Asymptotic Notation

Chapter 5 Notes

1From 0 to (2� 1), if we work in analogy with base 10.

2To parse the 0:101 part, calculate 0:101 = 1(2�1) + 0(2�2) + 1(2�3).

3You should be able to look up this algorithm in an elementary school textbook.

4Same as the previous exercise, but only write numbers that have 0's and 1's, and do binary addition.

5Integer divide by 10.

6Integer divide by 2.

7Better in the sense of time complexity.

8Sure, f = n2, g = 3n2 + 2.

9Sure. f and g don't need to both be monotonic, so let f(n) = n2 and

g(n) =

(
n; n even

n3; n odd

So not every pair of functions from N! R>0 can be compared using Big-O.

10Let's try the symmetrical presentation of bi-implication.

11but not particularly e�cient. . .

12The claim is true.

Let c0 = 8. Then c0 2 R+.

Let B0 = 12. Then B0 2 N.
Assume n 2 N and n > B0.

Then n3 = n � n2 > 12 � n2 = 11n2 + n2 > 11n2 + n. # since n > B0 = 12

Thus c0n3 = 8n3 = 7n3 + n3 > 7n3 + 11n2 + n.

So 8n 2 N, n > B0) 7n3 + 11n2 + n 6 c0n3.

Since B0 is a natural number, 9B 2 N; 8n 2 N; n > B) 7n3 + 11n2 + n 6 c0n3.

Since c0 is a real positive number, 9c 2 R+;9B 2 N; 8n 2 N; n > B) 7n3 + 11n2 + n 6 cn3.

By de�nition, 7n3 + 11n2 + n 2 O(n3).

13 Assume k 2 N and k > 1.

Assume d 2 R+.

It su�ces to argue that d logk n 2 �(log2 n).

Let c01 =
d

log
2
k . Since k > 1, log2 k 6= 0 and so c01 2 R+.

Let c02 =
d

log
2
k . By the same reasoning, c02 2 R+.

Let B0 = 1. Then B0 2 N.
Assume n 2 N and n > B0.

Then c01 log2 n = d
log

2
k log2 n = d log

2
n

log
2
k = d logk n 6 d logk n.

Moreover, d logk n 6 d log
2
n

log
2
k = d

log
2
k log2 n = c02 log2 n.

Hence, 8n 2 N; n > B0) c01 log2 n 6 d logk n 6 c02 log2 n.

Thus 9c1 2 R+; 9c2 2 R+; 9B 2 N; 8n 2 N; n > B) c1 log2 n 6 d logk n 6 c2 log2 n.

By de�nition, d logk n 2 �(log2 n).

63

Course notes for csc 165 h

Thus, 8d 2 R+; d logk n 2 �(log2 n).

Hence 8k 2 N; k > 1)8d 2 R+; d logk n 2 �(log2 n).

64

