
Configuring Features with Stakeholder Goals

Yijun Yu
The Open University, UK

y.yu@open.ac.uk

Alexei Lapouchnian
University of Toronto, Canada

alexei@cs.toronto.edu
Julio Cesar Sampaio do

Prado Leite
PUC-Rio, Brazil

julio@inf.puc-rio.br

John Mylopoulos
University of Toronto, Canada

jm@cs.toronto.edu

ABSTRACT
Goal models are effective in capturing stakeholder needs at the time
when features of the system-to-be have not yet been conceptual-
ized. Relating goals to solution-oriented features gives rise to a
requirement traceability problem. In this paper, we present a new
model-driven extension to an Early Requirements Engineering tool
(OpenOME) that generates an initial feature model of the system-
to-be from stakeholder goals. Enabled by such generative map-
ping, configuration constraints among variability features can be
obtained by reasoning about stakeholder goals.

Keywords
variability, traceability, model-driven, configuration management

1. INTRODUCTION
Requirements analysis starts before one can directly describe

functionality of the system-to-be. The Early requirements analy-
sis phase is distinguished from Late phase in that there we concen-
trate on identifying and analysing stakeholder goals through goal-
oriented requirements engineering ([8, 4, 25]) even before func-
tional and non-functional requirements of a system are sketched.
Goal models, as a result of such elicitation processes, are a natural
source of intentional variability [20].

Through generative programming practices, feature models rep-
resent system variability and guide configuration of end-products [6].
Integration of requirements variability with feature variability has
also been discussed (e.g. [12]). Yet for stakeholders, particularly
for end-users, such product-oriented views of features do not an-
swer the question of “why do they exist in the system?” [19].

Can one combine the merits of goals and features? Specifically,
can we trace system features back to their purposes and configure
them in accordance to stakeholder goals?

In this paper, we introduce a model-driven approach that attempts
to solve the problem described above. Our tool supports the ap-
proach by maintaining traceability between goals and features. We
first show how an initial feature model is generated for the system-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

to-be; after connecting it to system-oriented features, we then show
how they are configured using goal reasoning algorithms.

2. GOALS AND FEATURES
From the very beginning of problem analysis, intentional vari-

ability arises from different stakeholder goals [20]. It can lead to
variability in system features. In this section, we explore models of
stakeholder goals and system features and discuss their connection
in terms of variability.

2.1 Goal models and intentional variability
A goal model is an AND/OR graph where a goal node is refined

into a number of subgoal nodes through either AND- or OR- de-
composition links. Every goal has a name. A (hard) goal has a truth
value to indicate whether it is satisfied (true) or denied (false).
A softgoal has a multi-valued label to indicate the degree of its sat-
isfaction: fully satisfied (FS), partially satisfied (PS), fully denied
(FD) or partially denied (PD). To reason about softgoals, contribu-
tion rules from hard to softgoals such as help (+), hurt (−), make
(++), break(−−) are introduced: a softgoal is fully (resp. par-
tially) satisfied if a satisfied goal makes (resp. helps) it; on the
contrary, a softgoal is fully (resp. partially) denied if a satisfied
goal breaks (resp. hurts) it [11].

Functional requirements are modeled by (hard) goals. Figure 1
presents our running example: in order to “Schedule Meetings” (a
stakeholder goal), one needs to “Collect Timetables” and to “Choose
Schedules”.

Alternatives in a goal model appear in the form of OR-decompositions,
which account for intentional variability. For example, each of the
subgoals of “Schedule Meetings” has two alternative solutions, ei-
ther done manually “By Person” or automatically “By System”. A
system can collect a timetable “From Agents” or directly “From
Users”, which can be done by “Sending Requests” and “Receiving
Responses”.

Quality attributes are modeled as softgoals, such as “Minimal
(scheduling) Effort”, “Good Quality Schedule”, “Minimal Distur-
bance”, “Accurate (timetable) Constraints”, and so on. They can
be further broken down into subcriteria. For example, the “Mini-
mal Effort” softgoal can be achieved by minimizing “Collection Ef-
fort” and minimizing “Matching Effort”. Similarly, “Good Quality
Schedule” is guaranteed by having “Minimal Conflicts” and “Good
Participation”.

Fulfilment of all hard goals does not necessarily satisfy all qual-
ity requirements. To trade off quality requirements by satisfying
prioritized ones, the contributions to these softgoals must be anal-
ysed to find a subset of hard goals. In our example, “(Collecting
Timetable) By Person” is a tedious task for a meeting scheduler,

���������

	��
��

������
�

�	�
�����

�������

��������

��������� ������
�	

�������� ��
�	�
������

����	���

�����

������
����

�����

��
�����

�����

����������
��

��������

����	���

�������
�

�����

���
�����
���

�����

������

��������

��������

��

��

��
��

���

���

���

���

��� ���

���

���

�

�

� �
�

�
�

�

������
����	�

�����

������
����	�

���
�

��
��

������
�

����
����
�

����	��

 ��
��������

� �

��

!�"

!�#

!�$

Figure 1: A goal model of our running example. Variation
points are indicated as (VP1-3).

thus it hurts the criteria of “(minimal) Collection Effort”.
Softgoals and contribution rules are thus the source to be used

in configuring intentional variability of features given high-level
preferences of stakeholders.

2.2 Feature models and variability
Feature-Oriented Domain Analysis (FODA) assumes that fea-

tures can be the basis for analyzing and representing commonal-
ity and variability of applications in a solution domain [15, 7]. A
feature represents system functionality realized by a software com-
ponent [14]. Hence, a feature constitutes a design-level concept.
There are four types of features in feature modeling (see Figure 2):
Mandatory, Optional, Alternative, and Or [6]. A Mandatory fea-
ture must be included in every member of a product line family
as long as its parent feature is included; an Optional feature may
be included if its parent is included; exactly one feature from a
set of Alternative features must be included if a parent of the set
is included; any non-empty subset of an Or feature set can be in-
cluded if a parent feature is included. In a study of semantics of
feature diagrams [23], all the four types of features can be unified
using (min:max) cardinality for both ends of parent/child relations:
Mandatory (1:1) and Optional (0:1) are associated with a child fea-
ture; Alternative (1:1) and Or (1:n) are associated with a parent
feature amongst a group of n > 1 sub-features. As a natural ex-
tension, more general cardinality (m, n), where 1 ≤ m ≤ n, can
indicate mixed type of feature decompositions.

�!

�" �#

�!

�"

�!

�" �#

�!

�" �#

	����
��� ��
����� ��
����
��� ��

!

" #

��� ���

!

" $%�

�� ��

!

" #

�� ��

!

" #

�� ��&

'�('�('�(' (

Figure 2: Feature decomposition types

Except for Mandatory features, all other types of feature compo-
sitions represent variability.

System features, when derived from goals, may not preserve all
intentional variability. Resulting from further analysis of the solu-
tion space, one may add new variability into the generated feature
models. Therefore the relation between features and goals is not

one-to-one.

3. TRACING GOALS TO FEATURES
Goal models represent how the system-to-be and its environment

can together achieve root-level goals. System feature models, on
the other hand, are only used to represent variability within the
system-to-be. In order to generate feature models, therefore, we
need to identify a subset of goals in the goal model that are in-
tended to be achieved by the system-to-be.

First, we need to know which leaf-level goals are assigned to the
system-to-be and which are assigned to actors in its environment.
Given an initial goal model and such an assignment, the leaf-level
goals to be achieved by the system’s environment are replaced with
NOP (no operation) goals, we can identify parts of the goal model
that are not assigned to the system and must not be mapped into
features. We replace a non-leaf goal with an NOP goal to indicate
that it is not the responsibility of the system if all of its subgoals are
NOP goals.

�!

�" �#

�!

�"

�!

�" �#

�!

�" �#

	����
��� ��
����� ��
����
��� ��

!

" #

��� ���

!

" $%�

�� ��

!

" #

�� ��

!

" #

�� ��&

'�('�('�(' (

Figure 3: Semantics mapping between goals and features

Next, every remaining goal node is mapped into a feature with
the same name. It is now easier to see that AND/OR decomposi-
tions of goals (Figure 3a/3d), if mapped into features, produce sets
of Mandatory and OR-features respectively. However, Alternative
and Optional feature sets do not have counterparts in the AND/OR
goal models. Thus, in order to generate these types of features we
need to annotate goal models. First, we analyze whether some of
the OR decompositions are, in fact, XOR decompositions (where
exactly one subgoal must be achieved) and then annotate these de-
compositions with the symbol “|” (Figure 3c). The annotated OR
decomposition corresponds to a feature refined into a set of alter-
native features. Similarly, to produce optional features we identify
patterns where a goal is OR-decomposed into a number of subgoals
with at least one subgoal (NOP) being delegated to an agent in the
environment of the system-to-be (Figure 3b). Then, the non-NOP
sibling subgoals will be mapped into optional features. The gen-
erated user-oriented feature models reflect the fact that decompo-
sitions in goal models are more restrictive than in feature models.
Thus, we produce feature models where features must have subfea-
tures of a single type and cannot have more than one set of Alter-
native or OR-features. One can further group them into mixed-type
feature decompositions if appropriate.

Constraints can be used in feature diagrams to represent relation-
ships among variable features that cannot be captured by feature
decompositions. These constraints include, for example, mutual
exclusion and mutual dependency. Goal models allow the analy-
sis of alternative goal decompositions with respect to their contri-
butions to certain quality criteria. However, feature models pro-
vide no such facility and therefore the selection of features for a
member of a product line family is not explicitly guided by non-
functional requirements. To alleviate this, softgoal contributions

���������

	��
��

������
�

�	�
�����

�������

��������

������
�	 ��
�	�
������

������
����	�

���
�

������

���	������

��������
���	���	������
���������

��������
���������
������
����
��

�����

������

��������

��������

���������

	��
��

������
�

�	�
�����

�������

��������

��� ����� ������
�	 !������� ��
�	�
������

�����

������

��������

��������

�� �� ����

��� ���

��� ���

������
����	�

�����

������
����	�

���
�

����

������
�

����
����
�

!���	��

"��
��������

� �
��

#$ #$

%�& %�&

�

��� ���

���

��� ���

���

Figure 4: A feature model generated from the goal model in
Figure 1

present in goal models can be used to generate feature model con-
straints that relate features with corresponding goals that help (+)
or hurt (−) the same softgoal. For instance, if two system-delegated
goals help (respectively, hurt) the softgoal S, then both their corre-
sponding features will most likely have to be included in (respec-
tively excluded from) the system provided that the softgoal is of
importance for that system variant in the goal model. Thus, we
generate a mutual dependency constraint between the two features.
The constraint’s label includes the strength of softgoal contribution
and the name of the softgoal to document the source of the con-
straint (e.g., +depends[S], if both goals help S). Similarly, if two
system-delegated goals have opposite contributions to a softgoal,
then selecting both corresponding features in a system that tries to
satisfy the softgoal will be counterproductive. This will result in
a mutual exclusion constraint between the two features. Thus, the
constraints help in the feature selection process by accounting for
stakeholders’ quality concerns.

Feature constraints are parameterized by a softgoal S to indicate
that they are significant only when S is important to the stakehold-
ers. As well, the strength of the softgoal contributions determines
the strength of the constraints (as shown by + + | + | − | − −).
Trade-off can be made when multiple feature constraints are param-
eterized by multiple softgoals. The preferences and priorities in the
softgoals give rise to the ranking of the importance of the feature
constraints in the feature model. The process is also extended to
support constraints among feature sets.

Returning to our running example, Figure 1 is simplified into a
system-only goal model (Figure 4a), then four types of features are
created, and two conflicting constraints are generated based on the
two pairs of conflicting contributions to softgoals (Figure 4b). In
the figure, one can see the correspondence between variation points
(VP) in the two models.

4. TOOL SUPPORT
Modeling i* goal diagrams is supported by our OpenOME tool [26]

whilst feature modeling is supported by the FMP 1 tool [1, 5]. Both
are based on Eclipse technology, which makes it easier to have
them in an integrated modeling environment.

We have extended OpenOME with a transformation to convert an
i* goal model into an initial FMP model2. A scenario to use the tool
has two steps. One, a goal model is visually edited in OpenOME
and saved into the XMI format using the Eclipse modeling frame-
work (EMF); two, it is converted into the feature model using the

1http://gp.uwaterloo.ca/fmp/
2http://mcs.open.ac.uk/yy66/tool/java/istar/latest

Procedures for Feature Generation.

CreateFeatureModel(rootGoal, Mandatory, null);
. . .
Procedure. identifyNOPGoals(Goal g) {

if (g has no children) return;
for each subgoal s of g { identifyNOPGoals(s); }
systemGoal = false;
for each subgoal s of g if (s is a not a NOP goal)
{ systemGoal = true; } }

if (! systemGoal) { replace g with NOP; }
}
Procedure. CreateFeatureModel(Goal g, FeatureType type, Feature parent) {

if (g == NOP or g has no subgoals) return;
gFeature = CreateFeature (g,type,parent);
if g == AND (g1,. . . ,gn) {

for each gi { CreateFeatureModel(gi,Mandatory,gFeature); }
} else /* g== OR (g1,. . . ,gn) */ {
if there exists gi == NOP {

for each gi { if (gi != NOP) { CreateFeatureModel(gi,Optional,gFeature); }
} } else /* all gi != NOP */ {
if g == OR(g1|. . . |gn) {

for each gi {CreateFeatureModel(gi,Alternative,gFeature); }
} else {

for each gi { CreateFeatureModel(gi, Or,g); }
}
for each softgoal si { GeneratingFeatureConstraints(si); }

} /* end of CreateFeatureModel */

Procedure. CreateFeature(Goal g, FeatureType type, Feature parent) {
Feature f = CreateFeatureNode(); setTarget (f, g); SetFeatureType(f, type);
if (parent != null) { addSubfeature(parent,f); }

}

Procedure. GeneratingFeatureConstraints(SoftGoal S) {
if (S is not preferred) return;
for each system goals X:

if ((X
++7−→ S) ∧ (MAKESCount(S) = 1))

if (X +7−→ S) SetFeatureOptional(X , S)
for each pair of system goals X, Y :

if ((X
+7−→ S) ∧ (Y

−7−→ S))

CreateFeatureConstraint(”+”, ”conflicts”, X , Y);

if ((X
++7−→ S) ∧ (Y

−−7−→ S))

CreateFeatureConstraint(”++”, S, ”conflicts”, X , Y);

if ((X
+7−→ S) ∧ (Y

+7−→ S))

CreateFeatureConstraint(”+”, S, ”depends”, X , Y);

if ((X
++7−→ S) ∧ (Y

++7−→ S))

CreateFeatureConstraint(”++”, S, ”depends”, X , Y);

if ((X
−7−→ S) ∧ (Y

−7−→ S))

CreateFeatureConstraint(”-”, S, ”depends”, X , Y);

if ((X
−−7−→ S) ∧ (Y

−−7−→ S))

CreateFeatureConstraint(”–”, S, ”depends”, X , Y);
}

API of FMP.
Both goal and feature models can be further edited, since our

transformation provides synchronisations of two models iteratively
such that one can detect whether an element in the goal model

traces to an element in the feature model or not. Given that fea-
tures have traces to lower-level variability in the solution space
(e.g., in software architecture and design), our goal/feature map-
ping supports to recover and maintain such traces further into early
requirements.

5. OPENOME: AN EXAMPLE
We applied our approach onto OpenOME, our requirements en-

gineering research prototype, itself. We start with a requirements
goal model (Figure 5). The root goal represented by “OpenOME”
is to support an integration of tools for goal-oriented requirements
engineering.

�������

���	

���	��

������

������

��	�
����

������

����
	�
���

�����
�����

���	

��	�������
��������	
����

������

����� ���

��� ���

�����	
����

��������

�����	

����� ���	�

��������

��
��

����	

������

!���

��	�������

���	
����

������

��� ��� ��� ��� ��� ���

!"

������

����� #��	������$���

������ ���

%�&'����

&����	� ���	�
#��&������� �(���� ���	�

�����	

��)������	�

�����������
*�� ���	�

�� �� ��

�� � �

�

Figure 5: A goal model for OpenOME enriched with user
preferences. In the graph, the preferred softgoals are high-
lighted. The alternative goal decomposition is shown as a ver-
tical bar below the node. Optional goals, indicated by a small
circle above the node, are determined by the system/non-system
(NOP) delegations (e.g., the graph layout and goal analysis can
be done by user interactively). These enrichments will be used
to generate a feature model.

One can see that the higher level goals in Figure 5 correspond
to user-oriented features whilst the lower level goals correspond to
the system-oriented features.

Our system is indeed implemented with 8 major components,
namely, the goal model graph editor (OME.jar), the Portable Net-
work Graph JComponent painter (PNG.jar), the Telos parser and
knowledge base (jtelos.jar) [21], the Q7 language parser and
i* code generator (Q7.jar) [18], the graph layout tool (grappa1 2
.jar) [10], the Ontology query tool (protege query.jar),
the Ontology editor (protege.jar) [22], the feature model edi-
tor (fmp 0.6.6.jar) and the goal reasoning tool (GR-tool
.jar) [11]. Inside the graph editor OME.jar, 3 major sub-components
(that correspond to the Model-View-Controller pattern) can be fur-
ther identified. These components are system features that have
been implemented.

The softgoals in Figure 5 are used to create constraints on the
generated feature model. To provide tool support for the process
proposed in this paper, the softgoals “++Support requirements en-
gineering”, “+Usability”, “++Conciseness”, “++Support variabil-
ity analysis” are preferred, which leads to a simplified goal model.
Features “Feature Model Editor”, “Goal Model Editor”, “graph
representation” are turned into mandatory features by the preferred
softgoals “Support variability analysis”, “Support requirements en-
gineering”, “Conciseness” according to the ++ contributions; a
constraint for having “graph layout tool” and “PNG JComponent

Painter” features weakly interdependent is created by the preferred
“Usability” softgoal according to the + contributions by the first
”depends” pattern.

�������

���	
��������

���	�� ������

����
	�	���

����������

���	��

����� ����

�����������������	��

���	������

�� �

!�������	

����	��

������

��������	�	���

"#

���$
����	�

��%
�����	��

������������

������&��������

���$
����	�

'��������	��

���������

Figure 6: An initial feature model for OpenOME is generated
from the goal model and the functional goal names (e.g. “edit
feature models”) are renamed to functor feature names (e.g.
“feature model editor”) in Figure 5

Figure 7: Running OpenOME showing the original goal model
of Figure 5 (left diagram view) is transformed to feature models
of Figure 6 (the right tree view)

Figure 7 shows a snapshot of running OpenOME where both
goal models and generated feature models are shown side-by-side,
allowing both a requirements engineer and a release engineering to
further refine their models together.

The OpenOME plugin has 95,128 lines of Java code for all the
features in the product-line. Applying staged configuration using
the generated feature model [7], we obtained a software product
customized for the stakeholder’s preferences described above with
only four major components. The size for the software product has
now 59,029 LOC, or 62% the LOC of the complete product-line.

Since such configuration is obtained after the analysis of state-
holder goals, the resulting product is capable of fulfilling the early
requirements as well as of curing the one-size-fits-all syndrome that
tends to deliver a product with too many unwanted features for ev-
ery user. Given such traceability, one can trace back to the stake-
holders’ intentions to establish a family of products.

6. RELATED WORK AND CONCLUSIONS
Methods and tools for deriving software architectural descrip-

tions from requirements is a subject that enjoys growing attention.
Brandozzi et al. [3], for instance, attempt to link goal-oriented re-
quirements with software architectures by introducing a mapping
between goals and components. More recent work by van Lam-
sweerde et al. [24] derives software architectures from the formal
specifications of a system goal model using heuristics, that is, by
finding design elements such as classes, states and agents directly
from the temporal logic formulae representing the goals. In [27],
we adopt the multi-view approach to software architectures ([16,
2]) and show that feature models can be seen as one of the ar-
chitectural views (behavioral, structural etc) of the system-to-be.
This vision has been carried out in a requirements-driven design
of flexible business processes [17] and software applications [19].
Regarding feature dependencies, [9] provides an interesting cate-
gorization for the origins of dependencies, along with a two-view
approach to feature modeling: the tree-view is accompanied by a
dependency view. That work though neither focuses on how these
dependencies are detected nor does it discuss more subtle forms of
dependencies, such as ones induced by quality considerations as
introduced here.

To conclude, we have provided a model-driven tool to support
a systematic process for generating a feature model from a goal-
oriented model. This directly supports configuring feature models
via preferences as stated by end-users over higher level softgoals.
Both models can be further edited iteratively in an integrated envi-
ronment based on Eclipse. In near future, we are considering con-
necting other RE models such as problem-variant diagrams [13]
with goal/feature models to support, synchronously, multiple view-
points of requirements variability.

Acknowledgement
The authors thank Peter Kim and Krzysztof Czarnecki at University
of Waterloo for their help with OpenOME/FMP integration.

7. REFERENCES
[1] ANTKIEWICZ, M., AND CZARNECKI, K. Feature modeling

plugin for Eclipse. In OOPSLA’04 Eclipse technology
exchange workshop (2004).

[2] BASS, L., CLEMENTS, P., AND KAZMAN, R. Software
Architecture in Practice, 2nd Edition. Addison-Wesley, 1998.

[3] BRANDOZZI, M., AND PERRY, D. E. Transforming goal
oriented requirements specifications into architectural
prescriptions. In STRAW at ICSE01 (2001).

[4] CHUNG, L., NIXON, B. A., YU, E., AND MYLOPOULOS,
J. Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishing, 2000.

[5] CZARNECKI, K., ANTKIEWICZ, M., AND KIM, C. H. P.
Multi-level customization in application engineering.
Commun. ACM 49, 12 (2006), 60–65.

[6] CZARNECKI, K., AND EISENECKER, U. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, MA, USA, June 2000.

[7] CZARNECKI, K., HELSEN, S., AND EISENECKER, U. W.
Staged configuration using feature models. In SPLC 2004
(2004), pp. 266–283.

[8] DARDENNE, A., VAN LAMSWEERDE, A., AND FICKAS, S.
Goal-directed requirements acquisition. Science of Computer
Programming 20, 1–2 (Apr. 1993), 3–50.

[9] FERBER, S., HAAG, J., AND SAVOLAINEN, J. Feature
interaction and dependencies: Modeling features for
reengineering a legacy product line. In SPLC (2002),
pp. 235–256.

[10] GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C., AND
VO, K.-P. A technique for drawing directed graphs. IEEE
Trans. Softw. Eng. 19, 3 (May 1993), 214–230.

[11] GIORGINI, P., MYLOPOULOS, J., NICCHIARELLI, E., AND
SEBASTIANI, R. Reasoning with goal models. LNCS 2503
(2002), 167–181.

[12] GRISS, M. L., FAVARO, J., AND D’ ALESSANDRO, M.
Integrating feature modeling with the rseb. In ICSR ’98:
Proceedings of the 5th International Conference on Software
Reuse (Washington, DC, USA, 1998), IEEE Computer
Society, p. 76.

[13] JACKSON, M. Problem frames: analyzing and structuring
software development problems. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2000.

[14] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E.,
AND PETERSON, A. S. Feature-Oriented Domain Analysis
(FODA) feasibility study, (cmu/sei-90-tr-21, ada235785).
pittsburgh, pa. Tech. rep., Software Engineering Institute,
Carnegie Mellon University, 1990.

[15] KANG, K. C., KIM, S., LEE, J., AND LEE, K.
Feature-oriented engineering of PBX software for
adaptability and reuseability. SPE 29, 10 (1999), 875–896.

[16] KRUCHTEN, P. The 4+1 view model of architecture. IEEE
Softw. 12, 6 (1995), 42–50.

[17] LAPOUCHNIAN, A., YU, Y., AND MYLOPOULOS, J.
Requirements-driven design and configuration management
of business processes. In BPM (2007), pp. 246–261.

[18] LEITE, J. C., YU, Y., LIU, L., YU, E., AND
MYLOPOULOS, J. Quality-based software reuse. In CAiSE
2005 (2005).

[19] LIASKOS, S., LAPOUCHNIAN, A., WANG, Y., YU, Y.,
AND EASTERBROOK, S. M. Configuring common personal
software: a requirements-driven approach. In RE (2005),
pp. 9–18.

[20] LIASKOS, S., LAPOUCHNIAN, A., YU, Y., YU, E., AND
MYLOPOULOS, J. On goal-based variability acquisition and
analysis. In Proceedings of International Conference on
Requirements Engineering (Los Alamitos, CA, USA, 2006),
IEEE Computer Society, pp. 79–88.

[21] MYLOPOULOS, J., BORGIDA, A., JARKE, M., AND
KOUBARAKIS, M. Telos: representing knowledge about
information systems. ACM Transactions on Information
Systems (TOIS) 8, 4 (1990), 325–362.

[22] NOY, N. F., SINTEK, M., DECKER, S., CRUBEZY, M.,
FERGERSON, R. W., AND MUSEN, M. A. Creating
semantic web contents with Protege-2000. IEEE Intelligent
Systems 16, 2 (2001), 60–71.

[23] SCHOBBENS, P.-Y., HEYMANS, P., AND TRIGAUX, J.-C.
Feature diagrams: A survey and a formal semantics. In RE
(2006), pp. 136–145.

[24] VAN LAMSWEERDE, A. From system goals to software
architecture. In Formal Methods for Software Architectures,
LNCS 2804 (2003).

[25] YU, E. S. K. Towards modeling and reasoning support for
early-phase requirements engineering. In RE ’97:
Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97) (Washington, DC, USA,
1997), IEEE Computer Society, p. 226.

[26] YU, Y., DENG, X., YU, E., ERNST, N., AND
MYLOPOULOS, J. OpenOME, a requirements engineering
tool: http://www.sf.net/projects/openome, 2005.

[27] YU, Y., MYLOPOULOS, J., LAPOUCHNIAN, A., LIASKOS,
S., AND LEITE, J. C. From stakeholder goals to
high-variability software design,
ftp.cs.toronto.edu/csrg-technical-reports/509. Tech. rep.,
University of Toronto, 2005.

