
Reverse Engineering Goal Models from Legacy Code

Yijun Yu1, Yiqiao Wang1, John Mylopoulos1, Sotirios Liaskos1, Alexei Lapouchnian1,
Julio Cesar Sampaio do Prado Leite2

1Dept. of Computer Science, Univ. of Toronto, {yijun,yw,jm,liaskos,alexei}@cs.toronto.edu
2Dept. of Computer Science, PUC-Rio, julio@inf.puc-rio.br

Abstract

A reverse engineering process aims at reconstructing
high-level abstractions from source code. This paper
presents a novel reverse engineering methodology for re-
covering stakeholder goal models from both structured and
unstructured legacy code. The methodology consists of
the following major steps: 1) Refactoring source code
by extracting methods based on comments; 2) Convert-
ing the refactored code into an abstract structured pro-
gram through statechart refactoring and hammock graph
construction; 3) Extracting a goal model from the struc-
tured program’s abstract syntax tree; 4) Identifying non-
functional requirements and derive softgoals based on the
traceability between the code and the goal model. To illus-
trate this requirements recovery process, we refactor stake-
holder goal models from two legacy software code bases:
an unstructured Web-based email in PHP (SquirrelMail)
and a structured email client system in Java (Columba).

1 Introduction

A software reengineering process follows a horseshoe
model by first recovering lost abstractions (e.g., elements
of design and/or requirements) through reverse engineer-
ing [2, 21] (also known as design recovery [19]), and then
pushing these abstractions forward into low-level imple-
mentations through forward engineering. In the initial
horseshoe proposal [18] and all subsequent research, the
lowest level abstraction consists of legacy code, while the
highest level abstraction consists of elements of a software
architecture. The reverse engineering process amounts to
architecture recovery, while the forward engineering pro-
cess amounts to architecture-based development.

For more than a decade, the requirements engineering
community has proposed and studied goal models [22, 7, 3,
31] as high level abstractions for modeling early require-
ments. Goals capture stakeholder intentions. By mod-
eling and analyzing them, we can derive functional and

non-functional requirements in a systematic and coherent
fashion. The goal models developed in this early phase
of software development tell us not only the origins of
functional and non-functional requirements, but also the
space of alternative solutions (operationalizations) that the
requirements engineer needs to select from. The KAOS
methodology defines the state-of-the-art on this thread of re-
search [7, 31, 32]. Hui et al [17] propose an extended frame-
work for developing requirements that includes modeling
and analysis of user goals, skills, and preferences (GSP).
The framework is intended for the design of generic, cus-
tomizable (high variability) software, to be used by a com-
munity of users. The original case for this work involved
users with traumatic brain injuries in Oregon State [11].

We are interested in using the GSP framework to reengi-
neer legacy software into generic, high variability software.
To meet this objective, we are developing techniques for
reverse engineering goal models from legacy software that
offers some service (e.g., email). These models can then
be revised, refined and extended, so that they can serve
as basis for generating an extended version of the legacy
software system that supports the same service in multiple
ways. This paper presents the reverse engineering phase
during which a goal model is extracted from legacy code.
In the sequel, we adapt the horseshoe model as shown in

REQUIREMENTS

Intentions 

Architecture 

Functions

Source Code 

…
…

LEGACY CODE 

REFACTORED 
REPRESENTATION

GOAL MODEL 

Reverse engineering 

GOAL MODEL

SOA

Web services

customizable 
architecture

components

Forward engineering

Code structure 

Figure 1. The horseshoe model

Figure 1. Instead of static architecture recovery, we aim



at discovering stakeholder goals from the behaviour of the
system, thereby answering the most fundamental question
about a software system: What is the system intended for?

�������

�	
����

�	��

�����	����

�	
����

�	��

�����������
�����������

����������

����

����	������

�	���������

���
��
����

��	����

�	���

�	���

 !�"	����
���

����	�#������

$!�%&������

������'

��������	��

������	����

(!�)����

*!�����
��
��

+!�%&������

����	��

������	����

,!�%��������

�-�-�

�	����	����

.����

�	���	����

�	���

�	����

.����/0�

1!�������	����������

	������	����2���/0�

3!������2��

4
��������������

�	�����������	���	���

5�����
��
���6
/	7��

Figure 2. Major steps in our process

Our methodology converts structured and unstructured
legacy source code into goal models following the steps il-
lustrated in Figure 2: (1) refactor the source code by extract-
ing methods [12] based on program slicing techniques [34]
and programmer comments scattered in the code; if the
refactored code is structured, then go to step (5); otherwise
(2) convert it into equivalent statecharts [14], (3) further
refactor the statecharts into higher-level statecharts by ex-
tracting states and transitions, and (4) convert the high-level
statecharts into an equivalent program which is then struc-
tured by eliminating GOTO’s [37]; (5) parse the structured
program into an abstract syntax tree (AST) representing
an annotated goal graph; (6) restructure the annotated goal
graph into stakeholder goals; (7) identify non-functional re-
quirements (NFR) in the resulting goal model by testing its
traceable code in order to (8) derive softgoals from the NFR,
using heuristics such as quality metrics.

The rest of the paper is organized as follows. Section
2 presents relevant concepts and the proposed reverse en-
gineering methodology. Section 3 explains the refactoring
of source code into its abstract form; Section 4 explains
the extraction of goal models from the refactored programs.
Both sections conduct a case study of open-source software
(SquirrelMail [1] and Columba [9]), showing the indepen-
dence of programming languages and structure of the legacy
code. Section 5 discusses tool support that reduces the
amount of time required for reverse engineering. Section
6 compares our proposal with related work, while section 7
summarizes results and sketches research directions.

2 Concepts and approach

Our proposal is based on well-founded concepts in soft-
ware engineering. In particular, goal models [3, 31] arise
during early requirements elicitation; program slices [34]
are useful for program understanding and static analysis;

while statecharts constitute a powerful representation for
dynamic systems [14]. These concepts are integrated into
a methodology through which the gap between goal mod-
els and source code is bridged. We first introduce these
concepts in more detail, before presenting our proposed
methodology.

2.1 Goal models

A goal model is a graph structure representing stake-
holder goals and their inter-dependencies. A goal can be
decomposed into subgoals through AND/OR refinements.
In [22], softgoals are proposed as means for modeling
and analyzing qualitative objectives. Unlike their vanilla
cousins, softgoals (such as “improve profits” or “keep cus-
tomers happy”), have no objective criterion as to whether
they are satisfied or not. Goals and softgoals can be re-
lated to each other through MAKES, HELPS, HURTS and
BREAKS relations. With goal models, requirements anal-
ysis proceeds by refining goals, identifying collections of
leaf goals that together fulfill root-level goals, and assign-
ing responsibilities for the fulfillment of leaf-level goals to
either the system-to-be or external actors.

2.2 Statecharts

Statecharts constitute a concise visual formalism that
captures the dynamic behaviour of a system [14]. State-
charts have been adopted in UML as one of the diagram-
matic notations for modeling behaviour. Statecharts extend
conventional finite state machine diagrams in several ways:
a collection of sub-states can be abstracted into a super-state
through AND or XOR composition; the number of states
is visually reduced by zooming sub-states out; a transition
from/to a super-state can abstract a number of transitions
from/to its sub-states; parallel AND sub-states also reduce
the number of combined states. Low-level statecharts cap-
ture both control and data dependencies of a program, and
are close to implementation; high-level statecharts, on the
other hand, hide implementation detail and abstract system
behaviour. Although UML tools such as STATEMATE [15]
can generate executable code from given statecharts, it is
not yet possible to convert source code into statecharts. Our
approach relies on program slicing and software refactoring
techniques to do just that.

2.3 Program slicing

A control flow graph (CFG) is a directed graph of state-
ment nodes and control transition edges. A Hammock graph
(HG) is a subgraph of the CFG of the program that has a
single entry ne and a single exit nx, i.e. all paths from a
node in the CFG outside HG to a node inside HG must go



through ne; all paths from a node inside HG to a node of the
CFG outside the HG must go through nx. The concept of
Hammock graph serves two purposes: (1) unstructured pro-
grams can be structured using Hammock graphs [34, 37];
(2) a statechart can be constructed to associate a precondi-
tion entry substate to ne and a postcondition exit substate to
nx. Program slicing [34] generates a slice P ′ of a program
P based on a slicing criterion < p, V > where p is a state-
ment of P and V is a subset of the variables of P [30]. Static
program slicing finds the statements that are either (control)
dependent on p or (data) dependent on V . Program depen-
dence graph (PDG) [25] and inter-procedural system depen-
dence graph (SDG) [16] can be seen as results of program
slicing, combining both control and data dependence infor-
mation in a program [10]. In this paper, program slicing
technique is used to separate the live variables needed by
the rest of program execution on one Hammock graph.

2.4 Our approach

Our approach summarized in Figure 2 is inspired by soft-
ware refactoring techniques [20]. Refactoring has been pro-
posed [24] as a method for understanding and maintaining
complex source code: it restructures and simplifies source
code by improving its internal structure without changing
its external behaviour [12]. In our proposal, source code is
converted into more abstract form by recursively applying
the refactoring operation Extract Method [12]. The scope of
this process can be determined by delimiting comments, as
these comments often indicate a semantic gap for program
understanding [12]. The name of the unit method is either
generated through heuristics or supplied by the software en-
gineer. For example, the first five non-stop words can be
concatenated as the identifier. Since a meaningful method
name is helpful in understanding the program, the original
comment is kept and moved into the refactored method.

For programs with too many comments, we deal with ex-
cessively fine-grain states and transitions to achieve higher
levels of abstraction: the resulting code is subjected to new
rounds of refactoring with a scope determined by Hammock
graphs: we extend the Extract Method on an equivalent
statechart representation of the program. As with Extract
Method, Extract States replaces a sequence of states with a
new super-state and Extract Transitions replaces a sequence
of transitions with a new transition to the final state. For
programs with too few comments, we get very high level
statecharts and goal models. To understand the refinements
of goals, we may consider other delimiters such as nested
Hammock graphs (basic blocks). After these refactoring
steps, the more abstract statecharts can be converted into
an equivalent abstract program further structured through a
GOTO elimination algorithm.

Goal models are then automatically constructed based

on the resulting program which is by now both structured
and abstract. An annotated goal graph is created from the
program AST, and an AND/OR goal model is constructed
from the annotated goal graph. Using the traceability be-
tween code and goal model, we identify non-functional re-
quirements through function tests. By observing the effects
on quality metrics through enabling/disabling the identified
NFRs, we derive quality softgoals and create proper con-
tribution links from the NFRs to them. The derived soft-
goals help bridge the gap between the actual implementa-
tion (source code) and its early requirements.

3 Refactoring for code abstraction

The proposed approach is illustrated with two open-
source legacy software systems. The first system, Squirrel-
Mail 1.5.0 [1], is an unstructured Web-based email client
implemented in PHP. The second system, Columba 1.0
RC2 [9], is a structured email client implemented in Java.
Our approach refactors goal models from both systems, de-
spite the use of different programming languages and envi-
ronments.

3.1 Extract Method using comments

We use Extract Method [12] as a refactoring technique
to simplify the legacy code. Extract Method has the advan-
tage that it is applicable to both object-oriented and pro-
cedural code. As illustrated in [12], Extract Method deals
with statement blocks. Each block is determined by delim-
iting comments to reveal the programmer intentions. An
implicit requirement for Extract Method is that the block
must be a Hammock graph, have single entry and single
exit [37]. Without loss of generality, consider just two state-
ments S1(I1, O1) and S2(I2, O2) where I1, I2 are the sets
of input variables and O1, O2 are the sets of output variables
for the respectively numbered statements S1 and S2. Note
that these statements may also have resulted from a previ-
ous application of Extract Method. If O has more than one
live variable, then program slicing is conducted to separate
each live variable slice into a separate method.

// refactored 
S(I, O);

//// tthhee ffoolllloowwiinngg ddooeess SS
SS11((II11,, OO11));;
SS22((II22,, OO22));;
//// ootthheerr ……

Variables defined before the entry of the block 
  I = (I1 I2)  { v | def (v, p)  p  p entry }
Variables defined in the block that will be used after the exit 
 O = (O1 O2 ) { v |  use (v, p)  p exit  p } 

entry

exit

Figure 3. Illustration of Extract Method

The refactored statement S(I, O) is obtained by program
slicing. Specifically, as shown in Figure 3, S is the new



method named after the comment; I is computed as the set
of input variables on entry of the block; O is computed as
the set of output variables on exit of the block. We sim-
plify the resulting statement by excluding internal variables
of the block that are not used elsewhere in the program
(thereby reducing the complexity of the code representa-
tion). The Extract Method refactoring step can be applied
several times until all the commented blocks are replaced.

3.1.1 Refactoring SquirrelMail

SquirrelMail consists of 69771 LOC written in PHP, includ-
ing 32249 (46.2%) lines of comments. The source code
includes: (1) 37 main PHP programs responsible for gen-
erating the Web pages are located in the src subdirectory;
(2) 20 PHP routine files called by the load theme func-
tion for customizing different look-and-feel themes. They
are located in the themes subdirectory; (3) 15 PHP utility
class files located in the classes subdirectory; and (4) 34
PHP utility function files located in the functions sub-
directory. In the rest of the paper, we refer to a program file
only by its name; for example, the file src/login.php
is referred to as login.php.

Since a dynamic PHP program generates an HTML page
with hyperlinks to other dynamic PHP pages, the call to the
other PHP program can be delayed until the user clicks at
the link. We treat hyperlinks as GOTO statements in an
unstructured program. Hence, dynamically generated Web-
based programs are considered unstructured, even though
PHP is a structured programming language. Therefore, af-
ter refactoring SquirrelMail in step 1 in Figure 2, we need
to structure it through steps 2 to 5.

For example, the following Hammock graph in
login.php has a variable definition SM PATH exported
to the remaining program, while no variable is imported.

/** Path for SquirrelMail required files. */
define(’SM PATH’,’../’);
require once($SM PATH . ’functions/strings.php’);
require once($SM PATH . ’config/config.php’);
require once($SM PATH . ’functions/i18n.php’);
require once($SM PATH . ’functions/plugin.php’);
...

Hence $SM PATH constitutes the only output variable of
the block, whereas the set of input variables is empty. Note
that even global variables that are not used outside the block
will be hidden during the abstraction. After slicing analysis,
it is safe to declare a new function set path and call it in
login.php as follows.

$SM PATH=set path ();

A complete listing of login.php has 185 LOC. The fol-
lowing lists login.php after Extract Method refactoring
where all the comments from the original program have
been removed. Several blocks have been replaced with
method calls.

<?php /* login.php */
$SM PATH=set path ();
$SM lang=setup language();
$base uri = findout base URI();
$logindisabled = detect imap server($base uri);
if ($logindisabled) { explain situation(); exit;}
do hook(login cookie’);
$header =onload function(’redirect.php’);
display header($header);
load theme($theme[$theme default]);
do hook(’login top’);
show logo(); show form($loginname, $mailto, $key);
do hook(’login form’); do hook(’login bottom’);
?>

Similarly, such Extract Method refactoring delimited by
comments can be applied to the other PHP files.

3.1.2 Refactoring Columba

Columba [9] is an open-source Email client that has 144916
LOC in Java, including 31472 (21.7%) lines of comments.
The program is structured.

The input to our method is the main class of
Columba: org.columba.core.main.Main.run().
The lengthy routine has 81 lines of code. Inside the routine,
there are 22 code segments separated by 18 comments and
3 hammock boundaries. The first 15 lines are shown below.

class Main {
public void run(String args[]) {
1 ColumbaLogger.createDefaultHandler();
2 registerCommandLineArguments();
3 // handle commandline parameters
4 if (handleCoreCommandLineParameters(args))
5 { System.exit(0); }
6 // prompt user for profile
7 Profile profile=
8 ProfileManager.getInstance().getProfile(path);
9 // initialize configuration with selected profile

10 new Config(profile.getLocation());
11 // if user doesn’t overwrite logger settings ...
12 ColumbaLogger.createDefaultHandler();
13 ColumbaLogger.createDefaultFileHandler();
14 for ( int i=0; i<args.length; i++)
15 { LOG.info("arg["+i+"]="+args[i]); } ...

The Eclipse refactoring tool was used to extract 22 methods
from the code.

public void run(String args[]) {
1 ColumbaLogger.createDefaultHandler();
2 registerCommandLineArguments();
3 handler.registerCommandLineArguments();
4 handle commandline parameters(args);
5 Profile profile = prompt user for profile();
6 initialize configuration with selected profile(profile);
7 initialize default logging(args);
8 SessionController.passToRunningSessionAndExit(args);
9 enable debugging repaint manager ();

10 StartUpFrame frame = show splash screen();
11 register protocol handler();
12 load user customized language pack();
13 initialize plugins(handler);



14 load plugins();
15 set look and feel();
16 init font configurations();
17 set application wide font();
18 hide splash screen(frame);
19 handle commandline arguments in modules(handler);
20 restore frames of last session();
21 ensure native libraries initialized();
22 post startup of the modules(handler);
}

3.2 Extracting states and transitions using ham-
mock graphs

After the application of the Extract Method refactoring
delimited by programmer’s comments, the resulting code
has no comments for further use. Moreover, due to possi-
ble lack of comments, the refactored code may still be at a
lower level of abstraction than what we need to start deriv-
ing goals.

In SquirrelMail there are too many comments scattered
in the routines, therefore Extract Method refactoring results
in methods with too many short methods. To make it worse,
the unstructureness of a Web-based system, such as Squir-
relMail, limits the extraction of methods to individual rou-
tines. Thus, in order to obtain a more abstract representa-
tion, a behavioral view of the whole system needs to be ex-
tracted. In contrast, the result of Extract Method refactoring
on the Columba system is less complex because Columba
is structured and has well-written comments.

Static program analysis techniques can help us achieve
more abstract program descriptions. In this section, we ex-
plain the use of Hammock graphs and statecharts to obtain
an abstract view of system behavior.

Each extracted method has a single entry and a sin-
gle exit (Hammock graph). At the entry and exit of the
Hammock graph, pre- and post-conditions define allowable
classes of input/output states. The transition between them
is effected by the method. The states and transitions derived
from a Hammock graph form a statechart. The statecharts
of all hammock graphs are combined into a complete state-
chart by adding transitions according to the control flow.

For example, in Figure 4, we adopt the statechart nota-
tion used in [27]. The action at the transition set path de-
fines a variable $SM PATH. Before the action set path,
the variable $SM PATH is undefined. We model unde-
fined variables as initial states. An event can also be put
to the left of the slash in the transition label, to specify
the triggering condition for the transition. Accordingly,
we convert the refactored login.php code into an ini-
tial statechart (Figure 5). Note that two special functions
do hook and load theme can make calls to other meth-
ods dynamically. Apart from the static calls, plugin rou-
tines registered for a hook name are called dynamically
through do hook. If there are no registered plugins for

p y gg g

$SM_PATH=set_path 

$SM_PATH is
undefined

$SM_PATH is
set

/set_path

$SM_PATH

/set_path

Figure 4. Statechart notations

a hook name, then the action will be a NOP (nil oper-
ation). Similarly, the theme routines are called by a
load theme function based on a configuration parameter
variable $theme default. Note that in this statechart
there are two exits, each leading to a different final state.

���������

	
�������������

�������������

���������	
��
�������	
�������

�������	
��

�������	
�������

������������

������������

����������������

������� 

�������� �������� ���������

��������������
��������

!��������"����#$%

�������	
��
������&����

���

������

�������!�������
�����������

�������� �

������������ �

������'�������

���������!�

���������

���������

���������

���

������������

��� ������"���� 

���������	
��
�������� 

Figure 5. A statechart converted from refac-
tored code

A statechart constructed from refactored code generally
has too many states and transitions, and is hard to under-
stand. We therefore need techniques to group states and
transitions into more abstract, and fewer, super-states and
super-transitions.

We accomplish this first by introducing layers: a group
of states with single entry and exit are grouped together
into one super-state. The new super-state replaces the
group of the original states comprising it, thereby reduc-
ing the number of states. This refactoring step is called
Extract States. In Figure 6, we illustrate how three states
in the login.php (see Figure 5 and Figure 6a), namely
$SM PATH, $SM lang and $base URL, are grouped into
a super-state named as Globals (Figure 6b). In Fig-
ure 7a, the sequence of three transitions in Globals stat-
echart in Figure 6b are refactored into a single transition



(set globals). To simplify the statecharts, a super-
state with a single transition inside can be replaced with
a new state by merging empty incoming/outgoing transi-
tions to/from the superstate with its internal transition. This
refactoring step is called Extract Transition. For example,
in Figure 7a, Globals has an empty incoming transition;
this transition is merged with set globals which was
inside Globals (Figure 7b). Globals is turned into a
new state globalsSet with non-empty outgoing transi-
tions. The result of applying Extract States and Transitions
on login.php is shown in Figure 8. The abstracter view
in Figure 9 puts together all top-level statecharts.

��������	
�����
 ������	
�����


���������	
��
�������	
�������

�������	
��
�������	
�������

���	���� ���	���� ����	���

��������������
��������

���������������� 

!�"

��������	
�����
 ������	
�����

���������	
��
�������	
�������

�������	
��
�������	
�������

���	���� ���	���� ����	���

���������������������� ���������������� 

������

!�"

Figure 6. Extract States Refactoring part of
the statechart in Figure 5 (a) into (b)

	
������������� �������������

���������	
��
�������	
������� �������	
��

�������	
�������

"���������
�����������

	
������������� �������������
���������	
��
�������	
�������

�������	
��
�������	
�������

�����������

"������

#�$

#�$

Figure 7. Extract Transitions Refactoring on
the new super-state Globals in Figure 6b

3.3 Structuring the statecharts

The combined statecharts obtained from PHP programs
in the previous steps are unstructured, even though a PHP
program has no explicit GOTO statements. On the other

���������

	��
�����

�������������
��� �����������
���

���������	
��
�������	
�������

�������	
��
�������	
�������

����	��������

�������������

����������������

��������

������� ���

Figure 8. Refactoring on the initial statechart
in Figure 7

���������

���������

�	
���

�		
	

�
������

���������

�
���������
	
�
��

���������
������

����������

��
����

��
�����������
�����
�

	��	�������

�������
��

��
�� �!�����
�
��

"
������
��#$
"
����� �!�
�%������&���	

'�
�������#$
'���������%���

�	
���	

�
������
��
��
	�

"
�������������	��	�������

��
���
�������
�����
�

Figure 9. Top-level statechart of the browser

hand, a goal model is formed by structured AND/OR de-
compositions. Before recovering a structured goal model
(see Section 4), the statechart needs to be structured to con-
tain only sequences, branches and loops.

First, the high-level statechart (Figure 9) can be mapped
into a program with GOTO statements. For convenience, in
the sequel we use FORTRAN for such programs. Each state
with more than one entry will be associated with a label,
and each transition for an additional exit is associated with a
GOTO statement following its activity statement. Secondly,
to obtain a structured program, we adopt the GOTO state-
ments elimination implemented in the FPT compiler [37]. It
has been established using the theorem prover PVS [26, 28]
that all the GOTO’s can be removed through semantic pre-
serving transformations, resulting in structured Hammock
graphs [37]. As the technique eliminates GOTO’s through
hammock graph construction, it can be directly combined
with our Extract States and Transition refactoring. For ex-
ample, the statechart in Figure 9 can be converted into a
FORTRAN program with GOTO statements (Figure 10a);
the program is then structured (Figure 10b) using FPT [8].



call EnterURL 
10  call Login 
     if (wrongIMAP) goto 30 
20 call ShowForm 
      if (wrongKey) goto 20 
      call EnterForm 

 if (wrongForm) goto 30 
      call StartWebMail 
      if (loggedOut) goto 10 
      if (expired) goto 10 
      call Send 
      Stop 
30  call ReportError 

 call GoBack 
      goto 10 
      end

CALL EnterURL 
REPEAT
REPEAT

  CALL Login 
   IF (.not.wrongIMAP) THEN 
     REPEAT 
         CALL ShowForm 
     UNTIL (.not.wrongKey) 
     CALL EnterForm 
     IF(.not.wrongForm)THEN 
        CALL StartWebmail 
     ENDIF 
  ENDIF
UNTIL (.not.loggedOut.or 
.not.expired.or.wrongIMAP 
.or.wrongForm) 

IF(wrongIMAP.or.wrongForm) 
THEN 
   CALL ReportError 
   CALL GoBack 
ENDIF
UNTIL (.not.wrongIMAP.and. 
  not.wrongForm) 
CALL Send 
END

(a) (b)

Figure 10. Structuring the code converted
from the statechart in Figure 9

4 Extracting goal models from abstract code

This section explains steps 5 to 8 in Figure 2. In the NFR
framework [3], a goal has an intended function (intention),
and an associated topic (subject matter). In a statechart,
the function is found as the action of a state transition and
the topic as the contextual state of the statechart. There are
two basic modalities for goals: achieve or maintain [31].
In our process, it is easier to identify an achieve goal as a
transition between different states whereas a maintain goal
as a transition from a state to itself.

As shown in Figure 11, (a) a chain of state transitions
designates an AND decomposition of a goal; the transitions
correspond to a sequential composite statement. Here an
ellipse denotes an unnamed goal. Furthermore, the par-
allel join of transitions from/to other states (b) designates
OR-decompositions of a goal, corresponding to a branch
statement e.g., IF-THEN-ELSE, with a condition derived
from the event label on the transitions. Loops can also
to be mapped to the goal model where the stop event s is
converted into an intermediate goal along with the actions
(c). This case results in a cyclic goal model, where the
switching events on the transitions correspond to an OR de-
composition. Having a structured statechart/program, we
can view its abstract syntax tree (AST) as a goal model
annotated with the control conditions, such as IF(x),
REPEAT..UNTIL(s), etc.

4.1 Extracting goal models from SquirrelMail

The structured program in Figure 10b can be converted
into an annotated goal model in Figure 12.

�����

�� ��

�����

�������

�����

�����

�	�����

��	��


���

� �

�	
 �	


������


�����

���

� �

����������

��
������

����

��
�����

����

���

�

�
�

�	
 �	


�	


����������������	


�����

������

���
����


������	


�����

���

� �

�	
 �	


���

� �

� �

���

���

�

�
�

�

�	
 �	


�	


� �
����� �����

� �

���

���

���

Figure 11. Patterns to extract goal models

���

�������	

���

	��� �����������


�������

������

������

���

��������� 
�����������

���

���

���

���

���

���

��������	��
��
���������
����
������������������

��������	��
��
����������������������������
��������
������� ���������


�����������
����

��������	��
��
���������!�"� 
����������������


������
�����������������

Figure 12. View AST as annotated goal model

Using the basic conversions (Figure 11) on the annotated
control patterns (Figure 12), all the transitions are converted
into goals in an AND/OR graph (Figure 13). Moreover,
some tasks in the goal model are operationalizations of non-
functional softgoals as they contribute to quality concerns
modelled by the softgoals. For example, “Login” is a task
contributing to the security concern. “ReportError” is an-
other one that contributing to the usability concern (see Fig-
ure 13).

4.2 Extracting goal models from Columba

The AST of the refactored high-level Columba code gen-
erates 22 leaf-level goals in the annotated goal model. Af-
ter applying the three transformation patterns (Figure 11)
on the annotated goal graph, we obtain an AND/OR goal
model that contains 22 leaf-goals. Among them, 13 goals
were operationalizations of NFRs. These goals can be en-
abled by satisfying guard conditions in the IF statements,
which are based on the quality metrics of 9 softgoals, in-
cluding usability, maintainability, extensibility, etc. One
can further categorize them into decomposing hierarchies.



���

�������	

���

	��� ����������� ������

���
���

���

���������

��������

���

���

���

���

���

���

���

�������������

���������

��

���

������������

������������

����� !"���

��������

��


#������

���

�����$�%

��


������& ���

���

��

����� !"

���

��

������ !"�����

���������

��

���
���	
��

	�������

���������

Figure 13. The SquirrelMail goal model

A complete description of these steps and verification re-
sults are discussed in [36]. We show the refactored code
corresponding to the extracted goal model in Figure 14,
where the NFR-operationalizing goals are separated into de-
composition hierarchy for softgoals.

���

��������	


���������	

��������

�������	

�����	��	

���	�������

���

���������	����	


�����������

���������	

�������

��������	

�����
��	

������

���	��	�������	

��������	��	

����

���������	

�����	����
���	

����	�������

������	����	

�������

���

���

���

���

���

�����	�
�

���
�����	�
�

��
�����	�
�

������ ��������

��������

���
�����
�� �����������	

��������

��������

��
�

��������
��

�����	������	

������	���	

������

���������	

������	

�������

�����	�����	

������	

�����

��

��
��

����	�����	

�
����

����	�����	

�
����

���

���

���

���

���	��� 	

��	����

��

���	

����
����	

����	����

��

!��	����	


���������	

������	�
 

��

!��	

�������

�����	


���������	

��������

�����	


���������	

��������	��	

�������

������	���"�	

��������	

����������

����	������	��	

���	�������

��

���

��������	


���������	

��������	���	

���	������

���

Figure 14. The Columba goal model

public void run(String args[]) {
if ( maintainability logging)

ColumbaLogger.createDefaultHandler();
registerCommandLineArguments();
ComponentPluginHandler handler = register plugins();
handler.registerCommandLineArguments();
if ( extensibility) handle commandline parameters(args);
Profile profile = prompt user for profile();
initialize configuration with selected profile(profile);
if ( maintainability logging)

initialize default logging(args);
SessionController.passToRunningSessionAndExit(args);

if ( maintainability debugging)
enable debugging repaint manager ();

StartUpFrame frame = null;
if ( usability assured progress)

frame = show splash screen();
register protocol handler();
if( usability language customization)

load user customized language pack();
initialize plugins(handler);
if ( extensibility) load plugins();
if ( usability look and feel) set look and feel();
init font configurations();
if ( usability font configuration)

set application wide font();
if ( usability assured progress)

hide splash screen(frame);
if ( extensibility)

handle commandline arguments in modules(handler);
restore frames of last session();
if ( extensibility)

ensure native libraries initialized();
if ( extensibility)

post startup of the modules(handler);
}

These softgoals fill in a gap between the code and its early
requirements.

5 Discussion

In this section, we outline the implemented tool support
for the reverse engineering process.

First, it is important to check the correctness of the refac-
toring steps to ensure that semantics is indeed preserved.
A standard way for accomplishing this [12] is to test each
refactoring step using available test cases. However, test
cases can identify behavior changes, but can’t ensure cor-
rectness. In order to prove that each step is semantics-
preserving, we use program slicing techniques to ensure
that both Extract Method and Extract States and Transitions
are properly used. Also, the structuring of the statecharts is
based on a well-established theory for GOTO eliminations,
where the basic transformations have been proven correct.
We can also annotate the state transitions in the statechart
with the corresponding code. Therefore, the very detailed
statechart is exemplified by the program code. Moreover,
such traceability allows a change in the high-level abstrac-
tion to be easily reflected in the change of the code.

We can significantly improve the usefulness of our
method by automating parts of it as follows:

• Refactoring based on program slicing. We can use the
Extract Method as it is available for Java through the
Eclipse IDE [35] (Shift Alt M). This refactoring is
done semi-automatically by selecting statements de-
limited by programmer comments. Eclipse can only
extract one method from a Hammock graph that has
only one live variable. When there are multiple live
variables, the Hammock graphs should be partitioned



into multiple disjoint program slices. We are develop-
ing an Extract Method tool for PHP and we are looking
for a suitable case study in JSP that allows us to reuse
existing Java refactoring tool support in Eclipse. De-
veloping a tool for the Extract States and Transitions
refactoring is also in our tool implementation agenda.

• Statechart structuring. Currently we deal with the
problem by converting statecharts into an equivalent
Fortran code with GOTO statements to leverage an
existing Fortran compiler that has implemented the
GOTO elimination algorithm [8, 37].

• Extracting goal model. The AST of the structured pro-
gram is used to generate the annotated goal models.
The format of these generated goal models conforms to
the OMG XMI standard, which is exchangeable with
other modeling tools such as EclipseUML or Rational-
Rose. To this end, we used Eclipse modeling frame-
work (EMF). Then we used the JDT API in Eclipse
to convert any structured Java program into an anno-
tated goal model, and further created an AND-OR goal
model using the basic patterns. The annotation labels
are automatically transformed into a purely AND-OR
goal model using the basic patterns in Figure 11.

• Identifying NFR-operationalizing goals by testing.
First, a set of functional test cases is prepared. Then
every statement is guarded by an IF statement on a
boolean condition. Falsifying the condition will skip
the statement: if the modified execution still passes the
functional test, then its corresponding goal is address-
ing NFRs. The necessary statements for the functional
tests are restored to the unguarded form.

• Linking NFR-operationalizing goals to softgoals by
testing. Once non-functional tasks are identified, one
can use non-functional requirements test cases to asso-
ciate the guard conditions to the NFR name and resort
to the NFR framework [3] to categorize them with cer-
tain quality attributes, as softgoals in the extended goal
model. The quality attributes answer why the non-
functional tasks are present in the source code.

6 Related work

Initially, goal models [7] were proposed to capture re-
quirements, i.e., the optative statements of the system-to-
be [32]. Goal models have been extended to represent both
functional and non-functional requirements [22]. [6] has
developed a set of requirements eliciting tools to bridge
the gap between NFRs and UML diagrams, where Class,
Sequence and Collaboration diagrams are considered. Ac-
cording to the horseshoe model, this corresponds to the for-

ward engineering phase. In this paper, we consider state-
charts [14] as a suitable intermediate representation for the
dynamic behavior of legacy code, as well as the abstract
interface to the environment.

This paper is not the first attempt to discover goal models
from sources other than requirements. In the KAOS project,
goal models can be inferred from user scenarios [32]. How-
ever, scenarios generally do not cover all possible paths
of program executions. And legacy software often comes
with incomplete and inaccurate documents. Therefore, our
methodology complements the KAOS approach, based on
the idea of understanding-by-refactoring. The recovered
goal model is not guaranteed to capture the intentions of
the original stakeholders, but can be trusted to capture the
implemented intentions of stakeholders, as understood by
programmers. It is also more traceable from the code since
each refactoring step is documented and is also invertible.

Goal models can also be seen as abstractions of system
processes. Other literature details techniques for recover-
ing process models from events collected during the soft-
ware development process [4]. However, this work focuses
on inferring the processes used to develop software, rather
than the processes realized by the software itself. Program
model checking [33] systems, such as Bandera [5], extract
finite-state machines from Java source code. Although such
systems have succeeded in finding counter examples for
some programs, the combinatorial explosion of states ul-
timately limits their applicability in revealing intentions be-
hind a large software system. Not surprisingly, we found a
similar combinational barrier when stakeholder goal models
are converted into state machines for model checking [13].
According to our case study, goal models can be built more
concisely from statecharts.

Using execution event traces, an algorithm was proposed
in [29] to compress state diagrams into UML state dia-
grams, which is a variant of the statechart notation. The
approach is complementary to our technique which does
not rely on program inputs. Pattern-based design recov-
ery [23] finds collaboration diagrams and statecharts from
source code, which is also similar to our work, but it relies
on pattern matching rather than legacy code comments.

7 Conclusions and future work

We have proposed a framework for reverse engineering
legacy code in order to discover the stakeholder goals it was
intended to fulfill. Our proposal has been illustrated with
two case studies involving public-domain legacy email sys-
tems (SquirrelMail and Columba). The case studies suggest
that the process of recovering stakeholder goals can be sys-
tematized. Moreover, reverse engineered goal models are
traceable in the code, making it feasible to forward engi-
neering goal models into new architectures.



The proposed framework definitely has limitations and
needs further research. Specifically, the proposed methods
won’t work well in the absence of well-thought out com-
ments. Moreover, further experimentation is needed to eval-
uate the effectiveness of heuristics used throughout the pro-
posed reverse engineering process. In future work, we pro-
pose to study methods for the recovery of softgoals using
hints from architecture and design documents and also to
compare the reverse engineered goal models with those de-
rived through requirements elicitation.

References

[1] R. Castello. SquirrelMail, http://www.squirrelmail.org.
[2] E. J. Chikofsky and J. H. Cross II. Reverse engineering and

design recovery: A taxonomy. IEEE Software, 7(1):13–17,
1990.

[3] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 2000.

[4] J. Cook and A. Wolf. Discovering models of software pro-
cesses from event-based data. ACM Transactions on Soft-
ware Engineering and Methodology, 7(3):215–249, 1998.

[5] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zhang. Bandera: Extracting finite-state
models from Java source code. In ICSE00, pages 439–448.

[6] L. M. Cysneiros and J. C. S. P. Leite. Non-functional re-
quirements: from elicitation to conceptual models. IEEE
Trans. on Softw. Eng., 30(5):328–350, May 2004.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Science of Computer Pro-
gramming, 20(1–2):3–50, Apr. 1993.

[8] E. H. D’Hollander, F. Zhang, and Q. Wang. The Fortran par-
allel transformer and its programming environment. Journal
of Information Sciences, (106):293–317, 1998.

[9] F. Dietz and T. Stich. The Columba project,
http://columba.sourceforge.net.

[10] J. Ferrante, K. Ottenstein, and J. Warren. The program de-
pendence graph and its use in optimization. ACM Trans.
Program Languages and Systems, 9(3):319–349, 1987.

[11] S. Fickas, L. Ehlhardt, M. Sohlberg, and B. Todis. Towards
personal RE: A challenging case study, 45-02. Technical re-
port, Computer Science Department, University of Oregon.

[12] M. Fowler. Refactoring: Improve the design of existing
code. Addison-Wesley, Reading MA, 1997.

[13] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and analyzing early require-
ments in Tropos. In RE’03, pages 105–114, 2003.

[14] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, pages 231–274,
1987.

[15] D. Harel and A. Naamad. The STATEMATE semantics
of statecharts. ACM Trans. on Software Engineering and
Methodology, 5(4):293–333, Oct. 1996.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. On Programming
Languages and Systems, 12(1):26–60, 1990.

[17] B. Hui, S. Liaskos, and J. Mylopoulos. Goal skills and pref-
erence framework. In RE’03, pages 117–126.

[18] R. Kazman, S. G. Woods, and S. J. Carriere. Requirements
for integrating software architecture and reengineering mod-
els: CORUM II. In WCRE’98, pages 154–163, 1998.

[19] J. Leite. Working results on software re-engineering. ACM
SIGSOFT Software Engineering Notes, 21(2):39–44, 1996.

[20] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Trans. Software Engineering, 30(2):126–139, 2004.

[21] H. Muller, J. Jahnke, D. Smith, M. Storey, S. Tilley, and
K. Wong. Reverse engineering: A roadmap. In Future of
Software Engineering, ICSE’00, pages 49–60, 2000.

[22] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. IEEE Transactions on Software Engineering,
18(6):483–497, Jun 1992.

[23] J. Niere, J. P. Wadsack, and A. Zundorf. Recovering UML
diagrams from Java code using patterns. In SCASE’01, 2001.

[24] W. Opdyke. Refactoring: A program restructuring aid in de-
signing object-oriented application frameworks. PhD thesis,
1992.

[25] K. Otteinstein and L. Ottenstain. The program dependence
graph in a software development environment. ACM SIG-
PLAN Notices, 19(5):177–184, May 1984.

[26] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to
the design of PVS. IEEE Trans. Software Eng., 21(2):107–
125, Feb. 1995.

[27] M. Samek. Practical statecharts in C/C++. Quantum pro-
gramming for embedded systems. CMP books, 2002.

[28] N. Shankar. Steps towards mechanizing program transfor-
mations using PVS. Science of Computer Programming,
26(1–3):33–57, May 1996.

[29] T. Systa, K. Koskimies, and E. Makinen. Automated com-
pression of state machines using UML statechart diagram
notation. Information & Software Technology, 44(10):565–
578, 2002.

[30] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[31] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: From system objectives to UML models to precise soft-
ware specifications. In ICSE 2003, pages 744–745, 2003.

[32] A. van Lamsweerde and L. Willemet. Inferring declarative
requirements from operational scenarios. IEEE Trans. Soft-
ware Engineering, 24(12):1089–1114, Nov. 1998.

[33] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. ASE, 10(2):203–232, 2002.

[34] M. Weiser. Program slicing. IEEE Trans. Software Engi-
neering, 10(4):352–357, July 1984.

[35] www.eclipse.org. Eclipse IDE, Refactoring in JDT, EMF,
UML2.

[36] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian,
and J. C. S. do Prado Leite. Refactoring source code into
goal models, ftp.cs.toronto.edu/csrg-technical-reports/510.
Technical report, University of Toronto, 2005.

[37] F. Zhang and E. H. D’Hollander. Using hammock graphs
to structure programs. IEEE Trans. Software Engineering,
30(4):231–245, Apr. 2004.


