
From Goals to High-Variability Software Design

Yijun Yu1?, Alexei Lapouchnian2??, Sotirios Liaskos3? ? ?, John Mylopoulos2†, and
Julio C.S.P. Leite4‡

1 Department of Computing, The Open University, United Kingdom
2 Department of Computer Science, University of Toronto, Canada

3 School of IT, York University, Canada
4 Department of Informatics, PUC-Rio, Brazil

Abstract. Software requirements consist of functionalities and qualities to be
accommodated during design. Through goal-oriented requirements engineering,
stakeholder goals are refined into a space of alternative functionalities. We adopt
this framework and propose a decision-making process to generate a generic soft-
ware design that can accommodate the full space of alternatives each of which can
fulfill stakeholder goals. Specifically, we present a process for generating comple-
mentary design views from a goal model with high variability in configurations,
behavioral specifications, architectures and business processes.

1 Introduction

Traditionally, requirements consist of functions and qualities the system-to-be should
support [8, 4]. In goal-oriented approaches [26, 27, 22], requirements are derived from
the list of stakeholder goals to be fulfilled by the system-to-be, and the list of quality
criteria for selecting a solution to fulfill the goals [22]. In goal models, root-level goals
model stakeholder intentions, while leaf-level goals model functional system require-
ments. [26] offers a nice overview of Goal-Oriented Requirements Engineering, while
the KAOS [8] and the i*/Tropos approaches [30, 2] represent the state-of-the-art for
research on the topic.

We are interested in using goal models to develop generic software solutions that
can accommodate many/all possible functionalities that fulfill stakeholder goals. This
is possible because our goals models are extensions of AND/OR graphs, with OR de-
compositions introducing alternatives into the model. The space of alternatives defined
by a goal model can be used as a basis for designing fine-grained variability for highly
customizable or adaptable software. Through customizations, particular alternatives can
be selected by using softgoals as criteria. Softgoals model stakeholder preferences, and
may represent qualities that lead to non-functional requirements.

? y.yu@open.ac.uk
?? alexei@cs.toronto.edu

? ? ? liaskos@yorku.ca
† jm@cs.toronto.edu
‡ julio@inf.puc-rio.br

The main objective of this paper is to propose a process that generates a high vari-
ability software design from a goal model. The process we propose is supported by
heuristic rules that can guide the design.

Our approach to the problem is to accommodate the variability discovered in the
problem space by a variability model in the solution space. To this end, we employ three
complementary design views: a feature model, a statechart and a component model.
The feature model describes the system-to-be as a combination variable set of features.
The statechart provides a view of the behavior alternatives in the system. Finally, the
component model reveals the view of alternatives as variable structural bindings of the
software components.

The goal model is used as the logical view at the requirements stage, similar to the
global view in the 4+1 views [17] of the Rational Unified Process. This goal model
transcends and circumscribes design views. On the other hand, a goal model is missing
useful information that will guide decisions regarding the structure and behavior of the
system-to-be. Our proposed process supports lightweight annotations for goal models,
through which the designer can introduce some of this missing information.

The remainder of the paper is organized as follows: Section 2 introduces require-
ments goal models where variability is initially captured. Section 3 talks about generat-
ing high-variability design views in feature models, statecharts, component-connector
architectures and business processes. Section 4 discusses tool support and maintenance
of traceability. Section 5 explains a case study. Finally, Section 6 presents related work
and summarizes the contributions of the paper.

2 Variability in Requirements Goal Models

We adopt the formal goal modeling framework proposed in [9, 23]. According to this
framework, a goal model consists of one or more root goals, representing stakeholder
objectives. Each of these is AND/OR decomposed into subgoals to form a forest. In
addition, a goal model includes zero or more softgoals that represent stakeholder pref-
erences. These can also be AND/OR decomposed. Moreover, there can be positive
and negative contribution relationships from a goal/softgoal to a softgoal indicating
that fulfillment of one goal/softgoal leads to partial fulfillment or denial of another
softgoal. The semantics of AND/OR decompositions is adopted from AI planning.
[9] and [23] provide a formal semantics for different goal/softgoal relationships and
propose reasoning algorithms which make it possible to check (a) if root goals are
(partially) satisfied/denied assuming that some leaf-level goals are (partially) satis-
fied/denied; (b) search for minimal sets of leaf goals which (partially) satisfy/deny all
root goals/softgoals.

Figure 1a shows an example goal model describing the requirements for “schedule
a meeting”. The goal is AND/OR decomposed repeatedly into leaf-level goals. An OR-
decomposition of a goal introduces a variation point, which defines alternative ways of
fulfilling the goal.

Variability is defined as all possible combinations of the choices in the variation
points. For example, the four variation points of the goal model in Figure 1a are marked
VP1-VP4. VP1 contributes two alternatives, VP2 and VP4 combined contribute 3, while

VP3 contributes 2. Then, the total space of alternatives for this goal model includes
2*3*2 = 12 solutions. Accordingly, we would like to have a systematic process for
producing a generic design that can potentially accommodate all 12 solutions.

(a):

Schedule
meeting

Collect
timetables

Choose
schedule

.. by person .. by system .. manually ..
automatically

Minimal
effort

Send request
for timetables

Decrypt
Received
Message

OR OR OROR

AND
AND

AND AND

+
+

.. from users.. from agents

ORORAccurate
Constraints

Minimal
Disturbances+

-
+
-

Select
Participants

AND

.. explicitly .. by interests

OR OR

Get topics
from initiator

Get interests
from

participants

Send request
for topics

Send request
for interests

Decrypt
Received
Message

Decrypt
Received
Message

AND AND

AND AND AND
AND

Hard Goal

Legend

Soft Goal

(b):

Schedule
meeting

Collect
timetables

Choose
schedule

.. by person .. by system .. manually ..
automatically

Minimal
effort

Send request
for timetables

Decrypt
Received
Message

OR OR OROR

AND
AND

AND AND

- +
+-

.. from users.. from agents

ORORAccurate
Constraints

Minimal
Disturbances+

-
+
-

Select
Participants

AND

.. explicitly .. by interests

OR OR

Get topics
from initiator

Get interests
from

participants

Send request
for topics

Send request
for interests

Decrypt
Received
Message

Decrypt
Received
Message

AND AND

AND AND AND
AND

VP1

;

;

||

VP2 VP3

VP4

| | |

;

;;

; Sequential

|
||

Legend of Annotations

Parallel

Exclusive

Non-system

Fig. 1. An example generic goal model of the meeting scheduler: (a) Variation points by OR
decompositions are indicated as VP1-4; (b) the goal model annotated with enriched labels

It is desirable to preserve requirements variability in the design that follows. We call
a design parameterized with the variation point choices a generic design, which can im-
plement a product-line, an adaptive product and/or a component-based architecture. A
product-line can be configured into various products that share/reuse the implemen-
tation of their commonality. An adaptive product can adapt its behavior at run-time
to accommodate anticipated changes in the environment as it is armed with alternative
solutions. A component-based design makes use of interface-binding to flexibly orches-
trate components to fulfill the goal. In the next section, we will detail these target design
views as feature models, statecharts and component-connectors.

In this work traceability between requirements and design is achieved by an ex-
plicit transformation from goal models to design views. Goal models elicited from re-

quirements are more abstract than any of the design views; therefore such generation is
only possible after identifying a mapping between goals and design elements. To save
designer’s effort, we enrich the goal models with minimal information such that the
generative patterns are sufficient to create preliminary design-level views.

Figure 1b shows an annotated goal model for feature model and statecharts genera-
tion, where the semantics of the goal decompositions are further analyzed: (1) VP1, VP2
and VP3 are exclusive (|) and VP4 is inclusive; (2) based on the temporal relationships
of the subgoals as required by the data/control dependencies, AND-decompositions
are annotated as sequential (;) or parallel (||) and (3) goals to be delegated to non-
system agents are also indicated. We will explain the detailed annotations for deriving
a component-connector view in the next section. As the preliminary design evolves,
design elements and their relationships can change dramatically. However, the trace-
ability to the required variability must be maintained so that one can navigate between
the generated design views using the derived traceability links among them.

3 Generating preliminary design views

This section presents three preliminary design views that can be generated from a high-
variability goal model. For each view, we use generative patterns to simplify the task.

3.1 Feature models

Feature modeling [14] is a domain analysis technique that is part of an encompassing
process for developing software for reuse (referred to as Domain Engineering [7]). As
such, it can directly help in generating domain-oriented architectures such as product-
line families [15].

There are four main types of features in feature modeling: Mandatory, Optional, Al-
ternative, and OR features [7]. A Mandatory feature must be included in every member
of a product line family provided that its parent feature is included; an Optional feature
may be included if its parent is included; exactly one feature from a set of Alternative
features must be included if a parent of the set is included; any non-empty subset of an
OR-feature set can be included if a parent feature is included.

There are fundamental differences between goals and features. Goals represent
stakeholder intentions, which are manifestations of intent which may or may not be
realized. Goal models are thus a space of intentions which may or may not be fulfilled.
Features, on the other hand, represent properties of concepts or artifacts [7]. Goals will
use the services of the system-to-be as well as those of external actors for their fulfill-
ment. Features in product families represent system functions or properties. Goals may
be partially fulfilled in a qualitative or quantitative sense [9], while features are either
elements of an allowable configuration or they are not. Goals come with a modality:
achieve, maintain, avoid, cease [8], while features have none. Likewise, AND decom-
position of goals may introduce temporal constraints (e.g., fulfill subgoal A before sub-
goal B) while features do not.

As noted in [7], feature models must include the semantic description and the ratio-
nale for each feature (why it is in the model). Also, variable (OR/Optional/Alternative)

(a-e)
f1

f2 f3

f1

f2

f1

f2 f3

f1

f2 f3

mandatory optional alternative or

AND AND

g1

g2 NOP

OR OR

g1

g2 g3

OR OR

g1

g2 g3

OR OR

f1

f2 f3

mandatory

g2 g3

g1 g1

g2 g3

OR OR|

(f)

meeting
scheduler

participants
selector

.. explicitly .. by Interests
Automatic
Selectiontopics getter

from initiator

+conflicts [accurate constraints],
+conflicts [minimal disturbance]

timetable
collector

timeslot
chooser

interests getter
from participants

request sender
for topics

.. by system

.. from agents .. from users

request sender
for timetables

+dependency
[minimal effort]

message
decryptor

request sender
for topics

Fig. 2. Generating Features: (a-e) a set of patterns; (f) the feature model generated from Figure 1b

features should be annotated with conditions describing when to select them. Since goal
models already capture the rationale (stakeholder goals) and the quality criteria driving
the selection of alternatives, we posit that they are proper candidates for the generation
of feature models.

Feature models represent the variability in the system-to-be. Therefore, in order to
generate them, we need to identify the subset of a goal model that is intended for the
system-to-be. Annotations can be applied to generate the corresponding preliminary
feature model. AND decompositions of goals generally correspond to sets of Manda-
tory features (see Figure 2a). For OR decompositions, it is important to distinguish two
types of variability in goal models: design-time and runtime. Design-time variability is
high-level and independent of input. It can be usually be bound at design-time with the
help of user preferences or other quality criteria. On the other hand, runtime variability
depends on the runtime input and must be preserved at runtime. For example, meeting
participants can be selected explicitly (by name) or chosen by matching the topic of
the meeting with their interests (see Figure 2). The choice will depend on the meeting
type and thus both alternatives must be implemented. When subgoals cannot be selected

based on some quality criteria (softgoals), they are considered runtime variability, thus,
runtime variability in goal models will generate mandatory features (Figure 2e). Other-
wise, as design-time variability, other OR decompositions can be mapped into sets of
OR-features (Figure 2d). However, Alternative and Optional feature sets do not have
counterparts in the AND/OR goal models. So, in order to generate these types of fea-
tures we need to analyze whether some of the OR decompositions are, in fact, XOR
decompositions (where exactly one subgoal must be achieved) and then annotate these
decompositions with the symbol “|” (Figure 2c). The inclusive OR decomposition cor-
responds to a feature refined into a set of OR features (Figure 2d). Finally, when a goal
is OR-decomposed into at least one non-system subgoal (specified by a goal annotation
NOP), the sibling system subgoals will be mapped into optional features (Figure 2b). As
a result, Figure 2f shows the feature model generated from Figure 1b. The implemented
procedure has been reported in [31].

In a more complex design, the system may need to facilitate the environmental
actors in achieving their goals or monitor the achievement of these goals. Here, the goals
delegated to the environment can be replaced with user interfaces, monitoring or other
appropriate features. In general, there is no one-to-one correspondence between goals
delegated to the system and features. While high-level goals may be mapped directly
into grouping features in an initial feature model, a leaf-level goal may be mapped into a
single feature or multiple features, and several leaf goals may be mapped into a feature,
by means of factoring. For example, a number of goals requiring the decryption of
received messages in a secure meeting scheduling system may be mapped into a single
feature “Message Decryptor” (see Figure 25).

3.2 Statecharts

Statecharts, as proposed by David Harel [11], are a visual formalism for describing the
behavior of complex systems. On top of states and transitions of a state machine, a
statechart introduces nested super-/sub-state structure for abstraction (from a state to its
super-state) or decomposition (from a state to its substates). In addition, a state can be
decomposed into a set of AND states (visually separated by swim-lanes) or a set of XOR
states [11]. A transition can also be decomposed into transitions among the substates.

This hierarchical notation allows the description of a system’s behavior at different
levels of abstraction. This property of statecharts makes them much more concise and
usable than, for example, plain state machines. Thus, they constitute a popular choice
for representing the behavioral view of a system.

Figure 3a0 shows a mapping from a goal in a requirements goal model to a state
in a statechart. There are four basic patterns of goals in linear temporal logic formula,
here we show mappings for achieve and maintain goals, whereas cease and avoid goals
are similar.

An achieve goal is expressed as a temporal formula with P being its precondition,
and Q being its post-condition. In the corresponding statechart, one entry state and one

5 One can systematically derive feature names from the hard goal descriptions by, for exam-
ple, changing the action verb into the corresponding noun (e.g., “schedule meeting” becomes
“meeting scheduler”).

(a):

(0):

(1-5):

g

g1 g1

g1

g

g1 g2

g

g1 g2

g1

g2

AND AND AND AND OROR
g

g1 g2

g1

g2

OROR

(1) (2) (4) (5)

g

g1 g2

AND AND

(3)

g1

g2
g1 g2

g2

(b):

Schedule meeting

Select participants

VP3=2[-ME]/
Choose timeslot

manually

VP1=2/ .. explicitly

Collect timetables

.. by interests

/Decrypt

received

message
VP2=2 [-ME]
/ .. by person

V
P

2=
1[

+M
E

]

.. by system

/Decrypt

received

message

VP4=1 [-AC, +MD]/.. from agents

VP3=1[+ME]
/Choose timeslot

automatically

VP4=2

[+AC,-M
D]/

Request
for

tim
etables

/Request initiator
for topics

V
P

1=
1

/Request participantsfor interests

/Decrypt
received
message

Fig. 3. Generating Statecharts: (a0-a5) a set of patterns; (b) the generated statecharts from Fig-
ure 1b

exit state are created: P describes the condition triggering the transition from the entry
to the exit state; Q prescribes the condition that must be satisfied at the exit state. The
transition is associated with an activity to reach the goal’s desired state. The cease goal
is mapped to a similar statechart (not shown) by replacing the condition at the exit state
with ¬Q. For mapping a maintain goal into a statechart, the transition restores the state
back to the one that satisfies Q whenever it is violated while P is satisfied. Similar to the
maintain goal’s statechart, the statechart for an avoid goal swaps Q with its negation.
These conditions can be used symbolically to generate an initial statechart view, i.e.,
they do not need to be explicit temporal logic predicates. At the detailed design stage,
the designer may provide solution-specific information to specify the predicates for a
simulation or an execution of the refined statechart model.

Then applying the patterns in Figure 3a1-5, a goal hierarchy will be mapped into
an isomorphic state hierarchy in a statechart. That is, the state corresponding to a goal
becomes a super-state of the states associated with its subgoals. The runtime variability
will be preserved in the statecharts as alternative transition paths.

The transformation from a goal model to an initial statechart can be automated even
when the temporal formulae are not given: we first associate each leaf goal with a state
that contains an entry substate and an exit substate. A default transition from the entry
substate to the exit substate is labeled with the action corresponding to the leaf goal.
Then, the AND/OR goal decompositions are mapped into compositions of the state-
charts. In order to know how to connect the substates generated from the corresponding
AND-decomposed subgoals, temporal constraints are introduced as goal model anno-

tations, e.g., for an OR-decomposition, one has to consider whether it is inclusive or
exclusive.

Given root goals, our statechart generation procedure descends along the goal re-
finement hierarchy recursively. For each leaf goal, a state is created according to Fig-
ure 3a0. The created state has an entry and an exit substates. Next, annotations that
represent the temporal constraints with the AND/OR goal decompositions are consid-
ered. Composition patterns can then be used to combine the statecharts of subgoals into
one statechart (Figure 3a1-5). The upper bound of number of states generated from the
above patterns is 2N where N is the number of goals.

For the Schedule Meeting goal model in Figure 1, we first identify the sequen-
tial/parallel control patterns for AND-decompositions through an analysis of the data
dependencies. For example, there is a data dependency from “Send Request for Timetable”
to “Decrypt Received Message” because the time table needs to be requested first, then
received and decrypted. Secondly, we identify the inclusive/exclusive patterns for the
OR decompositions. For example, “Choose Time Slot” is done either “Manually” or
“Automatically”. Then we add transitions according to the patterns in Figure 3a. As a
result, we obtain a statechart with hierarchical state decompositions (see Figure 3b). It
describes an initial behavioral view of the system.

The preliminary statechart can be further modified by the designer. For example,
the abstract “send requests for timetable” state can be further decomposed into a set of
substates such as “send individual request for timetable” for each of the participants.
Since the variability is kept by the guard conditions on the transitions, changes of the
statecharts can still be traced back to the corresponding annotated goal models. More-
over, these transitions specified with entry/exit states can be used to derive test cases for
the design.

3.3 Component-connector view

A component-connector architectural view is typically formalized via an architecture
description language (ADL) [21]. We adapt the Darwin ADL [20] with elements bor-
rowed from one of its extensions, namely Koala [28]. Our component-connector view is
defined by components and their bindings through interface types. An interface type is
a collection of message signatures by which a component can interact with its environ-
ment. A component can be connected to other components through instances of inter-
face types (i.e. interfaces). A provides interface shows how the environment can access
the component’s functionality, whereas a requires interface shows how the component
can access the functionality provided by the environment. In a component configura-
tion, a requires interface of a component in the system must be bound to exactly one
provides interface of another component. However, as in [28], we allow alternative
bindings of interfaces through the use of a special connection component, the switch.
A switch allows the association of one requires interface with many alternative pro-
vides interfaces of the same type, and is placed within a compound component which
contains the corresponding alternative components.

A preliminary component-connector view can be generated from a goal model by
creating an interface type and a component for each goal. The interface type contains
the signature of an operation. The operation name is directly derived from the goal

description, the IN/OUT parameters of the operation signature must be specified for
the input and output of the component. Therefore in order to generate such a prelim-
inary component-connector view, each goal needs to be annotated with specification
of input/output data. For example, the interface type generated from the goal “Collect
Timetables from Users” is shown as follows:

interface type ICollectTimetablesFromUsers {
CollectTimetables(IN Users, Interval,

OUT Constraints);
}

The generated component implements the interface type through a provides interface.
The requires interfaces of the component depend on how the goal is decomposed.

If the goal is AND-decomposed, the component has as many requires interfaces as the
subgoals. In our example, the initial component of the goal “Collect timetables from
Users” is generated as follows:

component TimetableCollectorFromUsers {
provides ICollectTimetables;
requires IGetTimetable, IDecryptMessage;

}

The requires interfaces are bound to the provides interfaces of the subgoals.
If the goal is OR-decomposed, the interface types of the subgoals are first replaced

with the interface type of the parent goal such that the provides interface of the parent
goal is of the same type as the provides interfaces of the subgoals. Then, inside the
generated component, a switch is introduced to bind these interfaces. The provides
interface of the compound component generated for the parent goal can be bound to
any of the subgoal’s provides interfaces. Both the switch and the components of the
subgoals are placed inside the component of the parent goal, and are hidden behind its
interface.

In Figure 4, the graphical notation is directly adopted from Koala/Darwin. The
boxes are components and the arrows attached to them represent provides and requires
interfaces, depending on whether the arrow points inwards or outwards respectively.
The lines show how interfaces are bound for the particular configuration and are an-
notated with the name of the respective interface type; the shape of the overlapping
parallelograms represents a switch. Patterns show how AND/OR decompositions of
system goals are mapped into the component-connector architecture.

In order to accommodate a scheme for event propagation among components, we
follow an approach inspired by the C2 architectural style [21] where requests and noti-
fications are propagated in opposite directions. As requests flow from high level com-
ponents to low-level ones, notifications (events) originated from low-level components
will propagate to high-level ones. Such events are generated from components associ-
ated with goals that are delegated to the environment (non-system goals). These com-
ponents are responsible for supporting external actors’ activity to attain the associated
goal, to sense the progress of this attainment and to communicate it to the compo-
nents of higher level by generating the appropriate events. We name such components
interface components to signify that they lay at the border of the system. Interface com-
ponents have an additional requires interface that channels the events. This interface is
optionally bound to an additional provides interface at the parent component, its event

(a):

g

g1 g2

OR OR

I: i1,i2
O: o1,o2

I: i1,i2
O: o1,o2

I: i1,i2
O: o1,o2

interface type Ig{
G(IN i1,IN i2,
 OUT o1, OUT o2);

}

Ig

Ig Ig

g

g1 g2

I: i1,i2
O: o1,o2

I: i21,i22
O: o21,o22

I: i11,i12
O: o11,o12

interface type Ig {
G(IN i1, IN i2,
OUT o1, OUT o2);}

interface type Ig1 {
G1(IN i11,IN i12,

OUT o11,OUT o12);}
interface type Ig2 {
G2(IN i21,IN i22,

OUT o21,OUT o22);}

Ig1 Ig2

AND AND

Ig

Ig1 Ig1Event

g

g1

I: i1,i2
O: o1,o2

I: i11,i12
O: o11,o12

AND

interface type Ig1 {
G1(IN i11, IN i12);

}
interface type Ig1Event {

G1Event(OUT o11,OUT o12);
}

...

AND

(b):

Participants
Selector

Timeslot
Chooser

Meeting
Scheduler

Explicit
Participants

Selector

Participants
Selector by

Interests

Topics Getter
from Initiator

Interests Getter
from Participants

Requests Messenger
Message
Decrypter

Timetable Collector

NOP

.. by System

.. from
Agent .. from Users

Automatic
Timeslot
Chooser

ICollectTimeTables

IGetTimetable

IChooseTimeSlot

ISelectParticipants

IGetTopics IGetInterests

IG
etTopics

IG
etInterests IDecryptMessage

VP2

VP4

VP3

ITimetableEvent

ITopicsEvent

IInterestsEvent

Manual
Timeslot
Chooser

Fig. 4. Generating Architectures: (a) a set of patterns; (b) the generated architecture from Fig-
ure 1b

handler. In Java, such a binding becomes a Listener interface in the parent component
for receiving events from the interface component.

In our example (see Figure 4), three goals “Send request for topics/interests/timetable”
are delegated to external actors (e.g. initiator, participants and users), and will therefore
yield an interface component, e.g.:

component TimetableCollectorFromUsers {
provides ICollectTimetable, ITimetableEvent;
requires IGetTimetable, IDecriptMessage;

}

The RequestMessenger component is a result of merging components of lower
level and is being reused by three different components of higher level through param-
eterization. These are examples of modifications the designer may chose to make, after
the preliminary configuration has been produced.

3.4 Business processes view

We have shown how to transform an annotated goal model into traditional detailed
views, in terms of configuration (i.e., feature models), behavior (i.e., statecharts) and
structure (i.e., component-connector architectures). By similarity in abstraction, one
may prefer to generate high-variability design views for service-oriented architectures.
In fact, i* goal models, an extension of the presented goal model language, have long
been proposed to model business processes engineering for agent-oriented software [30].
Using the concept of actors in i*, one can group together goals belonging to the same
stakeholders and refine them from those stakeholders’ point of view, also modeling
goal delegations among the actors as strategic dependencies. On top of variability in
data/control dependencies, we introduced the variability in delegation dependencies.
Combining the variability support in data, control and delegation dependencies, we
were able to generate high-variability business process models in WS-BPEL [19]. In
this work, the interface types of component-connector views in WSDL (Web service
definition language) were implemented by Web services and controlled by another
Web service. This controlling Web service, implemented in BPEL, ochestrates the con-
stituent services through the patterns similar to what we have defined in the statechart
view (i.e., substitute state machines with processes and transitions with flows). In ad-
dition, we created another Web service that is capable of configuring BPEL processes
based on user preferences such that the high-variability BPEL can be dynamically re-
configured. Since the controlling BPEL process is deployed also as a Web service, one
can build atop a hierarchical high-variability design that can be dynamically configured
while different layers of goal models are changed. Using the monitoring and diagnosing
framework [29] for such changes, we envision this business process model as a promis-
ing solution towards a requirements-driven autonomic computing system design where
each goal-model generated controller is an element of the managing component in such
systems [18].

4 Tool support and traceability

On the basis of the metamodel of annotated high-variability goal models, we developed
a model-driven goal modeling tool, OpenOME6, which is capable of editing goal mod-
els, adding annotations, and generating the design views such as feature models [31]
and BPEL processes [19]. A simplified goal model in Figure 1 is represented by the
XML document in Figure 5a.

Our OpenOME modeling tool is an Eclipse-based graph editors in which the mod-
els are persisted in XMI format which is transparent to the modeller. To illustrate the
underlying traceability support, here we explain using the XMI examples, in which the
default name space is declared by the xmlns attribute, informing a goal graph editor
that it is a goal model. Next to the annotations to the goals and its refinements, the sib-
ling tags of other namespaces provide traceability links to the other views. The attribute
src of design elements indicates the origin element in the goal model before the trans-
formation. When the attribute has a value other than generated, it indicates that the

6 http://www.cs.toronto.edu/km/openome

<view xmlns=”urn:goals” xmlns:e="urn:enrichments"
xmlns:f="urn:features" xmlns:s="urn:statecharts"
xmlns:c="urn:components">
< goal name="Schedule Meeting">
<refinement type="goal" value="AND"/>
<e:refinement type="state" value="SEQ"/>
<e:annotation type="feature" value="SYS"/>
<e:annotation type="component"

input="meeting" output="schedule"/>
<e:annotation type="state" pre="meeting!=null"
post="!schedulable OR schedule!=null"/>

<f:feature name="Meeting Scheduler"
src="generated: renamed"/>

<s:statechart name="Schedule Meeting"
src="generated"/>

<c:component name="Meeting Scheduler"
src="generated: renamed"/>

< goal name="Select Participants"> ... </goal>
< goal name="Collect Timetables"> ... </goal>
< goal name="Choose Schedule"> ... </goal>

</goal>
</view>

<view xmlns:g="urn:goals" xmlns="urn:features"...>
< g:goal name="Schedule Meeting">
<g:refinement type="goal" value="AND"/>...
<e:annotation type="feature" value="SYS"/>...
< feature name="meeting scheduler"
src="renamed"> <refinement type="feature"
value="AND" src="generated"/>

<cardinality value="1" src="generated"/>
< g:goal name="Select Participants">
< feature name="participants selector"
src="renamed"> ...</feature>...</g:goal>

< g:goal name="Collect Timetables">s
< feature name="timetable collector"
src="renamed">...</feature>...</g:goal>

< g:goal name="Choose Schedule">
< feature name="timetable collector"
src="renamed">...</feature>...</g:goal>

< feature name="message decryptor"
src="refactored"
origin="Decrypt Received Message">
...<feature/> </feature> ...</g:goal> </view>

(a): high-variability goal model annotated (b): generated features

Fig. 5. Traceability support in representations of annotated goal models

design element has been manually changed. Thus, if the source goal model is changed,
the renamed design element will not be overridden by the generation process.

We use the generated feature model view to illustrate the concept of traceability
(Figure 5b). The default namespace here is “features” and the nesting structure for fea-
ture model was mostly generated from the nesting structure of goals. However, some
features (e.g. “message decryptor”) can correspond to a goal that is not originally de-
composed from that corresponding to its parent. In this case, the original goal with
which it was associated is indicated. During design, features not corresponding to any
goal can be added/removed. However, such design changes cannot remove existing
traceability links including the ones implied by the sibling XML elements. Deleted
design elements are still kept in the model with a “deleted” src attribute. As the src
attribute maintains the traceability between a goal and a design element, the link be-
tween two design views can be derived. For example, in the above document, one can
obtain the traceability link between a “Meeting Scheduler” component and a “meeting
scheduler” feature since they are both mapped from the “Schedule Meeting” goal.

An XMI representation of the above metamodel represents the elements of a unified
model in a single name space. For each design view, the generation procedure is imple-
mented as an XSLT stylesheet that transforms the unified model into an XML design
document that can be imported by the corresponding visual tool. A generated docu-
ment separates the concerns of various views into different namespaces. The default
name space concerns the primary design view, whereas the relationships between adja-
cent tags of different namespaces capture the traceability among corresponding design
views.

5 A case study

A case study was conducted to validate our approach. First we developed a goal model
by decomposing the user’s goal for Prepare an Electronic Message into 48 goals with 10
AND- and 11 OR-decompositions [13]. Instead of developing from scratch we consid-
ered reusing components from an existing email client. To support the external validity

of our study, we chose a public-domain Java email client Columba7, which had been
studied for reverse engineering of its goal models [34]. This poses a threat to the inter-
nal validity since none of the authors is involved in the development of Columba, thus
our understanding of its absent design alternatives is limited. However, we relied on
program understanding to analyze its implemented requirements. Due to the absence of
early decisions, the purpose of this study differs from [34] which was to recover as-is re-
quirements from the code. Rather, we compared the implementation with respect to the
goal model that appears in [13] in order to check (1) whether we can reuse any com-
ponents in Columba to implement our generated design views; (2) whether Columba
system can cover all the variability needed by our requirements goal model; (3) whether
our final design can be traced back to the original requirements goal models.

The study was done as follows (for details see technical report [33]). First, we an-
alyzed the system to reconstruct design views including feature models, component-
connector views and statecharts. Starting with the component-connector view: each
component corresponds to at least one JAR archive. The system includes 3 basic compo-
nents (Core, AddressBook, Mail), 23 third party components and 16 plug-in com-
ponents. All of them become features in the system’s feature model view, including 26
mandatory features and 22 optional features. Further, we found that 8 mandatory com-
ponents are actually related to process-oriented goals for maintainability, such as Test-
ing (junit, jcoverage), Coding convention check (checkstyle), Command line
options (common-cli), XML documentations (jdom) and Build automation (ant,
maven, jreleaseinfo). The other 40 components relate to product-oriented user
goals. Some AND-decomposed features correspond to OR-decomposed goals. For ex-
ample, the Look and Feel usability goal was implemented by 6 plugin components
(Hippo, Kunststoff, Liquid, Metoulia, Win, Thin). At run-time, only
one of these components will be enabled for the look and feel. Similar observation ap-
plies to the IMAP and POP3 server features. Statecharts were obtained from the dy-
namic messaging trace rather than from static call graphs. Since we are interested in
abstract statecharts that are closer to goals, the intra-procedural messages were ignored
as long as they were structural and goals could thus be extracted and partially validated
by the existing 285 test cases [34].

Since the feature models and the component-connector views were recovered from
static call graphs, whereas the statecharts were recovered from dynamic messaging
traces, we found it hard to establish traceability among them. For example, a non-
functional maintenance goal (e.g. test cases, plugin support) often crosscuts multiple
components [32, 34]. In short, there is no one-to-one mapping between goals and the
tangled design elements.

Then we looked at reusing Columba to fulfill our high-variability goal, “Prepare
an electronic message” [13]. We found that Columba does have reusable components
to fulfill some goals of our user. For example, the above hard goal is AND decom-
posed into Addressbook and Mail folder management, Composing email, Checking
Emails, Sending email, Spell Checking, Printing, etc. They are implemented by the
3 basic components. The 3rd party components are called by these components to ful-
fill hard goals such as Java Mail delivery (Ristretto), Spam filtering (Macchiato,

7 http://www.columbamail.org

SpamAssassin), Full Text search (Lucene), Profile Management (jpim and Berke-
ley DB je). The plug-ins help with functional goals such as Chatting (AlturaMess-
enger), mail importing(Addressbook, mbox, etc.) and notification (PlaySound-
Filter). For some non-functional softgoals, Usability is implemented with 7 GUI
components (Swing, JGoodies, Frapuccino, jwizz, JDic) and Online Help
(jhall, usermanual); Security is fulfilled by component GNU Privacy guard (JSCF).

There is still missing functionality or variability for our users: Composing email
does not allow Compose by voice subgoal, which we implemented by switching Columba’s
text-based composer to the speech-based composer using JavaMedia; the mandatory
Auto Completion for Recipients feature may not satisfy some of our users who wanted
Low Mistake Probability and Maximum Performance when the address book is large.
Thus, it was turned into optional in our implementation.

Applying our approach, we obtained preliminary design views that were traceable
to each other. The derived feature view consists of 39 features where 9 non-system goals
were discarded as NOP. Among the 11 variation points, 2 were turned into mandatory
feature decompositions because there was no softgoal associated with them as a se-
lection criterion. The derived statecharts view consists of 21 abstract leaf states where
the transitions were turned into test cases. The component-connector view consists of
33 concrete components controlled by 9 switches. We have implemented such generic
design based on Columba and additional libraries, among which a reasoning compo-
nent [9, 23] was used. Thus the resulting system can be reconfigured using quality
attributes derived from requirements goals, user skills and preferences [13].

6 Related work and conclusion

There is growing interest on the topic of mapping goal-oriented requirements to soft-
ware architectures. Brandozzi et al [1] recognized that requirements and design were
respectively in problem and solution domains, thereby a mapping between a goal and a
component was proposed for increasing reusability. A more recent work by van Lam-
sweerde et al [25] derives software architectures from the formal specifications of a
system goal model using heuristics. Specifically, the heuristics discover design elements
such as classes, states and agents directly from the temporal logic formulae that define
the goals. Complementary to their formal work, we apply light-weight annotations to
the goal model in order to derive design views: if one has the formal specifications for
each goal, some heuristics provided in [25] can be used to find the annotations we need,
such as system/non-system goals, inputs/outputs and dependencies among the subgoals.
Generally, this line of research has not addressed variability at the design level.

Variability within a product-line is another topic receiving considerable attention [5,
7], which has not addressed the problem of linking product family variability to stake-
holder goals (and the alternative ways these can be achieved). Closer to our work, [10]
proposes an extension of use case notation to allow for variability in the use of the
system-to-be. More recently [3], the same group tackled the problem of capturing and
characterizing variability across product families that share common requirements.

We maintain traceability between requirements and the generated design using con-
cepts from literate programming and model-driven development. In literate program-

ming [16], any form of document and program can be put together in a unified form,
which can then be tangled into an executable program with documented comments or
into a document with illustrative code segments. In this regards, our annotated goal
model is a unified model that can derive the preliminary views with traceability to other
views. In model-driven development (MDD), code can be generated from design mod-
els and a change from the model can propagate into the generated code [24]. To prevent
a manual change to the code from being overridden by the code generation, a special
not generated annotation can be manually added to the comments of the initially gen-
erated code. We use MDD in a broader sense – allow designers to change the generated
preliminary design views and to manually change the not generated attribute of a gen-
erated design element. Comparing to deriving traceability links through information
retrieval [12], our work proproses a generative process where such links are produced
by the process itself and recorded accordingly.

In [6], softgoal models that represent non-functional requirements were associated
with the UML design views. On the other hand, this paper focuses on establishing trace-
ability between functional requirements and the preliminary designs. Since variability
is explicitly encoded as alternative designs, the non-functional requirements in goal
models are kept in the generic design to support larger user bases.

In summary, this paper proposes a systematic process for generating complementary
design views from a goal model while preserving variability (i.e., the set of alternative
ways stakeholder goals can be fulfilled). The process is supported by heuristic rules and
mapping patterns. To illustrate, we report a case study reusing public domain software.
The generated preliminary design is comparable in size to the goal model.

References

[1] M. Brandozzi and D. E. Perry. Transforming goal oriented requirements specifications into
architectural prescriptions. In STRAW at ICSE01, 2001.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203–236, 2004.

[3] S. Bühne, K. Lauenroth, and K. Pohl. Modelling requirements variability across product
lines. In RE’05, pages 41–50, 2005.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishing, 2000.

[5] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Boston, MA,
Addison-Wesley, 2001.

[6] L. M. Cysneiros and J. C. S. P. Leite. Non-functional requirements: from elicitation to
conceptual models. IEEE Trans. on Softw. Eng., 30(5):328–350, May 2004.

[7] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading, MA, USA, June 2000.

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20(1–2):3–50, Apr. 1993.

[9] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with goal models.
LNCS, 2503:167–181, 2002.

[10] G. Halmans and K. Pohl. Communicating the variability of a software-product family to
customers. Software and Systems Modeling, 2:15–36, 2003.

[11] D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Trans. on Software
Engineering and Methodology, 5(4):293–333, Oct. 1996.

[12] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate link generation for
requirements tracing:the study of methods. IEEE Trans. on Softw. Eng., 32(1):4–19, 2006.

[13] B. Hui, S. Liaskos, and J. Mylopoulos. Goal skills and preference framework. In Interna-
tional Conference on Requirements Engineering, 2003.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented Do-
main Analysis (FODA) feasibility study, (cmu/sei-90-tr-21, ada235785). Technical report,
1990.

[15] K. C. Kang, S. Kim, J. Lee, and K. Lee. Feature-oriented engineering of PBX software for
adaptability and reuseability. SPE, 29(10):875–896, 1999.

[16] D. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.
[17] P. Kruntchen. Architectural blueprints – the ”4+1” view model of software architecture.

IEEE Software, 12(6):42–50, Nov. 1995.
[18] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards requirements-driven au-

tonomic systems design. In DEAS ’05, pages 1–7, New York, NY, USA, July 2005. ACM
Press.

[19] A. Lapouchnian, Y. Yu, and J. Mylopoulos. Requirements-driven design and configuration
management of business processes. In BPM, pages 246–261, 2007.

[20] J. Magee and J. Kramer. Dynamic structure in software architectures. In The 4th ACM
SIGSOFT symposium on Foundations of software engineering, pages 3–14, 1996.

[21] N. Medvidovic and R. N. Taylor. A framework for classify-ing and comparing architecture
description languages. SIGSOFT Softw. Eng. Notes, 22(6):60–76, 1997.

[22] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional require-
ments: A process-oriented approach. IEEE Trans. on Softw. Eng., 18(6):483–497, 1992.

[23] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost satisfiability for
goal models. In CAiSE, pages 20–35, 2004.

[24] B. Selic. The pragmatics of model-driven development. IEEE Softw., 20(5):19–25, 2003.
[25] A. van Lamsweerde. From system goals to software architecture. In Formal Methods for

Software Architectures, LNCS 2804, 2003.
[26] A. van Lamsweerde. Goal-oriented requirements engineering: From system objectives to

UML models to precise software specifications. In ICSE 2003, pages 744–745, 2003.
[27] A. van Lamsweerde and L. Willemet. Inferring declarative requirements from operational

scenarios. IEEE Trans. Software Engineering, 24(12):1089–1114, Nov. 1998.
[28] R. C. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component

model for consumer electronics software. IEEE Computer, 33(3):78–85, 2000.
[29] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos. An automated approach to monitoring

and diagnosing requirements. In ASE, pages 293–302, 2007.
[30] E. S. K. Yu. Towards modelling and reasoning support for early-phase requirements engi-

neering. In RE’97, pages 226–235, 1997.
[31] Y. Yu, A. Lapouchnian, J. Leite, and J. Mylopoulos. Configuring features with stakeholder

goals. In ACM SAC RETrack 2008., 2008.
[32] Y. Yu, J. Leite, and J. Mylopoulos. From requirements goal models to goal aspects. In

International Conference on Requirements Engineering, 2004.
[33] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, and J. C. Leite. From stakeholder goals

to high-variability software design, ftp.cs.toronto.edu/csrg-technical-reports/509. Technical
report, University of Toronto, 2005.

[34] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C. S. do Prado Leite.
Reverse engineering goal models from legacy code. In RE’05, pages 363–372, 2005.

