
Modeling Domain Variability in Requirements
Engineering with Contexts

Alexei Lapouchnian and John Mylopoulos

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

{alexei,jm}@cs.toronto.edu

Abstract. Various characteristics of the problem domain define the context in
which the system is to operate and thus impact heavily on its requirements.
However, most requirements specifications do not consider contextual proper-
ties and few modeling notations explicitly specify how domain variability af-
fects the requirements. In this paper, we propose an approach for using contexts
to model domain variability in goal models. We discuss the modeling of con-
texts, the specification of their effects on system goals, and the analysis of goal
models with contextual variability. The approach is illustrated with a case
study.

1 Introduction

Domain models constitute an important aspect of requirements engineering (RE) for
they constrain the space of possible solutions to a given set of requirements and even
impact on the very definition of these requirements. In spite of that, domain models
and requirements models have generally been treated in isolation by requirements
engineering approaches (e.g., [7]). As software systems are being used in ever more
diverse and dynamic environments where they have to routinely and efficiently adapt
to changing environmental conditions, their designs must support high variability in
the behaviours they prescribe.

Not surprisingly, high variability in requirements and design have been recognized
as cornerstones in meeting the demands for software systems of the future [14,11,16].
However, the variability of domain models, which captures the changing, dynamic
nature of operational environments for software systems, and its impact on software
requirements, has not received equal attention in the literature. The problem is that
traditional goal models assume that the environment of the system-to-be is mostly
uniform and attempt to elicit and refine system goals in a way that would make the
goal model adequate for most instances of a problem (e.g., selling goods, scheduling
meetings, etc.) in a particular domain. In other words, traditional techniques ignore
the impact of domain variability on the requirements to be fulfilled for a system-to-be.
Thus, these approaches are missing an important source of requirements variability.

A recent proposal [17] did identify the importance of domain variability on re-
quirements. However, it assumes that requirements are given, and concentrates on
making sure that they are met in every context. Thus, the approach does not explore
the effects of domain variability on intentional variability – the variability in stake-
holder goals and their refinements. Also, in pervasive and mobile computing, where

contexts have long been an important research topic, a lot of effort has been directed
at modeling various contexts (e.g., [9]), but little research is available on linking those
models with software requirements [10].

In a recent paper [14], we concentrate on capturing intentional variability in early
requirements using goal models. There, the main focus was on identifying all the
ways stakeholder goals can be attained. We pointed out that non-intentional variabil-
ity (that is, time, location, characteristics of stakeholders, entities in the environment,
etc.) is an important factor in goal modeling as it constrains intentional variability in a
significant way. However, we stopped short of systematically characterizing such
domain variability and its effects on requirements. To that end, in this paper, we pro-
pose a coherent process for exploring domain/contextual variability and for modeling
and analyzing its effects on requirements goal models. We propose a fine-grained
model of context that represents the domain state and where each context contains
partial requirements model representing the effects of that context on the model.
Unlike, e.g., the method of [17], our approach results in high-variability context-
enriched goal models that capture and refine stakeholder goals in all relevant con-
texts. Moreover, context refinement hierarchies and context inheritance allow incre-
mental definition of the effects of contexts on goal models specified relative to
higher-level contexts. These goal models can then be formally analyzed.

–

Supply
Customer

AND

AND
ANDGet Order

Approve
Order

Process
Order

AND

Check Stock
Add Product

Item To Order

Order Out Of
Stock Item

Order From
Partner

Wholesaler

Order From
Retailer

Package
Order

Ship and Bill

Bill Customer

Ship Order

Ship Express
Ship

Standard

Performance

Customer
Satisfaction

Customer Cost

AND

AND

AND

OR OR

AND

AND

OR OR+
+

–

–

+
–

+

Order Item

AND AND
Add Product

Item To Order

AND

Receive Item

AND

Provide
Discount

Charge Full
Price

OR OR
–

+

Minimize Risk

+

Fig. 1. A high-level goal model for the Distributor.

As a motivation for this research, let us look at system for supplying customers with
goods. At a first glance, it seems that gathering requirements for such a system is
rather straightforward: we have the domain consisting of the distributor, the custom-
ers, the goods, the orders, the shipping companies, etc. Following a goal-oriented RE
approach, we can identify the functional goals that the system needs to achieve (e.g.,
Supply Customer, see Fig. 1) and the relevant softgoals/quality constraints (the cloudy
shapes) like Minimize Risk and then refine them into subgoals until they are simple
enough to be achieved by software components and/or humans. The produced re-
quirements specification assumes that the domain is uniform – i.e., the specification
and thus the system will work for all customers, all orders, etc. However, it is easy to
see that this view is overly simplistic as it ignores the variations in the domain that
have important effects on system requirements. E.g., international orders need to have
customs paperwork filled out, while domestic orders do not. Large orders are good for
business, so they may be encouraged by discounts or free shipping. And the list goes

on. So, our aim in this paper is to introduce an approach that allows us to model these
and other effects of domain non-uniformity and variability on software requirements.

The rest of the paper is structured as follows. Section 2 is the research baseline for
this work, covering context, goal modeling and related work. Section 3 presents our
formal framework. Section 4 talks about context-dependent goal models. Discussion
and future work are presented in Section 5, while Section 6 concludes the paper.

2 Background and Related Work

There exist a lot of definitions of context in Computer Science. E.g., [4] defines con-
text as “any information that can be used to characterize persons, places or objects
that are considered relevant to the interactions between a user and an application,
including users and applications themselves”. Brezillon [2], says that “context is what
constrains problem solving without intervening in it explicitly”. McCarthy states that
“context is a generalization of a collection of assumptions” [15]. This definition fits
well with our treatment of context as properties of entities in the environment and of
the environment itself that influence stakeholder goals and means of achieving them.
Thus, we define a context as an abstraction over a set of environment assumptions.

In various areas of computing, the notion of context has long been recognized as
important. For example, in the case of context-aware computing the problem is to
adapt to changing computational capabilities as well as to user behaviour and prefer-
ences [4]. In pervasive computing, context is used to model environment and user
characteristics as well as to proactively infer new knowledge about users.

There have been quite a few recent efforts directed at context modeling. While
some approaches adapt existing modeling techniques, others propose new or signifi-
cantly modified notations. Henricksen and Indulska present their Context Modeling
Language (CML) notation [9]. Their graphical modeling notation allows for capturing
of fact types (e.g., Located At, Engaged In) that relate object types (e.g., location,
person, and device). The model can distinguish between static and dynamic facts.
Moreover, it classifies dynamic facts into profiled facts (supplied by users), sensed
facts (provided by sensors), and derived facts (derived from other facts through logi-
cal formulas). Dependencies among facts can also be specified. A special temporal
fact type can be used to capture time-varying facts. Additional features of the ap-
proach include, for example, support for ambiguous context as well as for context
quality (e.g., certainty).

Standard modeling approaches like UML and ER have been used for context mod-
eling. However, they are not well suited for capturing certain special characteristics of
contextual information [9]. For example, in [6], UML class diagrams are used to
model user, personalization, and context metadata subschemas together in one model.
Ontologies have are also used for context modeling. They provide extensibility, flexi-
bility and composability for contexts. In [4], a generic top ontology, which can be
augmented with domain-dependent ones, is proposed. These approaches do not focus
on the use of context in applications.

Much research has also been dedicated to the formal handling of contexts in the
area of Artificial Intelligence and Knowledge Representation and Reasoning [1].
Goal models. Goal models [5,7] are a way to capture and refine stakeholder inten-
tions to generate functional and non-functional requirements. The main concept there

is the goal, such as Supply Customer for a distributor company (Fig. 1). Goals may be
AND/OR decomposed. For example, Supply Customer is AND-decomposed into
subgoals for getting customer orders, then processing and shipping them. All of these
subgoals need to be achieved for the parent goal to be achieved. On the other hand,
one or more subgoals in an OR decomposition need to be achieved for the parent goal
to be attained (e.g., achieving either Ship Standard or Ship Express will satisfy Ship
Order). OR decompositions thus introduce variability into the model. Softgoals are
qualitative goals (e.g., [Maximize] Customer Satisfaction). Softgoals do not have a
clear-cut criterion for their fulfillment, and may be satisficed – met to an acceptable
degree. In addition, goals/softgoals can be related to softgoals through help (+), hurt
(–), make (++), or break (--) relationships (represented with the dotted line arrows in
Fig. 1). These contribution links allow us to qualitatively specify that there is evi-
dence that certain goals/softgoals contribute positively or negatively to the satisficing
of softgoals. Then, a softgoal is satisficed if there is sufficient positive and little nega-
tive evidence for this claim. This simple language is sufficient for modeling and ana-
lyzing goals during early requirements, covering both functional and quality require-
ments, which in this framework are treated as first-class citizens.

High-variability goal models attempt to capture many different ways goals can be
met in order to facilitate in designing flexible, adaptive, or customizable software
[11,12,14]. In [14], an approach for systematic development of high-variability goal
models is presented. The approach, however, does not cover domain variability and
its affect on requirements.
Related Work. Our view of contexts is somewhat similar to the CYC common sense
knowledge base [13]. CYC has 12 context dimensions along which contexts vary.
Each region in this 12-dimensional space implicitly defines an overall context for
CYC assertions. We, however, propose more fine-grained handling of context with
possibly many more domain-specific dimensions.

Brezillon et al. [3] propose an approach for modeling the effects of context on de-
cision making using contextual graphs. Contextual graphs are based on decision trees
with event nodes becoming context ones. They are used to capture various context-
dependent ways of executing procedures. Whenever some context plays a role in the
procedure, it splits it up into branches according to the value of the context. Branches
may recombine later. This work is close to our approach in the sense that it attempts
to capture all the effects of contextual variability in one model. However, we are
doing this at the intentional level, while contextual graphs is a process-level notation.
Moreover, quality attributes are not considered there. We have looked at generating
process-level specifications from goal models [12] and we believe that contextual
graphs can be generated from the context-enriched goal models as well.

Salifu et al. [17] suggest a Problem Frames-based approach for the modeling of
domain variability and for the specification of monitoring and switching require-
ments. They identify domain variability (modeled by a set of domain variables) using
variant problem frames and try to assess its impact on requirements. For each context
that causes the requirements to fail, a variant frame is created and analyzed in order to
ensure the satisfaction of requirements. This approach differs from ours in that it
assumes that the requirements specification is given, while we are concentrating on
activities that precede its formulation. Another substantial difference is that we pro-

pose the use of a single high-variability requirements goal model for capturing all of
the domain’s variability.

3 The Formal Framework

In this section, we present a formal framework for managing models through the use
of contexts. While we are mainly interested in the graphical models such as require-
ments goal models, our approach equally applies to any type of model, e.g., formal
theories. We view instances of models (e.g., the Supply Customer goal model) as
collections of model element instances (e.g., Ship Order). There may be other impor-
tant structural properties of models that need capturing, but we are chiefly concerned
with the ability to model under which circumstances certain model elements are pre-
sent (i.e., visible) in the model and with the ability to display a version of the model
for the particular set of circumstances. Thus, we are concerned with capturing model
variability due to a wide variety of external factors. These factors can include view-
points, model versions, domain assumptions, etc. This formal framework can be in-
stantiated for any model to help with managing this kind of variability. In section 4.3,
we present an algorithm that generates this formal framework given an instance of a
requirements goal model.

We assume that there are different types of elements in a modeling notation. For
example, in graphical models, we have various types of nodes and links among them.
Let M be the set of model element instances in a model. Let T be the set of various
model element types available in a modeling notation (e.g., goals, softgoals, etc.). The
function L maps each element of M into an element of T, thus associating a type with
every model element instance. Only certain types of elements in a modeling notation
may be affected by contexts and thus belong to a variable part of a model. We define
TC as the subset of T containing such context-dependent model element types. If a
model element type is not in TC, it is excluded from our formalization. The contents
of the TC set are notation- and model-dependent. Let ࡯ࡹ ؝ ሼ݊| ݊ א ࡹ ר ሺ݊ሻܮ א ሽ࡯ࢀ
be the set of modeling elements of the types that can be affected by contexts.

We next define the set C of contextual tags. These are labels that are assigned to
model elements to capture the conditions that those elements require to be visible in
the model. To properly define what contextual tags model, we assign each tag a Boo-
lean expression that specifies when the tag is active. Since the tags represent domain
properties, assumptions, etc., the associated expressions precisely define when the
contextual tags affect the model and when they are not (we define P to be the set of
Boolean expressions): ܽܿ݁ݒ݅ݐ: ࡯ ՜ For example, the tag largeOrder describes a .ࡼ
real world entity and may be defined as an order with the sum being over $10K. So,
when some order is over $10K, the tag becomes active and thus can affect the model.
The approach can also be used to capture viewpoints, model versions, etc. In those
cases, the definition of tags can be simple: they can be turned on and off depending on
what the modeler is interested in (e.g., versionOne = true). We also allow negated
tags to be used in the approach: ሺݐ׊ א ሺtሻ݁ݒ݅ݐܿܽ ሻ࡯ ؝ ܽܿ݁ݒ݅ݐሺݐሻ.

We define a special default tag that is always active and if assigned to an element
of a model signifies that the element does not require any assumptions to hold to be
present in the model. To associate tags with model elements we create a special unit
called taggedElement (Ե is a powerset): ݐ݈݊݁݉݁ܧ݀݁݃݃ܽݐ ك ࢉࡹ ൈ ԵሺԵሺ࡯ሻሻ.

To each element of MC we assign possibly many tag combinations (sets of tags).
E.g., the set {{a,b},{c,d}} assigned to an element n specifies that n appears in the
model in two cases: when both a and b are active or when both c and d are active. The
outer set is the set of alternative tag assignments, either of which is enough for the
element to be visible. In fact, the above set can be interpreted as ሺܽ ר ܾሻ ש ሺܿ ר ݀ሻ, so
our set of set of tags can be viewed as a propositional DNF formula.

The function newTaggedElement creates a new tagged element entity given a
model element and a set of tags. It can be called from within algorithms that process
input models for which we want to use the formal framework. Given a model ele-
ment, the function tags returns the set of contextual tags of a taggedElement. In order
to eliminate possible inconsistent sets of tags (i.e., having both a tag and its negation)
from the set returned by tags(n), we define the following set for each model
ment: ܿݐݔ݁ݐ݊݋ሺ݊ሻ ൌ ሼܭ|ܭ א ሺ݊ሻݏ݃ܽݐ ר ݅݊ܿݐ݊݁ݐݏ݅ݏ݊݋ሺܭሻሽ.
Inheritance of contextual tags. Contextual tags can inherit from other tags (no circu-
lar inheritance is allowed). This is to make specifying the effects of external factors
on models easier. E.g., we have a tag substantialOrder applied to certain elements of
a business process (BP) model. Now, we define a tag largeOrder inheriting from
substantialOrder. Then, since largeOrder is-a substantialOrder, the derived tag can
be substituted everywhere for the parent tag. Thus, the elements that are tagged with
substantialOrder are effectively tagged with largeOrder as well. Of course, the con-
verse is not true. Apart from being automatically applied to all the elements already
tagged by substantialOrder, we can explicitly apply largeOrder to new nodes to spec-
ify, for example, that the goal Apply Discount requires large orders. The benefits of
contextual tag inheritance include the ability to reuse already defined and applied tags
and thus to develop context-dependent models incrementally. We state that one tag
inherits from another by using the predicate parent(parentTag,childTag). Multiple
inheritance is allowed, so a tag can inherit from more than one parent tags. In this
case, the derived tag can be used in place of all of its parent tags, thus inheriting the
elements tagged by them. parent is extensionally defined based on the contextual tag
inheritance hierarchy associated with the source model. ancestor(anc,dec) is defined
trough parent to indicate that the tag anc is an ancestor of dec.

We also support a simple version of non-monotonic inheritance where certain ele-
ments tagged by an ancestor tag may not be inherited by the derived tag. Suppose the
goal Apply Shipping Discount is tagged with substantialOrder, i.e., applies to substan-
tial (large and medium) orders only. However, we might not want this goal to apply to
large orders (as it would with regular inheritance) since we want them to ship for free.
So, we declare this model element abnormal w.r.t. the inheritance of largeOrder from
substantialOrder and that particular activity, which means that the largeOrder tag
will not apply to it. We can do this by using the following: ab(dec,anc,n), where dec,
anc א C and n א MC. This states that for the element n the descendent contextual tag
(dec) cannot be substituted for the ancestor tag (anc). In fact, given tag combinations
applied to n, we can determine if it is abnormal w.r.t. some inheritance hierarchy if
there is a tag combination with an ancestor tag and a negation of a descendent tag:

ܾܽሺ݀݁ܿ, ܽ݊ܿ, ݊ሻ ؝ ൫ܭ׌ א ,ሺܽ݊ܿݎ݋ݐݏ݁ܿ݊ܽ ሺ݊ሻ൯ݐݔ݁ݐ݊݋ܿ ݀݁ܿሻ ר
ܽ݊ܿ א ܭ ר ݀݁ܿ א ܭ

Once a context dec is found to be abnormal w.r.t. one of its ancestors anc and a node
n, all of dec’s descendents are automatically declared abnormal as well:

ሺܿ׊, ݀݁ܿ, ܽ݊ܿ א ݊׊ሻሺ࡯ א ,ሻܾܽሺ݀݁ܿ࡯ࡹ ܽ݊ܿ, ݊ሻ ר ,ሺ݀݁ܿݎ݋ݐݏ݁ܿ݊ܽ ܿሻ ՜ ܾܽሺܿ, ܽ݊ܿ, ݊ሻ

Visibility of modeling elements. Given the sets of contextual tags applied to context-
dependent model elements and the formulas defining when those tags are active, we
can determine for each such element whether it is visible in the model. We define the
following function:

࡯ࡹ :݈ܾ݁݅ݏ݅ݒ ՜ ሼ݁ݑݎݐ, ሽ݁ݏ݈݂ܽ
ሺ݊ሻ݈ܾ݁݅ݏ݅ݒ ؝ ൫ܭ׌ א ௜݁׊ሺ݊ሻ൯ሺݐݔ݁ݐ݊݋ܿ א ሻܭ

ሥ ሺ݁௜ሻ݁ݒ݅ݐܿܽ ש ሺܽ݊ܿ݁ݎ݋ݐݏሺ
ଵஸ௜ஸ|௄|

݁௜, ݀ሻ ר ܾܽሺ݀, ݁௜, ݊ሻ ר ሺ݀ሻሻ݁ݒ݅ݐܿܽ

Thus, we define a context-dependent model element to be visible in a model if there
exists a contextual tag assignment K for that element where each tag is either active
itself or there exists its active non-abnormal descendent tag. Now we can produce the
definition of the subset of visible context-dependent elements of a model: ࢂ ؝ ሼ݊|݊ א
࡯ࡹ ר ,.ሺ݊ሻሽ. Note that for most modeling notations we also need other (e.g݈ܾ݁݅ݏ݅ݒ
structural) information in addition to the set V to produce a valid submodel corre-
sponding to the current context. Since that information is notation-dependent, it is not
part of our generic framework. Also note that since the definitions of contextual tags
likely refer to real world phenomena, if the approach is used at runtime, the visibility
of model elements can dynamically change from situation to situation.

4 Contextual Variability in Goal Modeling

In this section, we introduce our approach for modeling and analysing the effects of
context on requirements goal models. We use the Distributor case study (see Fig. 1),
which is a variation of the one presented in [12]. Due to space limitations, we are
unable to present the complete goal model for the case study, although, we will be
illustrating the approach with portions of it. The complete case study featured over 60
goals and six context refinement hierarchies.

Our method involves a number of activities. Some of these activities are discussed
in the subsequent sections, while here we outline the approach:

1. Identify the main purpose of the system (its high-level goals) and the domain
where the system is to operate.

2. Iterative step. Refine the goals into lower-level subgoals.
3. Iterative step. Identify the entities in the domain and their characteristics that

can affect the newly identified goals. Capture those effects using contextual
tags. Update the context model.

4. Generate the formal model for managing context-dependent variability.
5. Analyze context-enriched goal models

a. Given currently active context(s), produce the corresponding goal model.
b. Analyze whether top-level system goals can be attained given currently

active context(s). The standard goal reasoning techniques can be applied
since the contextual variability has been removed.

4.1 Context Identification and Modeling

Our goal in this approach is to systematically identify domain variability and its effect
on stakeholder goals and goal refinements. Unlike intentional variability discussed in
[14], domain variability is external to the requirements model, but influences inten-
tional variability and thus requirements. We represent domain models in terms of
contexts – properties or characteristics of the domain that have effect on requirements
– and thus variability in the domain is reflected in the contextual variability.

A B
11

Entity Dimension

DefinitionTag Context 1 1

1..* 1..*

Changes inApplies to

location
risk
importance

Customer location

Distributor

size
destination

Order price
size
fragility
exportability

Product

cost
reliability

Shipping Co.

1 *

1

*

1

*

1

*

Fig. 2. UML context model for the case study (A) and our context metamodel (B)

Note that there may be certain aspects of the domain that do not affect requirements
and these are not important to us. Context entities, such as actors, devices, resources,
data items, etc., are things in the domain that influence the requirements (e.g., an
Order is a context entity). They are the sources of domain variability. We define a
context entity called env for specifying ambient properties of the environment. A
context variability dimension is an aspect of a domain along which that domain
changes. It may be related to one or more context entities (e.g., size(Order) and rela-
tiveLocation(Warehouse,Customer)). A dimension can be thought of as defining a
range or a set of values. A context is a particular value for a dimension (e.g.,
size(Order,$5000), relativeLocation(Warehouse,Customer,local)).

Fig. 2B shows the metamodel that we use for capturing the basic properties of do-
main variability (such as context entities and variability dimensions) in our approach.
Additional models can also be useful. As mentioned in Section 2, there are a number
of notations that can be employed for context modeling. Fig. 2A presents a UML
class diagram variation showing the context entities in our case study (their corre-
sponding context dimensions are modeled as attributes). In addition to UML or ER
diagrams for context modeling, specialized notations like the CML are able to specify
advanced properties of contexts (e.g., derived contexts).

Unlike the simpler notion of context in CML and in some other approaches, we are
proposing the use of context refinement hierarchies for the appropriate context di-
mensions. Their purpose is twofold: first, they can be used to map the too-low-level
contexts into higher-level ones that are more appropriate for some particular applica-
tion (e.g., GPS coordinates can be mapped into cities and towns). This is commonly
done in existing context-aware applications in the fields such as mobile and pervasive
computing. Second, abstract context hierarchies may be useful in terms of splitting
contexts into meaningful, appropriately named high-level ranges. For example, an
order size (in terms of the dollar amount) is a number. So, one can specify the effects
of orders of over $5,000 on the achievement of the subgoal Approve Order, then or-
ders over $10,000, etc. However, very frequently, and especially during requirements

elicitation and analysis, it is more convenient to specify what effect certain ranges of
context have on goal models. For example, instead of thinking in terms of the dollar
amounts in the example above, it might be more convenient to reason in qualitative
terms like Large Order or Medium Order (see Fig. 3A, where Size is the context di-
mension of the Order context entity, while the arrows represent IS-A relationships
among contexts and the boxes capture the possible contexts in the hierarchy). The
high-level contexts will need to be refined into lower-level ones and eventually de-
fined using the actual order amounts. We call such defined contexts base contexts
(note the “B” label on the leaf-level contexts in Fig. 3).

Size(Order)
contexts

SubstantialSmall

Medium LargeB

Importance(Customer)
contexts

High Low

Influential Profitable

High Volume High Margin

BA

B BB

B
B Large High

RiskyCustomerWithLargeOrder
B

C
Size(Order)

...
Risk(Customer)

...

Fig. 3. Order size (A) and Customer importance (B) context hierarchies

and multiple inheritance (C)

A context must be defined through a definition, a Boolean formula, which is specified
using the expression of the type Dimension(Entity(-ies),Context) ؝ definition. If it
holds (i.e., the domain is currently in the state defined by the context), we call that
context active. For example, large orders may be defined as the ones over $1000.
Thus, formally: Order size(Order, large) ؝ n size(Order, n)  n ≥ $1000. As men-
tioned before, contexts may have concrete definitions or may be defined through their
descendant contexts: Order size(Order, substantial) ؝ size(Order, large) 
size(Order, medium). There should be no cycles in context dependencies.

Contexts may be derived from several direct ancestors, thus inheriting their effects
on the goal model. In Fig. 3C, we create a new context by deriving it from the con-
texts size(Order,large) and risk(Customer,high). This produces a new context dimen-
sion with both context entities becoming its parameters. We also need to provide the
definition for the new context, i.e., to specify when it is active: sizeRisk(Customer,
Order,riskyCustomerWithLargeOrder) ؝ size(Order,large)  risk(Customer, high).
Thus, it is active precisely when the customer is risky and the order is large.

While context refinement hierarchies provide more flexibility for handling con-
texts, their design should not be arbitrary. When developing context hierarchies in our
approach, care must be taken to ensure that they are not unnecessarily complicated,
i.e., that the contexts are actually used in goal models.

4.2 Modeling the Effects of Contextual Variability on Goal Models

In Section 4.1, we discussed the modeling of domain characteristics using contexts.
Here, we show how the effects of domain variability on requirements goal models can
be captured. The idea is to be able to model the effects of all relevant contexts (i.e.,
the domain variability) conveniently in a single model instance and to selectively
display the model corresponding to particular contexts. We use contextual tags (as in
Section 3) attached to model elements to visually specify the effects of domain vari-
ability on goal models. While context definitions and inheritance hierarchies make up

the domain model, we need to specify how contexts affect the graphical models, i.e.,
which elements of the models are visible in which contexts.

{{h
ighRisk

Customer}}

{{lowRisk
Customer}}

{{international
Order}}

Get Customs
Clearance

AND

Collect
Product Items

Process
Order

AND

Approve
Order

Automatically
Approve

Manually
Approve

OR
OR

Minimize Risk

– --

{{¬heavy
Order}}

Shipping Co.
#2

Shipping Co.
#1

Ship Order

OR OR

A B C
+

Fig. 4. Specifying effects of domain variability using contextual tags

Effects of contexts on goal models. Domain variability can influence a goal model in
a number of ways. Note from the following that it can only affect (soft)goal nodes and
contribution links. Domain variability affects:
 The requirements themselves. (Soft)goals may appear/disappear in the model

depending on the context. For instance, if a customer is willing to share personal
details/preferences with the seller, the vendor might acquire the goal Up-sell
Customer to try and sell more relevant products to that customer.

 The OR decomposition of goals. New alternative(s) may be added and previ-
ously identified alternative(s) or may be removed in certain contexts. For exam-
ple, there may be fewer options to ship heavy orders to customers (Fig. 4C).

 Goal refinement. For example, the goal of processing an international order is
not attained unless the customs paperwork is completed (Fig. 4B). This, of
course, does not apply to domestic orders.

 The assessment of various choices in the goal model. E.g., automatic approval of
orders from low-risk customers may hurt (“–“) the Minimize Risk softgoal, while
doing the same for very risky ones will have a significantly worse (“--“) effect
on it (Fig. 4A).

Effects identification. The activities of developing contextual models and the identi-
fication of the effects of contexts on goal models need to proceed iteratively. While it
is possible to attempt to identify all the relevant context entities and their dimensions
upfront, it is very likely that certain important dimensions will be overlooked. For
example, after the modeler refines the goal Package Order enough (see Fig. 1), he/she
will elicit the goal Package Product. Only after analyzing which properties of a prod-
uct can affect its packaging, will the modeler be able to identify the dimension Fragil-
ity as relevant for the context entity Product. Therefore, to gain the maximum benefit
from the approach, the activities of context modeling need to be interleaved with the
development of context-enriched goal models. Thus, the context model will be gradu-
ally expanded as the goal model is being created.

In our approach, when refining a goal, we need to identify the relevant context en-
tities and their context dimensions that may influence the ways the goal is refined.
There are a number of ways such relevant context entities can be identified. For ex-
ample, in some versions of the goal modeling notation, goals have parameters (e.g.,
Process Order(Customer,Order), as in [12]), which are clearly context entities since
their properties influence the way goals can be attained. Alternatively, a variability
frame of a goal [14] can be a powerful tool for identifying relevant context entities
and dimensions for a goal. We can use a table to document potentially relevant con-
text entities (columns) and their dimensions (rows) for goals. While certain entities

and/or dimensions currently may have no effect on the refinement of the goal, it is
still prudent to capture them for traceability and future maintenance. For instance,
below is the table where we identified order size and destination as well as customer
importance as dimensions affecting the goal Apply Discount.

Apply Discount Entity: Order Entity: Customer
Dimensions Size, Destination Importance

Specifying the effects of contexts on goal models. Tags are mnemonic names corre-
sponding to contexts. For example, largeOrder may be the tag for the context
size(Order,large). Contextual tags are applied to model elements to specify the effects
of domain variability on goal models – i.e., to indicate that certain contexts are re-
quired to be active for those elements to be visible in the model. As in Section 3, we
have sets of alternative tag assignments and all the tags within any such assignment
must be active for the model element to be visible. E.g., the set of tags {{largeOr-
der},{importantCustomer,mediumOrder}} attached to the goal Apply Discount indi-
cates that ether the order has to be large or there must be an important customer with a
medium-sized order to apply a discount. Not () can be used with tags to indicate that
the corresponding context cannot be active if the node is to be visible (see Fig. 4C).

{{C2}}

{{C1}}

{{C1,C2}}

{{C1}}

{{C1},{C2}}

ANDAND

G

AND

G1
G1 G2

G CA

propagated context

{{C2}}

{{C1}}

ANDAND

G1 G2

G B

{{C3}}

Fig. 5. Contextual tag assignment examples

By default, model elements are said to be contained in the default context, which is
always active ({{default}}). To specify that a goal G must only be achieved when the
context C1 is active, we apply the tag {{C1}} to G (Fig. 5A). If we want a goal to be
achieved when either of contexts is active, several sets of tag assignments must be
used. E.g., the tag {{C1},{C2}} applied to G (Fig. 5C) indicates that C1שC2. When a set
of tags is applied to a goal node G, it is also applied (implicitly propagated, see Fig.
5B) to the whole subtree rooted at that goal. The hierarchical nature of goal models
allows us to drastically reduce the number of contextual tags used in the model. Tag
sets are combined when used in the same goal model subtree. E.g., if a tag set {{C2}}
is applied to the node G1 in the subtree of G (Fig. 5B), then G1 (and thus the subtree
rooted at it) is to be attained only when both contexts corresponding to C1 and C2 are
active, which is indicated by the tag {{C1,C2}} (i.e., C1רC2). The tags applied to G and
G1 (Fig. 5C) when combined produce {{C1,C3},{C2,C3}} since (C1שC2)רC3=
(C1רC3ሻ .The above also applies to softgoals .(C3רC2)ש

4.3 Analyzing Context-Dependent Goal Models

In Section 3, we presented a generic formal framework for handling context-
dependent models. It provides the basis for managing model variability due to exter-
nal factors such as domain assumptions, etc. Here, we show how the formal frame-
work can be used together with requirements goal models to analyze domain variabil-

ity in requirements engineering. In order to use the framework with goal models, we
need a procedure that processes these models together with context inheritance hierar-
chies and generates the required sets and facts for the formal framework to operate on.

There are several steps in the process of generating the formal framework for goal
models. First, we create the parent facts that model the tag inheritance hierarchy
based on the context hierarchies described in Section 4.1. Similarly, definitions of the
contexts will be assigned to the corresponding contextual tags and will be returned by
the active(context) function for evaluation to determine if these tags are active.

We then state which elements of goal models we consider context-dependent. In
general, the set TC = {G (goals), S (softgoals), R (contribution links)}. Below is the
algorithm that completes the creation of the formal framework: it traverses the goal
model and generates taggedElement instances corresponding to the context-dependent
elements of the model along with the sets of tags assigned to these elements.

Algorithm 1: Formal model generation
Input: a set O of root (soft)goals of a goal
model
Output: a formal model in the notation de-
scribed in Section 3
1: procedure generateFormalModel(O)
2: for each e א O do
3: processNode(e, {{default}})
4: endFor
5: endProcedure

Algorithm 2: Traverse goal model
Input: element e and its parent context pC
Output: taggedElement entities in the formal
model
01: procedure processNode(e, pC)
02: newContext  
03: if context annotation A exists for e then
04: if pC = {{default}} then
05: newContext  A

06: elseIf //parent context is not default
07: for each K1  pC do
08: for each K2  A do
09: newContext  newContext 
 {K1  K2}
10: endFor
11: endFor
12: endIf //default context
13: elseIf
14: newContext  pC
15: endIf //annotation
16: newTaggedElement(e, newContext)
17: for each child contribution link l of e do
18: processLink(l, newContext)
19: endFor
20: for each child (soft)goal node c of e do
21: processNode(c, newContext)
22: endFor
23: endProcedure

The procedure generateContextModel takes the set of root (soft)goals as the input and
calls the procedure processNode on the (potentially) many (soft)goal trees that com-
prise the goal model. processNode has two parameters: the node e being processed
and the set of tag assignments from the parent node, pC (parent context). Since we
start from the root goals, initially pC has the value {{default}}. Within the process-
Node procedure we first check if the node e has a set of context tags A attached. If it
does, it means that we must combine the parent context pC with A to produce the
complete set of tags for e. If pC is the default context, it will simply be replaced by
the tag set A. Otherwise, both pC and A are combined (as described in Section 4.2) to
produce the new set of tags for e (see lines 7-11). We create the taggedElement unit
for n with the newly produced context in line 16. The softgoal contribution links ema-
nating from n are processed by the processLink function that computes the tag as-
signment for the link in the same way we have done it for n. Note that newContext is

provided to processLink as it becomes its parent context. Then we recursively process
all the child nodes of n providing newContext as their parent context.

After generateFormalModel and other mapping procedures have been executed,
we have a formal context framework that can be used to produce the set of elements
visible in the model in the current context. Below we show the analysis that can be
done on context-enriched goal models with the aid of our approach. Fig. 6A shows a
fragment of the process Supply Customer for calculating shipping charges. Influential
customers are not charged for shipping, so the context {{F}} (see the legend in Fig.
6 for abbreviations) is applied to it. We apply discounts only for important customers
or for substantial orders, so Apply Discount is tagged with {{I},{S}}. [Provide] Large
Discount is tagged with {{I},{L}}: it applies to large orders or to important customers.
Finally, Medium Discount applies to international orders only. Fig. 6B shows a frag-
ment of the formal model generated by the algorithm presented earlier (the inheri-
tance hierarchies are based on those in Fig. 3). Note that the influential customer
context tag (F) is found to be abnormal w.r.t. important customer (I) in the subtree
Apply Discount. The sets of tags for each node are also calculated (Fig. 6B). By using
context definitions (not shown), we can determine which contextual tags are active
and thus affect the model. Suppose that we are in the context of a large international
order (Fig. 6C). F is active, so Charge for Shipping is visible. Apply Discount is too
since a large order is-a substantial order and so both tags in {F,S} are active. Similar
reasoning reveals that the remaining nodes are also visible. Note that we have bound
contextual variability in the model by stating whether each context is active or not
and by producing the corresponding version of the model. This process does not re-
move non-contextual variability from the model as shown in Fig. 6C where two
choices for applying the shipping discount remain. The selection among them can be
made using the conventional goal model analysis techniques (e.g., [18]).

The tag assignment:
CS: {{¬F}}
AD: {{¬F,I},{¬F,S}}
LD: {{¬F,I,L},{¬F,S,L},
 {¬F,I},{¬F,S,I}}
MD: {{¬F,I,N},{¬F,S,N}}

{{I},{L}} {{N}}

{{I},{S}}

{{ ¬ F}} Charge for
Shipping

Apply
Discount

AND

Large
Discount

Medium
Discount

OR OR

A B

 I = importantCustomer
 F = influentialCustomer
 H = highVolCustomer
 S = substantialOrder
 L = largeOrder
 M = mediumOrder
 N = internationalOrder

 CS = Charge for
 Shipping
 AD = Apply Discount
 LD = Large Discount
 MD = Medium Discount

Ancestor:
ancestor(I,F), ancestor(I,H),
ancestor(S,L), ancestor(S,M)
Abnormality:
ab(F,I,AD), ab(F,I,LD),
ab(F,I,MD)

Charge for
Shipping

Apply
Discount

AND

Large
Discount

Medium
Discount

OR OR

C Active: L, N

Charge for
Shipping

Apply
Discount

AND

D Active: M

?

Charge for
Shipping

Apply
Discount

AND

Large
Discount

OR

E Active: H

The formal framework:

 Legend

 ...

AND

Fig. 6. Analyzing the effects of domain variability on goal models

Fig. 6D shows the model in the context of a medium order. Here, Charge for Shipping
is visible again as is Apply Discount since medium orders are substantial orders. How-
ever, there are no combinations of active tags (see Fig. 6B) that make the other two
goals visible. The analysis reveals a problem with the resulting model since no re-
finement of a non-leaf goal Apply Discount is available and thus any goal depending
on it will not be achieved. One solution is to tag Medium Discount with {{N},{M}}

instead of {{N}}. Finally, Fig. 6E shows the model resulting from the context high-
VolumeCustomer being active. Since these customers are important customers, they
are given large discounts.

5 Discussion and Future Work

Our formal framework presented in Section 3 only deals with the visibility of context-
dependent model elements. It does not guarantee that the resulting model is well-
formed (e.g., as in Fig. 6D). So, we need additional formalization for each modeling
notation to construct and verify model variants given the sets of elements visible in
specific contexts. Thus, our framework represents the generic component for reason-
ing about contextual variability upon which complete solutions can be built. An ex-
ample of such a solution is our approach to context-enriched goal models, where,
unlike in most goal-based RE methods, we always do goal refinement in context.

The hierarchical nature of goal models helped us to reduce the number of tags and
to simplify the creation of context-enriched models. Other modeling notations can
also benefit from the same idea. We have dealt with limited non-monotonic inheri-
tance and are also exploring ways of modeling richer notion of context inheritance.

We do not capture relationships among contexts other than inheritance. In future
work, we would like to be able to recognize which contexts are compatible and which
are in conflict, to handle different contexts with different priorities and in general to
be able to choose whether and under what circumstances to recognize the effects of
contexts on requirements. We are looking into developing or adopting richer context
modeling notations to help in analyzing and documenting domain variability in RE.

Recently, context-based approaches for designing adaptive software have been
growing in popularity (e.g., [17]). While high-variability goal models have been pro-
posed as a vehicle for designing autonomic software [11], that approach did not con-
sider the effects of domain variability on requirements and on the adaptive systems
design. Thus, we are augmenting the approach of [11] with the context framework
presented here to support both intentional and domain variability. We are exploring
ideas like [17] for introducing context-based adaptation into the approach. Also, for
adaptive systems design, we need to consider advanced context issues such as context
volatility, scope, monitoring, etc., some of which were identified in [9]. We plan to
further assess the approach using case studies in the area of BP modeling. While the
complexity is the inherent property of many domains, the emphasis in the future work
will be on improving the methodology to help reduce the complexity of context-
enriched goal models by guiding the development of context hierarchies and by fo-
cusing only on relevant domain properties as well as on fully automating the genera-
tion of goal model variants for specific contexts. We are applying our framework to
the problem of BP design and reconfiguration, further extending the method of [12].

6 Conclusion

We have shown a method for representing and reasoning about the effects of domain
variability on requirements goal models as well as the underlying generic framework
for reasoning about visibility of context-dependent model elements. We use a well-
understood goal modeling notation enriched with contexts to capture and explore all

the effects of domain variability on requirements in a single model. Given a particular
domain state, a goal model variation can be generated presenting the requirements for
that particular domain variation. We propose the use of context refinement hierar-
chies, which help in structuring the domain, in decoupling context definitions from
their effects, and in incremental development of context-enriched goal models.

Taking domain variability into consideration allows us, in conjunction with the ap-
proach of [14], to increase the precision and usefulness of requirements goal models,
by explicitly capturing domain assumptions and their effects on software require-
ments.

References

1. P. Bouquet, C. Ghidini, F. Giunchiglia, E. Blanzieri. Theories and uses of context in
knowledge representation and reasoning. Journal of Pragmatics, 35(3):455-484, 2003.

2. P. Brezillon. Context in Problem Solving: A Survey. The Knowledge Engineering Review,
14(1):1-34, 1999.

3. P. Brezillon, L. Pasquier, J-C. Pomerol. Reasoning with Contextual Graphs. European
Journal of Operational Research, 136(2):290-298, 2002.

4. C. Cappiello, M. Comuzzi, E. Mussi, B. Pernici. Context Management for Adaptive In-
formation Systems. Electronic Notes in Theoretical Comp Sci, 146(1):69-84, 2006.

5. J. Castro, M. Kolp, J. Mylopoulos. Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems, 27(6):365-389, 2002.

6. S. Ceri, F. Daniel, F. Facca, M. Matera. Model-Driven Engineering of Active Context-
awareness. World Wide Web, 10(4):387-413, 2007.

7. A. Dardenne, A. van Lamsweerde, S. Fickas. Goal-Directed Requirements Acquisition.
Science of Computer Programming, 20(1-2):3-50, 1993.

8. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani. Reasoning with Goal Models.
Proc. ER 2002, Tampere, Finland, Oct 7-11, 2002.

9. K. Henricksen, J. Indulska. A Software Engineering Framework for Context-Aware Per-
vasive Computing. Proc. PERCOM’04, Orlando, FL, March 2004.

10. D. Hong, D. Chiu, V. Shen. Requirements Elicitation for the Design of Context-aware
Applications in a Ubiquitous Environment. Proc. ICEC 2005, Xian, China, August 15-17,
2005.

11. A. Lapouchnian, Y. Yu, S. Liaskos, J. Mylopoulos. Requirements-Driven Design of Auto-
nomic Application Software. Proc. CASCON 2006, Toronto, Canada, Oct 16-19, 2006.

12. A. Lapouchnian, Y. Yu, J. Mylopoulos. Requirements-Driven Design and Configuration
Management of Business Processes. Proc. BPM 2007, Brisbane, Australia, Sep 24-28,
2007.

13. D. Lenat. The Dimensions of Context-Space. Technical Report, CYC Corp. Available at:
www.cyc.com/doc/context-space.pdf

14. S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, J. Mylopoulos. On Goal-based Variability
Acquisition and Analysis. Proc. RE 2006, Minneapolis, USA, Sep 11-15, 2006.

15. J. McCarthy and S. Buvac. Formalizing Context (Expanded Notes). Computing Natural
Language. A. Aliseda et al, Eds. Stanford, CA, CSLI Publications: 13-50.

16. R. Prieto-Diaz. Domain Analysis: an Introduction. SIGSOFT Software Engineering Notes,
15(2):47-54, 1990.

17. M. Salifu, Y. Yu, B. Nuseibeh. Specifying Monitoring and Switching Problems in Con-
text. Proc. RE 2007, New Delhi, India, Oct 15-19, 2007.

18. R. Sebastiani, P. Giorgini, J. Mylopoulos. Simple and Minimum-Cost Satisfiability for
Goal Models. Proc. CAiSE 2004, LNCS 3084, pp. 20-35, Springer-Verlag, 2004.

