
Towards Requirements-Driven Autonomic Systems
Design

Alexei Lapouchnian Sotirios Liaskos John Mylopoulos Yijun Yu
Department of Computer Science

University of Toronto
10 King’s College Road, Toronto, ON, Canada, M5S 3G4

{alexei, liaskos, jm, yijun}@cs.toronto.edu

ABSTRACT
Autonomic computing systems reduce software maintenance costs
and management complexity by taking on the responsibility for
their configuration, optimization, healing, and protection. These
tasks are accomplished by switching at runtime to a different sys-
tem behaviour – the one that is more efficient, more secure, more
stable, etc. – while still fulfilling the main purpose of the system.
Thus, identifying and analyzing alternative ways of how the main
objectives of the system can be achieved and designing a system
that supports all of these alternative behaviours is a promising
way to develop autonomic systems. This paper proposes the use
of requirements goal models as a foundation for such software
development process and sketches a possible architecture for
autonomic systems that can be built using the this approach.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies; D.2.2 [Software Engineering]: Design Tools and
Techniques – modules and interfaces, state diagrams; D.2.10
[Software Engineering]: Design – methodologies; D.2.11 [Soft-
ware Engineering]: Software Architectures – patterns; D.2.13
[Software Engineering]: Management – software configuration
management; K.6.3 [Management of Computing and Informa-
tion Systems]: Software Management – software maintenance.

General Terms
Management, Design.

Keywords
Goal-oriented requirements engineering, autonomic computing
software customization, software variability, self-management.

1. INTRODUCTION
As management complexity and maintenance cost of software
systems keep spiraling upward, Autonomic Computing (AC) [8]
promises to move most of this complexity from humans to the

software itself and to reduce software maintenance costs, thereby
drastically reducing the dominant cost factor in the software life-
cycle. This reduction is expected to come about because auto-
nomic software can self-configure at runtime to match changing
operating environments; it can self-optimize to tune its perform-
ance or other software qualities; it can self-heal instead of crash-
ing when its operating environment turns out to be inconsistent
with its built-in design assumptions; and it can self-protect itself
from malicious attacks.

There are three basic ways to make a system autonomic. The first
is to design it so that it supports a space of possible behaviours.
These are realized through an isomorphic space of possible sys-
tem configurations. To make such designs possible, we need con-
cepts for characterizing large spaces of alternative behav-
iours/configurations. Goal models in requirements engineering
and feature models in software product line design offer such
concepts [1][5]. For example, the possible behaviours of an auto-
nomic meeting scheduling system might be characterized by a
goal model that indicates all possible ways of achieving the goal
“Schedule Meeting.”

The second way of building an autonomic system is to endow it
with planning capabilities and social skills so that it can delegate
tasks to external software components (agents) thereby augment-
ing its own capabilities [12]. Evolutionary approaches to auto-
nomic systems [11], such as those found in biology, constitute a
third way of building autonomic software. We only explore the
first way in this paper.

Specifically, the purpose of this position paper is to argue that
requirements goal models can be used as a foundation for design-
ing software that supports a space of behaviours, all delivering the
same function, and that is able to select at runtime the best behav-
iour based on the current context. We also sketch a possible auto-
nomic systems architecture that can be derived from these goal
models. We then outline how feedback mechanisms of different
kinds can be used as a basis for self-configuring, self-tuning and
self-repairing behaviour and how properly enriched goal models
can serve as sources of knowledge for these activities. Self-
protection mechanisms will de addressed elsewhere.

The rest of the paper is structured as follows. We introduce goal-
oriented requirements engineering – the foundation of our ap-
proach – in Section 2, outline how design-level views can be cre-
ated from goal models in Section 3, sketch a way goal models can
be used for designing autonomic systems in Section 4. Section 5
concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-025-6/05/0005...$5.00.

2. GOAL-ORIENTED REQUIREMENTS
ENGINEERING
A major breakthrough of the past decade in (Software) Require-
ments Engineering is the development of a framework for captur-
ing and analyzing stakeholder intentions to generate functional
and non-functional (hereafter quality) requirements [1][9][14]. In
essence, this work has extended upstream the software develop-
ment process by adding a new phase (early requirements analysis)
that is also supported by engineering concepts, tools and tech-
niques, like its downstream cousins. The fundamental concepts
used to drive the new form of analysis are those of goal and actor.
For example, a stakeholder goal for a library information system
may be “Fulfill Every Book Request”. This goal may be decom-
posed in different ways. One might consist of ensuring book
availability by limiting the borrowing period and also notifying
users who requested a book that the book is available. This de-
composition may lead (through intermediate steps) to functional
requirements such as “Remind Borrower” and “Notify User”. A
different decomposition of the initial goal, however, may involve
buying a book whenever a request can’t be fulfilled1. The point is:
there are in general many ways to fulfill a stakeholder goal. Ana-
lyzing the space of alternatives makes the process of generating
functional and quality requirements more systematic in the sense
that the designer is exploring an explicitly represented space of
alternatives. It also makes it more rational in that the designer can
point to an explicit evaluation of these alternatives in terms of
stakeholder criteria to justify his choice. An authoritative account
of Goal-Oriented Requirements Engineering can be found in [13].

Figure 1. A goal model showing interdependencies among

goals and qualities.
At the very heart of this new phase of Software Engineering are
goal models that represent stakeholder intentions and their re-
finements using formally defined relationships. Functional stake-
holder goals are modeled in terms of hard goals (or simply goals,
when there is no ambiguity). For example, “Schedule Meeting”
and “Fulfill Every Book Request” are functional goals that are
either fulfilled (satisfied) or not fulfilled (denied). Other stake-

1 Admittedly not a very practical one!

holder goals are qualitative and are hard to define formally. For
instance, “Have Productive Meeting” and “Have Satisfied Library
Users” are qualitative goals and they are modeled in terms of
softgoals. A softgoal by its very nature doesn’t have a clear-cut
criterion for its fulfillment, and may be fully or partially satisfied
or denied.

Goals and/or softgoals may be related through AND/OR relation-
ships that have the obvious semantics. In addition, goals/softgoals
can be related to softgoals through help (+), hurt (–), make (++),
or break (--) relationships. This simple language is sufficient for
modeling and analyzing goals during early requirements, covering
both functional and quality requirements. Note that in this frame-
work, quality requirements are treated as first-class citizens.

To illustrate what goal models are, and what they can do for the
design of autonomic software, let’s suppose that the task is to
design a system that supports the scheduling of meetings (Figure
1). Clearly, several stakeholders here (managers, engineers, admin
staff, etc.) share the goal “Schedule Meeting”, which can be
AND-decomposed into “Collect Timetables” and “Choose Sched-
ules”. Each of the subgoals has two alternative solutions: it can
either be done “By Person” (“Manually”) or “By System”
(“Automatically”). A system can collect a timetable “From
Agents” for each potential meeting participant (e.g., from his
secretary) or directly from participants (“From Users”); the latter
goal is further AND-decomposed into “Send Request” and “Re-
ceive Response” (regarding timetables).

Quality attributes are represented as softgoals (cloudy shapes in
the figure). For our example, four top-level desired qualities are
“Minimal (scheduling) Effort”, “Good Quality Schedule”, “Mini-
mal Disturbance” and “Accurate (timetable) Constraints”. These
can be decomposed into sub-softgoals. For example, “Minimal
Effort” can be fulfilled by minimizing “Collection Effort” and
“(human) Matching Effort”. Similarly, “Good Quality Schedule”
is fulfilled by having “Minimal Conflicts” and “Good Participa-
tion”. Clearly, collecting timetables manually is a tedious task.
Thus, it hurts the softgoal “(minimize) Collection Effort”. As
shown in Figure 1, such partial contributions are explicitly ex-
pressed in the goal model. In order to not clutter the figure, we
don’t show all partial contributions. For instance, when timetables
are collected by a person, they tend to be more accurate. Thus,
there should be a positive contribution from the “By Person” goal
to the “Minimal Conflicts” softgoal.

In all, the goal model of Figure 1 shows six alternative ways for
fulfilling the goal “Schedule Meeting”. It is easy to verify that
generally the number of alternatives represented by a goal model
depends exponentially on the number of OR decompositions (la-
beled as variation points “VP1” through “VP3” in Figure 1) pre-
sent in the goal model (assuming a “normalized” goal model
where AND and OR decompositions are interleaved). As such,
goal models make it possible to capture during requirements
analysis – in stakeholder-oriented terms – all the different ways of
fulfilling top-level goals. Now, if one were designing an auto-
nomic software system, it would make sense to ensure that the
system is designed to accommodate all ways of fulfilling top-level
goals (i.e., delivering the desired functionality), rather than just
some.

Another feature of goal models is that alternatives can be ranked
with respect to the qualities modeled in the figure. Assigning to

the system the responsibility for collecting timetables and gener-
ating a schedule is in general less time-consuming (for people),
but results more often in sub-optimal schedules, since the system
doesn’t take into account personal/political/social considerations.
So, the model of Figure 1 represents a space of alternative behav-
iours that can lead to the fulfillment of top-level goals, and also
captures how these alternatives stack up with respect to desired
stakeholder qualities.

A more sophisticated Goals-Skills-Preferences approach for rank-
ing alternatives is presented in [4]. It was proposed in the context
of “personal software” (e.g., an email system) that needs to be
fine-tuned for each particular user. The approach takes into con-
sideration the user preferences (desired quality attributes) as well
as the user’s physical and mental skills to find the best alternative
for achieving the user’s goals. We envision a generic version of
this approach where capabilities will be used to prune the space
of alternatives for achieving goals, while preferences will be used
to rank them.

3. FROM GOAL MODELS TO HIGH-
VARIABILITY SOFTWARE DESIGN
We use goal models to represent variability in the way high-level
stakeholder objectives can be met by the system-to-be together
with its environment. Thus, goal models capture variability in the
problem domain. However, properly augmented goal models can
be used to create models that represent variability in the solution
domain. We use textual annotations to add the necessary details
to goal models. For example, the sequence annotation (“;”) can be
added to the appropriate AND goal decomposition to indicate that
the subgoals are to be achieved in sequence from left to right.
Sequence annotations are useful to model data dependencies or
precedence constraints among subgoals. For instance, it is easy to
see that the goal “Collect Timetables” must be achieved before
achieving the goal “Choose Schedule” (see Figure 1). The ab-
sence of any dependency among subgoals in an AND decomposi-
tion can be indicated by a concurrency (“||”) annotation. It is im-
portant to note that the above-mentioned annotations capture
properties of the problem domain. However, annotations that
apply to OR decompositions are usually more solution-oriented
and indicate how (e.g., in parallel to save time or in sequence to
conserve resources) the alternatives are to be executed.

Figure 2. A feature model generated from the goal model of

Figure 1.
In [15], we described how one can generate three design views
from goal models, specifically feature models, statecharts, and
component-connector models. These views can serve as a starting
point in developing a design for a software system that can deliver

the desired functionality in multiple ways. To generate each of
these views, we enrich goal models with the information that is
required by the desired view, but cannot be represented by the
basic goal decompositions.

For constructing a feature model (which represents the configura-
tion variability of a software product line family) from a goal
model we need to consider the subset of goals whose attainment
will be the responsibility of the system-to-be. Each of these goals
will turn into a distinct feature of the system. Then, goal model
patterns corresponding to various feature types are identified and
resultant features are created. The variation points of Figure 1 are
preserved in the feature model through optional (VP1 and VP2)
and alternative (VP3) features.

Figure 3. A fragment of the statechart generated from the

goal model in Figure 1.
To generate a statechart, which models the behavioural variability
of the system-to-be, for each goal the software system is respon-
sible for a state that represents the system achieving that goal is
introduced. We use super-/substates for organizing the states into
a hierarchy that is isomorphic to the goal hierarchy from the
source goal model. The generation of statecharts is based on a set
of patterns that take into account goal decompositions and the
temporal annotations that were used to enrich the original goal
models. Here, the behaviour of the system depends on the se-
lected process alternative (note that the conditions on state transi-
tions refer to variation points of the goal model).

Figure 4. A fragment of the component-connector model.

Finally, the generation of a component-connector model, which is
used to model structural variability of a software system, is based
on the intuition that the achievement of each goal that has been
delegated to the system should be a responsibility of at least one
of its components. Then, again through the use of patterns, the
structure of the goals in the goal model as well as their input and
output information (the necessary enrichment) is used for defining
the relationships among components. Further, through the use of

special types of components called switches, alternative subgoals
are mapped into alternative bindings between components.

Thus, having the initial goal model representing the requirements
for the system-to-be and the appropriate process-level enrich-
ments, it is possible to generate initial design views that preserve
the variability in the way the system-to-be can meet its objectives.

Overall, this approach is systematic and requirements-driven. It
allows for the gradual increase of the level of detail of the goal
models through the use of annotations. This process turns re-
quirements goal models into solution domain models that can be
either utilized as high-level design specifications or used to gen-
erate other design-level models of the system. In this approach,
requirements traceability is supported through the tight mapping
between notations.

4. TOWARDS AUTONOMIC COMPUTING
SYSTEMS

4.1 From Goal Models to AC Systems
The building blocks of autonomic computing are architectural
components called Autonomic Elements (AEs). An autonomic
element is responsible for providing resources, delivering ser-
vices, etc. Its behaviour and its relationships with other AEs are
“driven by goals that its designer embedded in it” [6]. An AE
typically consists of an autonomic manager and a set of managed
elements, such as resources, components, etc. The manager must
be able to monitor and control the managed elements.
An autonomic element manages itself to deliver its service in the
best possible way. In order to achieve this, its autonomic manager
must be armed with tools for monitoring its managed elements
and the environment, for analyzing the collected data to determine
whether the AE is performing as expected, for planning a new
course of action if a problem is detected, and for executing these
plans by, for example, tuning the parameters of its managed ele-
ments. Most importantly, these activities require the knowledge
about the goal of the autonomic element, the configurations and
capabilities of its managed elements, the environment of the AE,
etc.

Kephart and Chess suggest that overall system self-management
results from the internal self-management of its individual auto-
nomic elements [6]. Moreover, in their view, autonomic elements
are full-fledged intelligent agents that, when assigned individual
goals, will use complex social interactions to communicate, nego-
tiate, form alliances, etc. and ultimately deliver the objective of an
autonomic system. However, deriving a set of goals and policies
that, if embedded into individual autonomic elements, will guar-
antee certain global system properties is nontrivial.

We believe that goal models can be useful in the design of auto-
nomic computing systems in several ways. First, goal models
provide a means to represent many ways in which the objectives
of the system can be met and analyze/rank these alternatives with
respect to stakeholder quality concerns. This allows for explora-
tion and analysis of alternative system behaviours at design time,
which can lead to more predictable and trusted autonomic sys-
tems. It also means that if the alternatives that are initially deliv-
ered with the system perform well, there is no need for complex
social interactions among autonomic elements. Of course, not all

alternatives can be identified at design time. In an open and dy-
namic environment, new and better alternatives may present
themselves and some of the identified and implemented alterna-
tives may become impractical. Thus, in certain situations, new
alternatives will have to be discovered and implemented by the
system at runtime. However, the process of discovery, analysis,
and implementation of new alternatives at runtime is complex and
error-prone. By exploring the space of alternative process specifi-
cations at design time, we are minimizing the need for this diffi-
cult task.

Second, goal models can provide the traceability mechanism from
AC system designs to stakeholder requirements. When a change
in stakeholder requirements is detected at runtime (e.g., by using
the approach in [2]), goal models can be used to reevaluate the
system behaviour alternatives with respect to the new require-
ments and to determine if system reconfiguration is needed. For
instance, if a change in stakeholder requirements affected a par-
ticular goal in the model, it is easy to see how this goal is decom-
posed and which components/autonomic elements implementing
the goal are in turn affected. By analyzing the goal model, it is
also easy to identify how a failure to achieve some particular goal
affects the overall goal of the system.

Third, goal models provide a unifying intentional view of the
system by relating goals assigned to individual autonomic ele-
ments to high-level system objectives and quality concerns. These
high-level objectives or quality concerns serve as the common
knowledge shared among the autonomic computing elements to
achieve the global system optimization. This way, the system can
avoid the pitfalls of missing the global optimal configuration due
to only relying on local optimizations.

4.2 A Hierarchical Autonomic Architecture
Enriching goal models to generate design-level views is one of
the possible ways to create autonomic systems. Here, the goal
model enrichments will include, among other things, the data to
be collected to allow for determining whether and to what degree
the goals are attained, etc. Additionally, goal models may include
goals that are to be achieved by the environment of the system-to-
be (e.g., its users, legacy systems, etc.). In requirements engineer-
ing, these goals can be viewed as the system’s expectations of its
environment. To support self-management, the system must
monitor for the achievement of these goals in order to detect if the
expectations are still valid and to be able to change its behaviour
if they are not.

We now outline a possible architecture for autonomic software
systems that can be derived from high-variability requirements
goal models. We envision a hierarchy of autonomic elements that
is structurally similar to the goal hierarchy of the corresponding
goal model. In the most straightforward case, each goal in the
goal model is associated with an autonomic element whose pur-
pose is the achievement of that goal. The managed elements of
the leaf-level autonomic elements (which correspond to leaf-level
goals) are the actual components, resources, etc. Leaf-level AEs
can tune and optimize these resources to deliver their objective in
the best way. On the other hand, higher-level autonomic elements
are not directly associated with physical components, but are used
to orchestrate the lower-level elements. The root autonomic ele-
ment represents the whole software system. Thus, an AE corre-

sponds to any subtree of the goal model. This approach has an
advantage that the global high-variability design space is parti-
tioned into autonomic elements with lower variability, thereby
facilitating management and administration tasks.

A fragment of a properly enriched goal model will serve as the
core of each AE’s knowledge. For example, Figure 5 presents an
AE, whose objective is to achieve the goal G. It has a fragment of
the goal model showing the decomposition of this goal. Here, the
goal G is AND-decomposed into G1 and G2, which means that
the goal model identified only one way to achieve G. The man-
aged elements of the AE in Figure 5 are themselves autonomic
elements that achieve the goals G1 and G2. They have different
fragments of the goal model assigned to them. For example, the
AE achieving the goal G2 knows that to attain that goal it must
either achieve G3 or G4. These goals are in turn handled by
lower-level AEs (not shown).

Figure 5. A hierarchical composition of AEs.

Because of the hierarchy of AEs, it is possible to propagate high-
level concerns from the root AE down to the leaf-level elements,
thus making sure that the system achieves its objectives and ad-
dresses the quality concerns of its stakeholders. In particular, the
root autonomic element will receive high-level policies from
stakeholders, act on these policies by identifying which alterna-
tive for achieving its goal fits the policy best (if such alternatives
are identified in the corresponding goal model), produce policies
for the AEs that it directly manages, and pass those policies down
to these autonomic elements, which will in turn process them and
formulate new policies for their children AEs. This process termi-
nates when leaf-level AEs are reached. Note that each autonomic
element retains the freedom to achieve its goal in the best way it
can provided that it satisfies the policy set by its parent AE. This
process can be viewed as an example of self-reconfiguration
based on the changes in user requirements.

Thus, goal models can be used to configure complex systems
given high-level quality objectives. It was shown in [7] that it is
also possible to create goal models based on configuration options
(such as Preferences, Options, etc. dialogs) provided by existing
software systems. These goal models then can represent the qual-
ity concerns behind the software configuration choices for a sys-
tem. Therefore, they can be used by the autonomic elements
wrapping non-autonomic components/systems to make sure that
these components’ behaviours conform to the quality preferences
of system stakeholders.

In order to see whether and how well an AE achieves its goal, it
needs to monitor its managed element, collect the data, analyze it
based on its knowledge, plan changes to its behaviour if neces-
sary, and execute the plan. The planned change may include
switching from one alternative behaviour to another, generating a
new policy for its managed elements, etc. At the same time, each
element sends the data about its current state to its parent auto-
nomic element. So, if an AE is unable to deliver its service, the
parent will immediately know that and will hopefully be able to
switch to another behaviour not involving the failed AE, thus
stopping the failure propagation and self-healing the system. If no
alternatives exist in the system, a new AE can be found to replace
the failed element. Because of the hierarchical structure of the
AEs, this replacement can be performed quite easily.

A self-optimizing behaviour may involve an AE noticing that one
of its two managed AEs that both deliver the same service is re-
sponding slower and slower and deciding to fine-tune its con-
trolled parameters or proactively switching to the other AE if
analysis shows that the improvement will compensate for the
possible switching cost. Goal analysis supplemented with quanti-
tative reasoning will allow for self-optimizing behaviour.

Self-managing systems developed using the proposed approach
will frequently need to determine how the current alternative (or
to predict how some potentially useful alternative) satisfies its
functional and non-functional requirements. Similarly, given
some changes in user preferences, the system will need to find the
best alternative that supports these changes. Top-down [10] and
bottom-up [3] goal reasoning approaches can be employed by an
autonomic system to support the above activities. The former
approach helps in finding the alternatives that satisfy the desired
valuations of root goals, while the latter one can be used to deter-
mine whether and to what extent a given alternative meets the
requirements of the system.

4.3 Goal Model-Based Autonomic Behaviour
This section sketches how feedback mechanisms can be used for
self-management of the meeting scheduling system modeled in
Figure 1. Suppose that we have a system that actually does ac-
commodate the six alternatives captured in that model. Moreover,
suppose that the system is operating according to the full automa-
tion alternative, i.e., the system is responsible for collecting time-
tables and generating a schedule.

4.3.1 Self-Configuration and Reconfiguration
One form of feedback that can be provided to the system is the
information on whether each meeting was actually held as sched-
uled. The system could be keeping track of postponed/cancelled
meetings, along with their initiator and the participants. If the
percentage of such meetings is above some threshold, the system
could try to find the cause for this problem. The cause could be
inaccurate timetables that omit many of the constraints of partici-
pants and lead to conflicts when a schedule is generated. Or, it
could be that participants have very volatile schedules that keep
them away from home base and prevent them from attending
previously scheduled meetings. Depending on the cause, the sys-
tem may switch to a different mode of delivering the “Schedule
Meeting” functionality, perhaps by having a person collect time-
tables (so that he can confirm that they are fully updated). Alter-

natively, the system may switch to a mode where a person gener-
ates meeting schedules because a person can think strategically
when it is a good time for each meeting.

Such diagnosis and reconfiguration can be difficult to perform
fully automatically, without human input. Poorly motivated sys-
tem reconfiguration can lead not only to suboptimal performance,
but also to the loss of trust toward the autonomic system. Thus, a
person may be in the loop to provide information (e.g., the actual
cause of high failure rates) or to select/confirm a reconfiguration.
Such human feedback can be used by the system for learning to
improve its diagnosis. However, for some types of software ex-
pecting a meaningful user input may not be feasible – where do
you find a person who understands your operating system enough
to determine the causes of failures and to suggest/approve recon-
figurations? For application software, however, we expect that
having a person in the loop will be normal. Note that the existence
of a goal model is crucial if one wants to have a person involved
during reconfiguration because then the person is looking at alter-
natives expressed in stakeholder-oriented terms, rather than sys-
tem-oriented terms.

4.3.2 Self-Optimization
Feedback could also be designed to give information on how well
is functionality is being delivered with respect to stakeholder
qualities. For example, participants may evaluate meetings with
respect to their effectiveness (softgoal “Good Quality Schedule”
in Figure 1) by considering factors such as attendance, degree of
participation, and productivity. On the basis of such feedback, the
system may choose to switch to a mode where schedules are gen-
erated by a person.

[4] describes a framework where stakeholder preferences can be
taken into account in selecting a behaviour for a software system
under design. However, much research remains to be done to
refine our tools for modeling, analyzing and evaluating quality
attributes.

4.3.3 Self-Repair
Suppose now that the system is unable to schedule a meeting
because it is missing a timetable. Note that this is an application-
level failure (rather than a system- or middleware-level one).
Switching behaviour could solve the problem: a person could
fetch the missing timetable through personal contact.

This scenario raises, again, the problem of diagnosis. The timeta-
ble may be missing because a participant is ignoring system re-
quests, or because he is away and inaccessible. In the first case,
requesting the timetable personally could help. In the second case,
on the other hand, switching to an alternative behaviour will not
help and a more appropriate response may be to revise the list of
participants and repeat the scheduling process; or, to proceed with
the scheduling on the basis of available timetables.

5. CONCLUSION
The essential characteristic of autonomic computing systems is
their ability to change their behaviour automatically in case of
failures, changing environment conditions, etc. In this paper, we
outline an approach for designing autonomic computing systems
based on goal models that represent all the ways high-level func-

tional and non-functional stakeholder goals can be attained. These
goal models can be used as a foundation for building software that
supports a space of behaviours for achieving its goals and is able
to analyze these alternatives (with respect to important quality
criteria), its own state, and its environment to determine which
behaviour is the most appropriate at any given moment. For such
systems, goal models provide an intentional view unifying all the
system components and demonstrating how they must work to-
gether to achieve the overall system objective. Goal models also
support requirements traceability thus allowing for the easy iden-
tification of parts of the system affected by changing require-
ments. When properly enriched with relevant design-level infor-
mation, goal models can provide the core architectural, behav-
ioural, etc. knowledge for supporting self-management. Of
course, an appropriate monitoring framework as well as, perhaps,
learning mechanisms need to be introduced to enable self-
management.

6. REFERENCES
[1] A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-

Directed Requirements Acquisitions, Science of Computer
Programming, 20:3-50, 1993.

[2] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Pon-
sard. Reconciling system requirements and runtime behav-
ior. In Proc. 9th International Workshop on Software Speci-
fication and Design, p. 50. IEEE Computer Society, 1998.

[3] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani.
Reasoning with Goal Models. In Proc. 21st International
Conference on Conceptual Modeling (ER2002), Tampere,
Finland.

[4] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements
Analysis for Customizable Software: Goals-Skills-
Preferences Framework. In Proc. 11th IEEE International
Requirements Engineering Conference (RE’03), Monterrey,
CA, pp. 117–126, September 2003.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A.
S. Peterson. Feature-Oriented Domain Analysis (FODA)
feasibility study (CMU/SEI-90-TR-21, ADA235785). Tech-
nical Report, SEI/CMU, 1990.

[6] J. Kephart and D. Chess. The vision of autonomic comput-
ing, Computer, 36(1):41–50, 2003.

[7] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S.
Easterbrook. Configuring common personal software: a re-
quirements-driven approach. Technical Report CSRG-512,
University of Toronto, 2005. Available at:
ftp://ftp.cs.toronto.edu/csrg-technical-reports/512/.

[8] R. Murch. Autonomic Computing. Prentice Hall, 2004.
[9] J. Mylopoulos, L. Chung, and B. Nixon. Representing and

using non-functional requirements: a process-oriented ap-
proach, IEEE Transactions on Software Engineering,
18(6):483–497, 1992.

[10] R. Sebastiani, P. Giorgini, J. Mylopoulos. Simple and
Minimum-Cost Satisfiability for Goal Models. In Proc.
CAiSE 2004, Riga, Latvia.

[11] W. Spears, K. De Jong, T. Baeck, D. Fogel, H. Garis. An
Overview of Evolutionary Computing. In Proc. European
Conference on Machine Learning, 1993.

[12] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Ser-
vice Matchmaking among Agents in open Information Envi-
ronments, ACM SIGMOD Record, Special Issue on Seman-
tic Interoperability in Global Information Systems, A. Ouk-
sel, A. Sheth (Eds.), 28(1):47–53, 1999.

[13] A. van Lamsweerde. Requirements Engineering in the Year
00: A Research Perspective. Proc. ICSE’00, Limerick, Ire-
land, June, 2000.

[14] E. Yu. Modeling Organizations for Information Systems
Requirements Engineering. In Proc. 1st IEEE International
Symposium on Requirements Engineering, San Diego, CA,
1993, pp. 34-41.

[15] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, and
J.C.S.P. Leite. From stakeholder goals to high-variability
software designs. Technical Report CSRG-509, University
of Toronto, 2005. Available at: ftp://ftp.cs.toronto.edu/csrg-
technical-reports/509/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

