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Abstract 
 

As the problems that software systems are used to solve grow in size and complexity, it 

becomes harder and harder to analyze these problems and come up with system 

requirements specifications using informal requirements engineering approaches. 

Recently, Goal-Oriented Requirements Engineering (GORE), where stakeholder goals 

are identified, analyzed/decomposed and then assigned to software components or actors 

in the environment, and Agent-Oriented Software Engineering (AOSE), where goals are 

objectives that agents strive to achieve, have been gaining popularity. Their reliance on 

goals makes GORE and AOSE a good match. A number of goal-oriented approaches 

include formal components that allow for rigorous analysis of system properties. 

However, they do not support reasoning about the goals and knowledge of agents. This 

thesis presents an agent-oriented requirements engineering approach that combines 

informal i* models with formal specifications written in the CASL language. CASL’s 

support for agent goals and knowledge allows for formal analysis of agent interactions, 

goal decompositions, and epistemic feasibility of agent plans. Intentional Annotated 

Strategic Rationale (iASR) diagrams based on the SR diagrams of i* are proposed in this 

thesis, together with the mapping rules for creating the corresponding formal CASL 

specifications. A methodology for the combined use of i* and CASL is proposed and 

applied to a meeting scheduling process specification. 
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1 Introduction 
 

In this thesis, we propose an agent-oriented requirements engineering methodology that 

supports formal modeling of the agents’ mental states (goals and knowledge). This 

chapter provides an overview of the problem area (Section 1.1), describes the specific 

problem that we deal with in this work (Section 1.2), sketches our approach for solving 

this problem (Section 1.3), and outlines the rest of the thesis (Section 1.4).  

 

1.1 Overview of the Area 
 

Modern software systems are becoming increasingly complex, with lots of subsystems 

and interactions. In today’s world, software applications are not confined to just one 

computer or even a local area network. More and more software systems are becoming 

internet-aware and distributed. The recent popularity of electronic commerce, web 

services, and peer-to-peer applications confirms the need for software engineering 

methods for constructing applications that are open, distributed, and adaptable to change. 

While technologies like remote procedure calls are still adequate for certain types of 

software systems, more and more researchers and practitioners are looking at agent 

technology as a basis for distributed applications.  

 

Agents are active, social, and adaptable software system entities situated in some 

environment and capable of autonomous execution of actions in order to achieve their set 

objectives [Wooldridge, 1997]. Most problems are too complex to be solved by just one 

agent — one must create a multiagent system (MAS) with several agents having to work 

together to achieve their objectives and ultimately deliver the desired application. 

Multiple agents in a multiagent system represent multiple perspectives, multiple threads 

of control, or competing interests [Jennings, 1999]. Therefore, adopting the agent-

oriented approach to software engineering means that the problem is decomposed into 
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multiple, autonomous, interacting agents, each with a particular objective. Multiagent 

systems are a great match for open, complex systems in many areas such as process 

control, manufacturing, information management, electronic commerce, etc. [Jennings 

and Wooldridge, 1998] discusses domains that are suitable for the application of agent 

technology. 

 

Agents in a multiagent system frequently represent individuals, companies, or parts of 

companies. This means that there is an “underlying organizational context” [Jennings, 

1999] in multiagent systems. Therefore, one of the most important features of agents is 

their social ability. Like humans, they need to coordinate their activities, cooperate, 

negotiate, request help from others, etc. Unlike in object-oriented or component-based 

systems, interactions in multiagent systems occur through high-level speech act-based 

[Searle, 1969] agent communication languages, so interactions are mostly performed not 

at the syntactic level, but at the knowledge level, in terms of goal delegation, etc. 

[Jennings, 1999]. Speech act-based agent communication allows for the specification and 

execution of generic communication protocols and supports reasoning about the effects 

of communication without knowing the exact content of the messages, just the types of 

the messages (e.g., request, inform). For example, requests by other agents make the 

requested agent acquire new goals, while the messages informing the agent of something 

modify its knowledge base. Since agents are aware of the purpose of their interactions, 

not all of them need to be fixed at design time. This supports flexible runtime behaviour 

with dynamic goal delegation and team formation.  

 

Requirements engineering (RE) is the area of software engineering that deals with the 

discovery and specification of the objectives for the system under development. This is 

an extremely important activity since the measure of success of software systems is the 

degree to which they satisfy their requirements. Many of the existing software 

engineering methods have concentrated on the design of the system and devoted 

relatively little attention to requirements engineering. As well, most RE approaches have 



 3 

assumed that the initial formulation of the requirements was given. However, the 

activities that lead to the formulation of the initial requirements for the system-to-be were 

mostly ignored. Recently, goal-oriented requirements engineering [Dardenne et al., 

1993] has become prominent. Goal-oriented RE approaches (e.g., KAOS [Dardenne et 

al., 1993] and Tropos [Castro et al., 2002]) devote a lot of attention to understanding the 

environment of the system-to-be (the organizational context) and the rationale (the “why” 

[Yu and Mylopoulos, 1994]) for the system. This is usually referred to as the early phase 

of requirements engineering. The goals of the stakeholders (the individuals or 

organizations that influence the system and/or are influenced by it) are analyzed, refined 

and later assigned to the components that are part of the system and the agents that are in 

its environment. These approaches are requirements-driven as opposed to being driven by 

the design or implementation factors. Their reliance on goals makes goal-oriented 

requirements engineering methods and agent-oriented software engineering a great 

match. Agent-oriented analysis is central to requirements engineering since the 

assignment of responsibilities for goals and constraints among components in the 

software-to-be and agents in the environment is the main outcome of the RE process [van 

Lamsweerde, 2000]. Therefore, it is natural to use a goal-oriented requirements 

engineering approach when developing multiagent systems. The goals of the stakeholders 

are refined and then assigned to the agents, thus turning into the objectives of agents in a 

multiagent system.  

 

The early phase of requirements engineering — the domain analysis — is usually done 

informally, possibly with the help of informal diagrammatic notations. i* [Yu, 1995] is 

one such notation. It supports the modeling of stakeholders (actors), their goals, the 

intentional dependencies that exist in the organization, as well as the reasoning each actor 

goes through while attempting to achieve its goals. As problems grow in size and 

complexity, the need for formal analysis during the early RE phase increases. However, 

formal support for the early-phase requirements engineering has been relatively sparse. 

There are several approaches that augment the i* framework with tools for formal 
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analysis. For example, Formal Tropos [Fuxman et al., 2001b] adds model checking 

support for i*’s Strategic Dependency diagrams, while another approach [Wang, 2001] 

uses the ConGolog [De Giacomo et al., 2000] agent programming language to animate 

and verify i* models. Unfortunately, in the above methods, the goals of the agents are 

abstracted out of the formal specifications. This is done due to the fact that the formal 

components of these approaches (the NuSMV [Cimatti et al., 1999] input language and 

ConGolog respectively) do not support reasoning about agent goals. Reasoning about 

agent knowledge is not supported either. However, we note that agent communication is 

very important in multiagent systems since these systems are developed as social 

structures. Most of the interactions among agents involve knowledge exchange and goal 

delegation. Thus, complementing informal modeling techniques such as i* with formal 

analysis of agent goals and knowledge is very useful for the design of multiagent 

systems. Moreover, the adoption of goal-oriented requirements engineering makes formal 

analysis of agent goals very useful at the RE stage of the software engineering process.  

 

 
1.2 The Problem 
 

Goals are the most appropriate abstraction for specifying the needs of the stakeholders in 

the environment of the system under development and are the natural means for 

identifying the purpose of agents in multiagent systems. During the requirements 

engineering phase of software development, the goals of stakeholders are identified, 

refined, and assigned to either the actors in the environment, thus becoming the 

assumptions that the designers make about the environment, or to the agents that are part 

of the system, therefore becoming the system requirements.  

 

When goal-oriented RE is used, it is easy to make the transition from the requirements to 

the high-level system specifications. For example, goal-oriented RE approaches assign 

goals or tasks to the system’s agents. In multiagent systems, these requirements become 
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the objectives that the agents strive to achieve. During requirements analysis, it is 

important to determine how the stakeholders as well as the agents in the system-to-be will 

collaborate to achieve the system’s objectives. In multiagent systems, agents delegate 

some of their responsibilities to other agents that are better equipped for achieving them. 

On the other hand, the same agents may be asked to help others with their goals. Strategic 

relationships among agents (represented by intentional dependencies in i* models) thus 

become high-level patterns of inter-agent communication. 

 

With the i* modeling framework, designers identify system stakeholders, determine their 

goals and analyze how responsibilities can be assigned to system components and how 

inter-agent dependencies can be configured so that the system’s objectives are met. In the 

above context, while it is possible to informally analyze small systems, formal analysis is 

needed for any realistically-sized system to determine whether such distributed 

requirements imposed on each agent in the system are correctly decomposed from the 

stakeholder goals, consistent and, if properly met, achieve the system’s objectives.  

 

The aim of this work is to devise an agent-oriented requirements engineering approach 

with a formal component that supports reasoning about agents’ goals (and knowledge), 

thus allowing for rigorous formal analysis of the requirements expressed as the objectives 

of the agents in multiagent systems. While some goal-oriented RE approaches (e.g., 

KAOS) support the formal analysis of goals, their temporal logic-based formalizations 

are not agent-oriented, i.e., which agent has a goal is not formalized. Also, most RE 

approaches do not support the formal analysis of agent knowledge. 

 

 
1.3 The Approach 
 

In this thesis, we are proposing an agent-oriented requirements engineering approach that 

combines the i* modeling framework [Yu, 1995] and the Cognitive Agents Specification 
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Language [Shapiro and Lespérance, 2001]. CASL is a language with formal semantics 

and thus can be used to complement the informal diagrammatic notation of i*.  

 

The i* approach has two types of models: Strategic Dependency (SD) and Strategic 

Rationale (SR). SD diagrams are used to model actors (stakeholders) that are in the 

environment of the system-to-be or are part of the system itself along with the intentional 

dependencies (goal, task, etc. delegation) among these actors. These diagrams model the 

external relationships among the actors. On the other hand, Strategic Rationale (SR) 

diagrams are used to model the reasoning each actor goes through while attempting to 

achieve its goals. Thus, SR models concentrate more on the internals of the actors.  

 

With our i*-CASL-based approach, a CASL model can be used both as a requirements 

analysis tool and as a formal high-level specification for a multiagent system that satisfies 

the requirements because it is possible to produce a high-level, formal model of the MAS 

right from the i* diagrams developed during the requirements analysis performed with 

our proposed method. This model can be formally analyzed using the CASLve [Shapiro 

et al., 2002] tool or other tools and the results can be fed back into the requirements 

model. After requirements analysis is finished, the CASL model becomes the starting 

point for the design of the system. CASL’s support for reasoning about knowledge also 

opens new possibilities for the formal analysis of issues such as privacy and allows for 

more precise specification of agent interactions.  

 

We extend the approach presented in [Wang, 2001] that proposed the use of the 

ConGolog language to provide formal semantics as well as verification and animation 

tools for the SR diagrams of i*. In our framework, we use CASL to provide formal 

semantics for the i* diagrams. Since CASL supports specification of agent goals and 

knowledge, formal reasoning about agent goals, goal delegation, agent knowledge, and 

inter-agent communication is now possible. In this thesis, we define a mapping from i* 

diagrams into corresponding CASL models that can be formally analyzed. 
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i* models have limited facilities for specifying agent processes. Rather, the i* framework 

concentrates on the social and intentional aspects of the system-to-be and its 

environment. CASL specifications have two parts: a procedural part that is used to 

specify the behaviour of the agents in a multiagent system and a declarative part where 

the changes to the mental states of the agents are specified. It is natural to pair up CASL 

specifications with SR-level i* diagrams since they are a much closer match for CASL 

than SD diagrams. SD diagrams are simply too high-level for CASL to be useful in 

providing a formal semantics for them. In fact, not unlike ConGolog in the framework 

described in [Wang, 2001], CASL requires a greater level of detail and precision than 

even SR diagrams can offer.  

 

An i* model is associated with the corresponding CASL specifications through a 

mapping. We introduce extensions to the notation of SR diagrams to allow the modeler to 

disambiguate and add details to the models so they can be mapped into CASL. We call 

these Intentional Annotated SR (iASR) diagrams. We use the idea of composition and 

link annotations [Wang, 2001] to add (along with applicability condition annotations) the 

necessary details to the SR diagrams. We also suggest a number of rules for the use of 

means-ends decompositions (see Section 4.3.6 for details) in iASR diagrams to simplify 

and streamline the mapping to CASL. Each element of iASR diagrams is then mapped 

into CASL for formal analysis with the help of the CASL verification environment 

(CASLve) [Shapiro et al., 2002] or other CASL-based tools. Unlike the approach in 

[Wang, 2001], agent goals are not removed from the agent specifications, but are added 

to the agents’ mental states, thus allowing the agents to reason about their objectives. 

Information exchanges among agents are also formalized as mental state changes in 

CASL specifications. The intentional dependencies that are present in the i* models will 

be modeled in CASL as interactions among agents with the help of such actions as 

request and inform. These interactions bring change into the agents’ mental states 

allowing them to receive new information or accept responsibility for achieving certain 
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goals for their fellow agents. We also introduce the notion of self-acquired goals (Section 

4.3.8), which can be used by the designer to assign goals to agents.  

 

We develop a methodology for the combined use of i* and CASL for requirements 

engineering. This methodology is rooted in Tropos and Wang’s methodology for the 

combined use of i* and ConGolog and includes a number of suggested modifications to 

the i* modeling framework.  

 

 

1.4 Outline of the Thesis 
 

Chapter 2 provides the background material for the thesis. In Chapter 3, we review 

related approaches and compare them to our own. There, we talk about the related areas 

of computer science and software engineering — agents, agent-oriented software 

engineering, requirements engineering, as well as describe the specific methodologies, 

frameworks, and languages that we use in our approach — Tropos, i*, and the Cognitive 

Agents Specification Language. Chapter 4 discusses our formalism and notation, and the 

mapping process from iASR diagrams into CASL models, while Chapter 5 describes our 

goal-oriented requirements engineering methodology that combines the i* modeling 

framework with CASL. A case study, which illustrates our methodology on the process 

of scheduling meetings in an organization, is presented in Chapter 6. We conclude in 

Chapter 7 by outlining the contributions of the thesis and identifying avenues for future 

work.  
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2 Foundations 
 

In this chapter, we introduce the background material for the thesis. Here, we talk about 

specific techniques and approaches that we used in this research. Section 2.1 introduces 

the i* modeling framework, while in Section 2.2 we talk about the Cognitive Agents 

Specification Language (CASL) as well as the epistemic feasibility of agent plans.  

 

 

2.1 The i* Modeling Framework 
 

i* [Yu, 1995] is an agent-oriented modeling framework that can be used for requirements 

engineering, business process reengineering, organizational impact analysis, and software 

process modeling. Since we are most interested in the application of the framework to 

modeling systems’ requirements, our description of i* is geared towards requirements 

engineering. The framework has two main components: the Strategic Dependency (SD) 

model and the Strategic Rationale (SR) model. 

 

Since i* supports the modeling activities that take place before the system requirements 

are formulated, it can be used for both the early and late phases of the requirements 

engineering process. During the early requirements phase, the i* framework is used to 

model the environment of the system-to-be. It facilitates the analysis of the domain by 

allowing the modeler to diagrammatically represent the stakeholders of the system, their 

objectives, and their relationships. The analyst can therefore visualize the current 

processes in the organization and examine the rationale behind these processes. The i* 

models developed at this stage help in understanding why a new system is needed. 

During the late requirements phase, the i* models are used to propose the new system 

configurations and the new processes and evaluate them based on how well they meet the 

functional and non-functional (qualitative) needs of the users. 
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In the following sections, we briefly present the elements of the i* modeling framework: 

actors, intentional dependencies, as well as Strategic Dependency and Strategic Rationale 

models. 

 

2.1.1 Actors 
 

i* centers on the notion of intentional actor and intentional dependency. The actors are 

described in their organizational setting and have attributes such as goals, abilities, 

beliefs, and commitments. In i* models, an actor depends on other actors for the 

achievement of its goals, the execution of tasks, and the supply of resources, which it 

cannot achieve, execute, and obtain by itself, or not as cheaply, efficiently, etc. Therefore, 

each actor can use various opportunities to achieve more by depending on other actors. 

At the same time, the actor becomes vulnerable if the actors it depends upon do not 

deliver. Actors are seen as being strategic in the sense that they are concerned with the 

achievement of their objectives and strive to find a balance between their opportunities 

and vulnerabilities. It is easy to see that most human organizations (as well as software 

systems) can be modeled using the ideas of actors and intentional dependencies. 

 

While actors in i* are any units to which “intentional dependencies can be ascribed” [Yu, 

1995], when i* is used for requirements engineering, the actors represent the system’s 

stakeholders (“people or organizations who will be affected by the system and who have 

a direct or indirect influence on the system requirements” [Kotonya and Sommerville, 

1998]) as well as the agents of the system-to-be. The goals of the stakeholders thus 

become the objectives of the actors representing them. In the early requirements phase, 

when the organizational context for the system-to-be is analyzed, the dependencies in the 

models represent the current state of affairs in the organization, the way the stakeholders’ 

objectives are presently met (without the help of the new system). In the late 

requirements phase, they represent the desired new state of the organization including the 

new system. 
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It is useful to subdivide actors into agents, roles, and positions. Agents are concrete 

physical actors, systems or humans. A role is an “abstract characterization of the 

behaviour of a social actor within some specialized context, domain, or endeavour” 

[Alencar et al., 2000]. A position is a set of socially recognized roles typically played by 

one agent. For example, the same person/agent in a company can play the roles of a 

webmaster and a database administrator with different sets of dependencies associated 

with each role. The introduction of roles and positions facilitates the analysis of 

dependencies by grouping the related ones together. 

 

2.1.2 Intentional Dependencies 
 

When a pair of agents participate in an intentional dependency, the depending agent is 

called the depender, the depended agent is called the dependee, and the subject of the 

dependency (the goal, the task, the resource, or the softgoal) is called the dependum. 

Dependencies between actors are identified as intentional if they appear as a result of 

agents pursuing their goals. 

 

There are four types of dependencies in i*. In a goal dependency, the depender depends 

on the dependee for the achievement of one of its goals (for bringing about a certain state 

in the world). It is up to the dependee to decide how to achieve that goal. In a task 

dependency the depender depends on the dependee for the execution of a certain task. 

Unlike a goal dependency, here the dependee must execute exactly the task that the 

depender requested. In a resource dependency, the dependee is expected to provide a 

resource for the depender. The resource could be some physical resource (e.g., money or 

steel) or information. In a softgoal dependency, the depender depends on the dependee to 

“perform some task that meets the softgoal” [Yu, 1995]. The notion of softgoals (quality 

goals) is related to the notion of non-functional requirements [Chung et al., 2000]. 

Softgoals are the goals that do not have a clear-cut satisfaction condition. For softgoals 

one needs to find solutions that are just “good enough”. Examples of softgoals are 
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security, efficiency, speed, customer satisfaction, etc. In i*, the dependee usually 

identifies alternative ways for achieving (to a certain degree) the softgoals. The selection 

of the right alternative is generally made by the depender. 

 

The model distinguishes among three degrees of dependency. For the depender, the 

strength of the dependency corresponds to the level of its vulnerability to the failure of 

the dependency. The stronger the dependency, the more vulnerable the depender becomes 

if the dependee cannot provide the dependum. On the other hand, a stronger dependency 

means that the dependee will make more effort in providing the dependum (the 

assumption here is that the dependee is cooperative or there exists a reciprocal 

dependency). In an open dependency, the dependee’s failure to achieve the goal, perform 

the task, or furnish the resource will to a certain degree affect the depender, but without 

serious consequences. From the point of view of the dependee, an open dependency is a 

declaration that it can provide the dependum for some depender.  In a committed 

dependency, the depender will be quite seriously affected by the failure of the dependee 

to provide the dependum — some chosen course of action would fail as a result. There 

can be other potential courses of action for the depender, but, in any case, the depender 

would incur losses if the dependum is not provided. This means that the depender is 

concerned about the dependee having a viable way to supply the dependum. The 

dependee will also try to make sure that it has a viable way to do that. The strongest 

dependency is called critical. Here, if the dependee does not provide the dependum, all 

courses of action for the achievement of an associated goal, which are known to the 

depender, would fail. In this case, the depender is concerned not only with the viability of 

that dependency, but also with the viability of the dependee’s dependencies, and so on 

[Yu, 1995].  

 

As we noted above, in all four dependencies, the depender gains the ability to achieve the 

goal/softgoal, execute the required task, or acquire the needed resource, but at the same 

time becomes vulnerable should the dependee fail to deliver. We must remind the reader 
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here that since the agents are not objects, one cannot guarantee that the dependee will 

always provide the dependum even if it is perfectly capable of doing so: it may simply 

choose not do it based on its current situation. Therefore, it is important for dependers to 

try to mitigate the vulnerability that stems from their dependencies. One way to do it is to 

create an enforceable dependency [Yu, 1995]. A dependency is enforceable if there is a 

reciprocal dependency. This means that providing the dependum is in the dependee’s 

interests since if it fails to supply the dependum, the depender can make one of the 

dependee’s own goals fail. For example, a car owner depends on a garage for the quality 

of his/her car repairs, while the garage depends on the car owner for continued business. 

[Yu, 1995] identifies several ways of reducing the depender’s vulnerability. The way to 

get assurance is to make sure that the dependency is reciprocal or otherwise is the 

interests of the dependee. Insurance reduces the depender’s vulnerability by reducing the 

degree of dependence on a particular dependee. For example, one way to do this is to 

have several dependees for the same dependum. 

 

2.1.3 Strategic Dependency Models 
 

A Strategic Dependency (SD) model is a “network of dependency relationships among 

actors” [Yu, 1995]. This model represents the actors and their intentional dependencies 

graphically allowing for easier understanding and analysis of the organization and its 

processes. The SD model captures the intentionality of the processes, what is important to 

its participants, while abstracting over all other details. The diagrammatic notation allows 

for representing agents, positions, and roles, all four types of intentional dependencies, as 

well as their strength. The model allows for the analysis of the direct or indirect 

dependencies of each actor and exploration of the opportunities and vulnerabilities of 

actors (analysis of chains of dependencies emanating from actor nodes is helpful for 

vulnerability analysis). Figure 3.1 presents the SD diagram notation. The diagram has 

two actors: Agent1 and Role1. Role1 depends on Agent1 for the achievement of the goal 
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Goal1. On the other hand, Agent1 needs Role1 to provide it with Resource1 and to 

execute Task1. 

 

Agent1 Role1

Task1

Goal1

Resource1

Task Dependency

Goal Dependency

Resource Dependency

Agent Role Position

Intentional 
Dependencies

Actors

Softgoal Dependency

 
Figure 3.1. The SD diagram notation. 

 

SD models can be used to model the existing processes in the organization (the early 

requirements phase) before the new system is introduced. In this case, the actors are the 

stakeholders of the system-to-be. SD models help in the analysis of stakeholder goals, 

their current dependencies, and the rationale for the current processes in the organization. 

The model is also useful in the identification of the organization’s need for a new system.  

 

On the other hand, SD diagrams can be used during the late requirements analysis phase 

to create a high-level model of the system and its organizational environment. This model 

is used to understand how the network of intentional dependencies can be reorganized 

with the introduction of the system as one or more actors in the diagram. Opportunity and 

vulnerability analysis can be performed from the point of view of each actor. One can 
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also analyze the potential system-and-environment configurations and see which ones are 

the best with respect to the achievement of stakeholder goals and softgoals.  

 

2.1.4 Strategic Rationale Models 
 

Strategic Rationale models are used to explore the rationale behind the processes in 

systems and organizations. In SR models, the rationale behind process configurations can 

be explicitly described, in terms of process elements and relationships among them [Yu, 

1995]. The model provides a lower-level abstraction to represent the intentional aspects 

of organizations and systems: while the SD model only looked at the external 

relationships among actors, the SR model provides the capability to analyze in great 

detail the internal processes within the actors that are part of the system and of its 

environment. The model allows for deeper understanding of what each actor’s needs are 

and how these needs are met; it also enables the analyst to assess possible alternatives in 

the definition of the processes to better address the concerns of the actors.  

 

SR models have four types of nodes, one for each dependency type. These nodes are: 

goal, task, resource, and softgoal. Goals are the states of the world that the actors would 

like to achieve. The goal node itself does not specify how the goal is to be achieved, 

therefore alternatives can be considered. Task nodes specify “particular ways of 

achieving something” [Yu, 1995]. Resources are physical or informational entities that 

can be provided and/or required by actors. Softgoals are similar to goals in that they are 

the conditions in the world that the actor would like to achieve; the difference is that 

these conditions are qualitative, without a clear-cut satisfaction condition. Softgoals in 

SR diagrams are used as restrictions or selection criteria for choosing among alternatives. 

Figure 3.2 illustrates the main elements of the SR modeling notation. It is the SR diagram 

for the Meeting Initiator actor, who is part of the meeting scheduling process fully 

described in Chapter 6.  
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Figure 3.2. The SR diagram notation. 

 

The above-described nodes are related by two types of links: task decomposition links, 

and means-ends links. Means-ends links specify alternative ways to achieve goals, 

perform tasks, etc. Means-ends links connect the end, which is usually a goal, but can 

also be a task, a resource, or a softgoal, with a means of achieving it. The means is 

usually a task since “the notion of task embodies how to do something” [Yu, 1995]. For 

example, in the model in Figure 3.2, there are two ways to achieve the goal 

MeetingOrganized: the tasks ManuallyScheduleMeeting and 

LetMeetingSchedulerScheduleMeeting. Task decomposition links connect a task with 

its components. These components could be simpler tasks, subgoals, resources needed for 

the task, or softgoals. In Figure 3.2, the task OrganizeMeeting is decomposed into the 

goal MeetingOrganized and the task RequestParticipation. It is possible to link a 

task/goal node with an intentional dependency going to another actor to represent its 

delegation to that actor. The SR model is strategic in that its elements are included only if 

they are considered important enough to affect the achievement of some goal [Yu, 1995]. 

The presence of softgoal nodes with positive or negative contribution links connecting 

them with other nodes in the SR diagram allows the analyst to evaluate alternative 

process configurations and select the best one. For example, in Figure 3.2 the task 

+/- MeetingOrganized 

MIBehaviour 

MeetingScheduled 

LowEffort Quick 

OrganizeMeeting 

Request 
Participation 

Manually 
Schedule 
Meeting 

Meeting 
Initiator 

Let Meeting 
Scheduler 
Schedule 
Meeting 

Task decomposition 

Softgoal contribution 

Means-ends link 

 Task 

 Goal 

 Softgoal 

 Actor boundary 
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ManuallyScheduleMeeting contributes negatively to the softgoals Quick and 

LowEffort, while the task LetMeetingSchedulerScheduleMeeting contributes 

positively to both softgoals. 

 

The central concept in the SR model is the notion of a routine — an interconnected 

collection of process elements serving some purpose for an agent. An actor has the ability 

to do something if it has a routine for it. A routine may delegate tasks, goals, etc. to other 

actors. A routine is said to be workable if the actor believes (at “process design time”) 

that it can successfully carry it out (at “run-time”) [Yu, 1995]. The notions of ability and 

workability are important for analyzing whether the actor has processes for 

accomplishing its goals and whether these processes are going to work.  

 

 
2.2 The Cognitive Agents Specification Language 
 

The Cognitive Agents Specification Language (CASL) [Shapiro and Lespérance, 2001] is 

a formal specification language that combines theories of action [Reiter, 1991] and 

mental states [Scherl and Levesque, 1993] expressed in the situation calculus [McCarthy 

and Hayes, 1969] with ConGolog [De Giacomo et al., 2000], a concurrent, non-

deterministic agent-oriented programming language with a formal semantics. CASL uses 

special predicates [Shapiro and Lespérance, 2001] to formally express the agents’ 

knowledge and goals; communicative actions (e.g., inform) are used to describe inter-

agent communication and ConGolog is then employed to specify the behaviour of agents. 

This combination produces a very expressive language that supports high-level reasoning 

about the agents’ mental states. The logical foundations of CASL allow it to be used to 

specify and analyze a wide variety of multiagent systems. For example, it can support 

non-deterministic systems and systems with incompletely specified initial state. In 

addition, different agents can be specified at different levels of abstraction. For instance, 

some agent specifications will make use of both goals and knowledge, while others will 
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use only knowledge (or goals), and some may use neither. CASL specifications consist of 

two parts: the model of the domain and its dynamics and the specification of the agents’ 

behaviour. 

 

2.2.1 Modeling the Domain 
 

In order to be able to reason about the processes executing in a certain domain, that 

domain must be formally specified — what predicates describe the domain, what 

primitive actions are available to the agents, what the preconditions and effects of these 

actions are, what is known about the initial state of the system. CASL represents a 

dynamic domain declaratively using an action theory [Reiter, 1991] that is formulated in 

situation calculus [McCarthy and Hayes, 1969]. The situation calculus is a predicate 

calculus language for describing dynamic domains. The key notion in the situation 

calculus is that of a situation. A situation is a state of the domain that results from a 

particular sequence of actions. The situation calculus assumes that the world starts in a 

certain state (initial situation). In the model of a domain, there is a set of initial situations 

corresponding to the ways agents think the world might be like initially. The constant S0 

specifies the domain’s actual initial situation. Initial situations do not have predecessors 

meaning that no actions already have been performed. Actions performed by various 

agents (and only these actions) change the current situation. The term do(a,s) represents 

the unique situation that results from performing the action a in situation s. Situations 

therefore can be organized in trees. The situations are the nodes of the tree with the roots 

being the initial situation; the actions are the edges in those trees.  

 

Fluents are the predicates and functions that change from situation to situation. They 

have a situation as their last argument. For example, Near(a,b,s) might be the fluent that 

is used to state that some object a is near some object b in situation s. Primitive actions 

are executed by the agents in the domain. Precondition axioms for actions specify under 

which conditions the primitive actions are executable. The predicate Poss(a,s) denotes 
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the executability of action a in situation s. For example, the formula below states that the 

action pickup(x) is possible when the robot arm is not holding anything and its is next to x 

and x is not heavy [De Giacomo et al., 2000]: 

 
( ( ), ) . ( , ) ( , ) ( )Poss pickup x s y Holding y s NextTo x s Heavy x≡ ∀ ¬ ∧ ∧ ¬  

 

To find legal executions of programs, the interpreter must reason about the preconditions 

and effects of actions. Primitive actions have effects on fluents. It is also necessary to 

provide frame axioms to describe which fluents are not affected by the actions. The 

number of these axioms is potentially very large. In the worst case, one would need a 

frame axiom for every combination of primitive action and fluent. This is known as the 

frame problem. CASL uses the solution to this problem proposed in [Reiter, 1991]. In 

this approach, successor state axioms, which encode effects of primitive actions on 

fluents, are used. Each successor state axiom defines which primitive actions have what 

effects on some particular fluent. For example, below is a possible successor state axiom 

for Holding(x,s). It says that for the agent to be holding some object x in the situation 

following the execution of the action a in situation s, either a must have been the action 

of picking up x, or the agent had been holding the object x in situation s before a 

occurred, and a was not the action of dropping x: 

 
( , ( , )) ( ) ( ( , ) ( ))Holding x do a s a pickup x Holding x s a drop x≡ = ∨ ∧ ≠  

 
The relation 's sp  over situations holds if s′ results from performing an executable 

(possibly empty) sequence of primitive actions in s. In this approach, a domain is 

specified by a theory containing axioms of these types: 

 

• Axioms that describe the initial state of the domain and the initial mental states of 

all of the agents. 

• Action precondition axioms, one for each primitive action a, defining Poss(a,s). 
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• Successor state axioms, one for each fluent F(x1,…,xn,s), which characterize the 

conditions under which F(x1,…,xn,do(a,s)) holds in terms of what holds in 

situation s. 

• Unique name axioms for primitive actions. 

• Domain-independent foundational axioms (these include the unique name axioms 

for situations and the induction axiom). 

 

2.2.2 Modeling Agents’ Mental States 
 

CASL models two characteristics of agents’ mental states, goals and knowledge. The 

formal representation for both goals and knowledge is based on a possible worlds 

semantics incorporated in the situation calculus, where situations are used as possible 

worlds [Moore, 1985; Scherl and Levesque, 1993]. What agents know is modeled 

through an accessibility relation K(agt,s′,s). It holds if the situation s′ is compatible with 

what the agent agt knows in situation s, i.e., in situation s, the agent thinks that it might 

be in the situation s′. In this case, the situation s′ is called K-accessible. The K 

accessibility relation is used to define what the agents know. An agent knows some 

formula φ if φ is true in all K-accessible situations: 

 

( , , ) ( ( , , ) [ ])
def

agt s s K agt s s sφ φ′ ′ ′= ∀ ⊃Know  

 
Here, [ ]sφ  is the formula φ  with all free occurrences of the special constant now 

substituted with s. For example, Know(agt,HaveKey(Door1,now),s) stands for 

∀s′.(K(agt,s′,s) ⊃ HaveKey(Door1,s′)). Often, when there is no possibility of confusion, 

the now constant is suppressed (e.g., Know(agt, HaveKey(Door1),s)). Constraints on the 

K relation ensure that what is known is true and agents have positive and negative 

introspection, i.e., they always know whether or not they know something. If the agent 

knows either φ or its negation, it knows whether it holds or not:  
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( , , ) ( , , ) ( , , )
def

agt s agt s agt sφ φ φ= ∨ ¬KWhether Know Know  

 
Also, the abbreviation KRef(agt,θ,s) is used for . ( , , )t agt t sθ∃ =Know . This means that 

the agent knows the value of θ. Additional communicative actions, informWhether and 

informRef, are used to inform agents about the truth value of a formula or the value of a 

function respectively. 

 

The K relation on initial situations is specified through the initial state axioms. For non-

initial state axioms the successor state axiom for the K relation shows how agent 

knowledge changes from situation to situation. Here, we assume that the action inform is 

the only knowledge-producing action (the modifications needed to support other 

knowledge producing actions are straightforward), and use the following successor state 

axiom: 

 

K(agent,s′′,do(a,s)) ≡ ∃s′ (K(agent,s′,s) ∧ s′′ = do(a,s′) ∧ Poss(a,s′) 

∧ ∀informer,φ (a=inform(informer,agent,φ) ⊃ φ[s′]))) 

 

It says that the situation s′′ is K-accessible from the situation do(a,s) under the following 

conditions: if the action a is not an inform action, then the situation preceding s′′, s′, 

must be K-accessible from s, it must be the case that executing the action a in s′ takes you 

to s′′, and that action must be executable in the situation s′. If, on the other hand, the 

action a is the inform action, then in addition to the above conditions, φ must hold in s′, 

i.e., when an agent informs another that φ, φ must be true. Here, φ is a formula encoded 

as a term as in [De Giacomo et al., 2000]. This successor state axiom ensures that the 

agents are aware of the execution of every action that occurs (and the fact that those 

actions were executable). In case of the inform actions, the recipient is sure that the 

content of the message holds. This axiom only handles knowledge expansion with the 

inform action. It is easy to modify the successor state axiom to handle other types of 

communicative actions or belief revision. For example, [Lespérance, 2002] shows the 
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version that supports informing about the value of a function (using the communicative 

action informRef), [Shapiro and Lespérance, 2001] modifies the axiom to handle 

encrypted messages, while [Shapiro et al., 2000] provides an account of belief revision 

compatible with CASL. Perception actions can also be modeled. 

 

Another accessibility relation on situations is used to model agents’ goals. The relation 

W(agt,s′,s) holds if the situation s′ is compatible with what the agent wants in s. Here, the 

agent may want something that does not currently hold. Agents may even want things 

that they know are impossible to attain, but the goals of agents must be consistent with 

what they know. Thus, the goals of agents are defined to be the formulae that are true in 

all W-accessible situations that have a K-accessible situation in the past [Shapiro and 

Lespérance, 2001]. The formula ψ below has two free variables, now and then. then refers 

to the future situation where the goal has been achieved, while now is the current 

situation along the path to then. So, goals are formulae that are true in the W-accessible 

paths that start from a K-accessible situation: 

 

( , , )
def

agt sψ =Goal  

, .( ( , , ) ( , , ) [ , ])now then K agt now s W agt then s now then now thenψ∀ ∧ ∧ ⊃p  

  

Here, ψ[s′,s′′] is the formula ψ with s′ and s′′ substituted for now and then respectively. 

The successor state axiom for W is similar to the one for K and describes what affects the 

agents’ goals. In particular, request actions coming from other agents make the agent 

acquire new goals provided that the goals are consistent with existing goals of the agent. 

We use the following successor state axiom for W: 

 
( , , ( , )) ( ( , , )W agt then do a s W agt then s≡ ∧  

, , .( ( , , ) ( , , )requester now a request requester agt K agt now sψ ψ∀ = ∧ ∧  

( , , ) [ ( , ), ]))now then agt s do a now thenψ ψ∧ ¬ ¬ ⊃Goalp  
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The axiom says that the situation then is W-accessible from do(a,s) iff it is W-accessible 

from s and if the action a is a request action requesting that ψ hold, and now is the current 

situation along the path defined by then, and the agent does not have the goal that ¬ψ in 

s, then ψ  holds at do(a,now),then). This formalization does not support goal revision. 

However, the communicative action cancelRequest can be used by the requester to 

cancel a previously made request (we omit the modifications to the successor state axiom 

for W). Note that if the agent already has the goal that ¬ψ, it will not adopt the goal that 

ψ to avoid inconsistency.  

 

In our approach, we mostly use achievement goals that specify the desired states of the 

world that one must eventually reach. These goals have one situation variable now. For 

such goals, we use the definition that says that eventually φ holds (note that now is 

replaced by s') on the path defined by (now,then):   

 
Eventually(φ(now),now,then) =

def . [ / ]s now s then now sϕ ′ ′ ′∃ ∧p p , 

 

Note that in CASL to simplify modeling, it is assumed that every agent knows about all 

the actions performed by all the agents. If this is not desired, one can use encrypted 

messages [Shapiro and Lespérance, 2001] or use communication actions that do not make 

the complete message explicit (informWhether and informRef as in [Lespérance, 

2002]). 

 

As mentioned earlier, the framework requires that the content of the inform messages be 

true. Thus, after receiving a message, the recipient knows that the sender knew that the 

content of the message was true. This prevents agents from sending false information. 

Also, when executing the request action, the sender must not have goals that conflict 

with the request. Alternatively, one could require that the requesting agent have the goal 

that it is asking another agent to adopt. These constraints are expressed through the 

precondition axioms for the inform and request actions: 



 24 

( ( , , ), ) ( , , )Poss inform informer recepient s informer sφ φ≡ Know  

( ( , , ), ) ( , , )Poss request requester recepient s requester sψ ψ≡ ¬ ¬Goal  

 

2.2.3 Specifying Agent Behaviour 
 

The ConGolog agent programming language [De Giacomo et al., 2000] is used to specify 

the behaviour of the agents in this framework. ConGolog is used here as a specification 

language even though it has been implemented. Here, we take a ConGolog program to 

consist of a sequence of procedure declarations and a complex action (in [De Giacomo et 

al., 2000], nested procedures are handled). Complex actions can be constructed out of the 

following constructs: 

 

a, primitive action 

φ?, wait for condition 

δ1;δ2, sequence 

δ1|δ2, nondeterministic choice of actions 

δ*, nondeterministic iteration 

πv.δ nondeterministic choice of argument 

if φ then δ1 else δ2 endIf, conditional 

for x∈Σ do δ endFor, for loop 

while φ do δ endWhile, while loop 

δ1||δ2, concurrency with same priority 

δ1>>δ2, concurrency with δ1 at higher priority  
:x φ δ→ , interrupt 

β(p), procedure call. 

 

In the above table, a is a primitive action; φ is a situation calculus formula with the 

situation argument of its fluents suppressed; δ, δ1, and δ2 represent complex actions; Σ is 

a set, x is a list of variables; β is a procedure name, while p represents the actual 
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parameters of the procedure. Procedures are defined as proc β(y) δ endProc, where β is 

the name of the procedure, y represents its formal parameters, and δ  is the body of the 

procedure, a complex action [Shapiro et al., 1998].  

 

One of the most expressive facilities of ConGolog is the interrupt construct. The interrupt 

fires whenever there is a binding of variables in x that makes the trigger condition φ true. 

The body of the interrupt, δ, is then executed. Once the execution of the body is 

complete, the interrupt is ready to fire again. Interrupts allow for modeling of concurrent 

and nondeterministic systems, reactive controllers, etc. One can easily write programs 

that can stop their normal activities and proceed to handling high-priority tasks when the 

need arises. 

 

The semantics of ConGolog is defined in terms of transitions [De Giacomo et al., 2000]. 

Transition semantics defines single steps of computation (as opposed to defining 

complete computations) that can be either primitive actions or tests of whether certain 

things hold in situations. The semantics is defined using two special predicates, 

Trans(δ,s,δ',s'), which means that program δ  in situation s may legally execute one step 

of computation, ending in situation s' with program δ' remaining,  and Final(δ,s), which 

means that program δ may legally terminate in situation s. These predicates are 

characterized by axioms that define possible computations and legal terminations for all 

ConGolog language constructs (e.g., primitive action, concurrency operator, etc.). The 

overall semantics of a ConGolog program is defined by the Do relation, which is defined 

in terms of Trans and Final (see [De Giacomo et al., 2000] for details). Do(δ,s,s') holds 

iff s' is a legal termination situation of process δ started in situation s. 

 

2.2.4 Epistemic Feasibility 
 

In [Lespérance, 2002] the notion of epistemic feasibility of CASL programs is introduced 

and formalized. CASL, like many other multiagent specification frameworks, does not 
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provide a good way for ensuring that plans of the agents in the MAS are epistemically 

feasible, that is that the agents have enough knowledge to be able to successfully execute 

their plans. It is noted in [Lespérance, 2002] that in CASL, the behaviour of the system is 

specified as a set of concurrent processes that may or may not refer to the agents’ mental 

states during their execution. Thus, it may be the case that an agent chosen to execute a 

certain process does not have enough knowledge to do it. For example (adapted from 

[Lespérance, 2002]), suppose there is a safe and a robot capable of dialling the safe’s 

combination. The designer can write a program that makes the robot dial the safe’s 

combination (whatever it is), for example, dial(Robot1,combination(Safe1),safe1). 

While this program is physically executable, it is not epistemically feasible if the robot 

does not know the combination. Such programs are useful if we just want to identify 

some possible execution traces of the system, but they do now take into consideration 

how the mental state of the agents affects their actions.  

 

In CASL, like in many other specification frameworks, systems are specified from the 

third-person point of view. While this could have some advantages (e.g., some systems 

are best specified objectively), it is quite easy to write specifications that are not 

executable. To remedy this, [Lespérance, 2002] provides ways to guarantee that 

specifications are epistemically feasible for the agents in the system. The paper defines 

subjective plan execution (with or without lookahead), which ensures that the plan can be 

executed by the agent based on its own knowledge.  

 

How can an agent know that it can execute an action? Before being able to execute an 

action, the agent must, for one thing, know that its preconditions are true. These kinds of 

requirements are known as “knowledge prerequisites of action” [Moore, 1985]. While the 

modeler could specify these preconditions manually, as suggested in [Lespérance, 2002], 

it would be better if these preconditions fell out automatically when the modeler specified 

that the process was to be executed subjectively by some specific agent.  
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2.2.4.1 Blind Subjective Execution of Processes 

 

A new construct, Subj(agt, δ), is proposed in [Lespérance, 2002]. This means the process 

δ is to be subjectively executed by the agent agt, that is, in terms of its knowledge. Subj 

is formally defined in terms of transitions. The standard ConGolog axioms for Trans and 

Final are appropriately modified (the details are presented in [Lespérance, 2002]). With 

subjective execution, only if the agent knows that it can make a transition can the system 

make that transition. Also, if the transition involves a primitive action, this action must be 

executed by the agent itself. A subjectively executed program can terminate only if the 

executing agent knows that it may do so. So, during subjective execution all the fluents, 

tests, and action preconditions are evaluated with respect to the agents’ knowledge state 

as opposed to being evaluated against the global world state. 

 

For single agent programs without nondeterministic operators, such as π, *, |, and ||, Subj 

is an adequate formalization of epistemic feasibility since it is sufficient for the agent to 

know which transition to perform at each step and when it can legally terminate. On the 

other hand, if the program contains nondeterminism, there are possibly many transitions 

that are allowed at any step and the agent must choose which one to execute. 

Nondeterministic programs enclosed in the Subj construct are executed blindly with the 

executing agent choosing the next transaction arbitrarily. Therefore, it can end up making 

rather bad choices. For example, suppose that the agent knows that both actions a and b 

are executable and the program is Subj(agt, (a; False?)| b). Since the agent performs no 

lookahead, it may very well choose to execute the action a and be left with False?, which 

can never become true, so the agent is stuck. Therefore, to show that a nondeterministic 

program is subjectively (and blindly) executable by an agent, one must show that all the 

paths are subjectively executable and lead to successful termination. That is, if there is a 

path in a nondeterministic program that is subjectively executable by an agent, it is not 

enough to guarantee epistemic feasibility. One must make sure that all the paths are 

subjectively executable. In [Lespérance, 2002] this is captured by the predicate 
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AllDo(δ,s), which is true if all the possible executions of the program δ starting in 

situation s successfully terminate. That is why the new predicate is called AllDo — all 

paths lead to a successful termination of the program. 

 

Epistemic feasibility for single-agent programs that are blindly executed as described 

above is formalized by the predicate KnowHowSubj(agt,δ,s) defined as: 

 

KnowHowSubj(agt,δ,s) =
def AllDo(Subj(agt,δ),s) 

 

This means that every subjective execution starting in s successfully terminates. If we 

want to generalize this to the system consisting of two agents executing in parallel, we 

can define the epistemic feasibility as: 

 

KnowHowSubj(agt1, δ1, agt2, δ2, s) =
def AllDo(Subj(agt1, δ1)||Subj(agt2, δ2), s) 

 

This guarantees that no matter how the two programs are executed and how they are 

interleaved, the execution will terminate successfully. This can be generalized further. If 

δ is a multiagent process with all the agents subjectively executing their programs in a 

blind manner (their programs are all inside the Subj operator), then the epistemic 

feasibility is defined as:  

KnowHowSubj(δ,s) =
def AllDo(δ,s) 

 

2.2.4.2 Deliberate Execution of Processes 

 

[Lespérance, 2002] also proposes the notion of deliberate execution for the smart agents 

that can deliberate and perform lookahead. The Delib(agt,δ) operator is used for such 

programs. It is again formalized using the transition semantics of ConGolog (full details 

can be found in [Lespérance, 2002]). The epistemic feasibility for deliberately-executed 

single-agent (deterministic or nondeterministic) programs is defined as 
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KnowHowDelib(agt,δ,s). The essence of epistemic feasibility in a deliberate execution is 

that the system can make a transition only if the executing agent knows that it can make 

this transition and, in addition, it knows how to deliberately execute the remainder of 

program δ until the legal final situation. Therefore, before selecting an action to execute 

the agent must ensure that it knows how to complete the execution of the program. Since 

one can depend on the agent for the smart selection of its transitions, there is no need to 

require that all the paths through the program lead to the successful termination — it is 

enough to show that at least one such path exists. There is no definition of Delib for 

general multiagent processes yet. Scaling Delib up to the case of multiple agents is hard 

since the choice of actions of each agent will depend on other agents’ deliberations. 
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3 Related Work 
 

In this chapter, we briefly introduce Software Engineering in Section 3.1 and 

Requirements Engineering in Section 3.2. We talk about software agents, multiagent 

systems, and Agent-Oriented Software Engineering in Section 3.3, introduce a number of 

agent-oriented development methodologies in Section 3.4, discuss several important goal 

oriented requirements engineering approaches in Section 3.5, and describe two i*-based 

methodologies, on which our approach is based, in Section 3.6. 

 

 

3.1 Software Engineering 
 

Creation of reliable, maintainable, etc. software systems that satisfy customer 

requirements is a hard task, which is steadily becoming more and more difficult. 

Software systems are constantly growing in size and complexity. In many cases, small 

teams of developers can no longer deliver new product versions on schedule because of 

the ever increasing number of features. As the number of developers grows, the 

management of the development team as well as the systematic and efficient 

communication and document sharing among its members becomes essential. Software 

development organizations now routinely use third party libraries, components and 

services in their projects. They also experience pressure from their customers to deliver 

customized and easily maintainable systems quickly and cheaply. Software Engineering 

studies the methods and techniques that help develop reliable, efficient, maintainable, 

evolvable, etc. software systems on time and on budget, thus alleviating the above-

mentioned difficulties. 

 

There are many definitions of what Software Engineering is. The definition given in 

[IEEE, 1990] states the following: 
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Software Engineering is the application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software. 

 

Software Engineering studies the following activities that are part of the software 

development process: requirements engineering, design, implementation, testing, 

deployment, and maintenance. In this thesis, we concentrate on requirements engineering 

and high-level design. 

 

 

3.2 Requirements engineering 
 

The main measure of the success of software systems is the degree to which it meets its 

purpose. Requirements engineering is the process of discovering the purpose of software 

systems [Nuseibeh and Easterbrook, 2000]. Requirements engineering is defined by 

[Zave, 1997] as: “the branch of software engineering concerned with the real-world goals 

for, functions of, and constraints on software systems. It is also concerned with the 

relationship of these factors to precise specifications of software behaviour, and their 

evolution over time and across software families”. The core RE activities are as follows 

([Nuseibeh and Easterbrook, 2000]): 

 

• eliciting requirements, 

• modeling and analyzing requirements, 

• communicating requirements, 

• agreeing to requirements, 

• evolving requirements. 

 

In this thesis, we are concerned with the fist two activities of RE, namely the 

requirements elicitation, as well as the requirements modeling and analysis. 



 32 

Requirements elicitation deals with analyzing the environment of the system-to-be, 

identifying the system’s stakeholders — people or organizations that influence the 

system-to-be and are affected by it — and recognizing their needs.   

 

Much of the RE research in the last decade has been concentrated in the area of goal-

oriented requirements engineering. Goals are the objectives of the stakeholders, thus 

eliciting stakeholder goals makes the requirements engineer concentrate on the problem, 

rather then on finding solutions to the problem. Goal-oriented approaches like KAOS 

[Dardenne et al., 1993] and Tropos [Castro et al., 2002] provide means to systematically 

refine stakeholder goals to the point where they can be assigned for achievement to either 

the system (or one of its components) or the environment of the system-to-be.  

 

One of the main difficulties of requirements elicitation and modeling is the imprecise, 

informal nature of requirements. Requirements for a system exist in a certain social 

context and therefore during requirements elicitation a high degree of communication, 

negotiation, and other interaction skills is needed. For example, various stakeholders have 

different, possibly (and usually) conflicting points of view on what the system-to-be 

should deliver. Thus, getting stakeholders to agree on requirements is an important step 

of the process and requires a good social and communication skills. Requirements 

engineers should also be very careful while gathering the requirements: the same words 

and phrases used by different stakeholders may mean different things for them. One way 

to overcome this problem is to construct a common ontology to be used by all the 

stakeholders. Another way is to model the environment formally. One approach for 

carefully describing the environment using ground terms, designations and definitions is 

presented in [Jackson, 1997]. A brief overview of the requirements elicitation techniques 

is presented in [Nuseibeh and Easterbrook, 2000].  

 

Requirements modeling is the activity of “building abstract descriptions of the 

requirements that are amenable to interpretation” [Nuseibeh and Easterbrook, 2000]. 
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Modeling facilitates in requirements elicitation by guiding it and helping the 

requirements engineer look at the domain systematically. Domain models allow for 

requirements reuse within the domain. The presence of inconsistencies in the models is 

indicative of conflicting and/or infeasible requirements. While informal models are 

analyzed by humans, formal models of system requirements allow for precise analysis by 

both the software tools and humans. As systems grow in size and complexity, formal 

analysis of requirements becomes more and more important. System requirements 

specifications that are expressed formally allow the designer to rigorously verify that the 

software system satisfies its requirements. 

 

Requirements engineering is generally viewed as a process containing two phases. The 

early requirements phase concentrates on the analysis and modeling of the environment 

for the system-to-be, the organizational context, the stakeholders, their objectives and 

their relationships. A good analysis of the domain is extremely important for the success 

of the system. Understanding the needs and motivations of stakeholders and analyzing 

their complex social relationships helps in coming up with the correct requirements for 

the system-to-be. Domain models are a great way to organize the knowledge acquired 

during the domain analysis. Such models are reference points for the system requirements 

and can be used to support the evolution of requirements that stems from changes in the 

organizational context of the system. 

 

The late requirements phase is concerned with modeling the system together with its 

environment. The system is embedded into the organization; the boundaries of the system 

and its environment are identified and adjusted, if needed; the system requirements and 

assumptions about the environment are identified. The boundary between the system and 

its environment is initially not well defined. The analyst will try to determine the best 

configuration of the system and its environment to reliably achieve the goals of the 

stakeholders. Putting too much functionality into the system could make it, for example, 
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too complex and hard to maintain and evolve, while making too many assumptions about 

the environment may be unrealistic. 

 

It is generally acknowledged that uncaught errors in requirements cost tens of times more 

to fix at the later stages of the software development process than if they had been caught 

at the requirements stage. Also, a lot of times failures of software systems have to do not 

with poor design or programming errors, but with the failure to properly capture the 

needs of the stakeholders. Thus, spending time to carefully figure out what the system is 

supposed to do is extremely important. On the other hand, requirements are quite volatile 

and supporting the evolution of the system requirements is also crucial. Creating 

traceability links between requirements models and design-level models helps when 

requirements change either during development or after the deployment of the system. 

 

 

3.3 Agents, Multiagent Systems and Agent-Oriented 
Software Engineering 
 

Agent-Oriented software engineering is a relatively new approach to software 

construction. With the advent of the internet, electronic commerce, web services, and 

peer-to-peer networks more and more software systems are becoming distributed, with 

complex communication patterns. These systems are frequently built out of components 

that were developed and may be operated by different companies. In this context, many 

researchers and practitioners find that object-oriented and even component-oriented 

approaches offer abstractions that are too low-level to concisely and conveniently 

describe such systems.  

 

In agent-oriented software engineering, the problems are decomposed into autonomous, 

interacting components called agents, each of which has a goal or a set of goals to 

achieve. The system’s objectives are achieved as these components act together to 
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achieve their individual goals. Therefore, agent interaction is needed for the agents to 

achieve their individual goals and for the system to achieve its objectives. Most 

frequently, agents in multiagent systems represent and act on behalf of individuals, 

companies, departments within companies, etc. Therefore, as it is noted in [Jennings, 

1999], when agents interact, there is usually some “underlying organizational context” 

that characterizes the relationship between the agents in the system. Multiagent systems 

often mimic human organizations and social relationships by involving agent coalitions 

and teams and by distinguishing among bosses, peers, etc. This makes multiagent 

systems a great match for goal-oriented requirements engineering approaches such as 

those based on the i* modeling framework. The i* models of the future system and its 

organizational context contain the stakeholders, the system agents, and their intentional 

dependencies and can be easily mapped into an analogous multiagent system with the 

stakeholders modeled by software agents and intentional dependencies replaced by 

similarly patterned agent interactions. Multiagent systems have the essential ability to 

adapt to the changes in their underlying social context and thus promise big savings for 

supporting the system evolution. 

 

There is no universally accepted definition of software agent. One of the most popular is 

presented in [Wooldridge, 1997]:  

 

an agent is an encapsulated computer system that is situated in some 

environment, and that is capable of flexible, autonomous action in that 

environment in order to meet its design objectives 

 

Agents are thought of as self-contained software or (rarely) hardware systems that 

encapsulate some state information and are able to communicate with each other. 

Wooldridge and Jennings ([Wooldridge and Jennings, 1995]) define weak and strong 

notions of agency. Weak agency is the basic, minimal characterization of agents. Weak 

agents have the following properties: 
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• autonomy: agents are able to pursue their objectives without direct guidance from 

humans or other systems and have control over their actions and state; 

• social ability: agents are capable of interacting with other agents using some kind 

of agent communication language; 

• reactivity: agents are capable of reacting in a timely manner to changes in their 

environment; 

• pro-activeness: agents exhibit goal-directed behaviour. 

 

The above properties define the essence of being an agent. Systems not exhibiting the 

above properties most likely are not agents. Strong agency involves characterizing the 

states of the agents using mentalistic notions such as knowledge, belief, intention (e.g., 

BDI formalisms of [Rao and Georgeff, 1995]). Therefore, strong agents have more 

artificial intelligence/knowledge-based technology built into them and to a certain extent 

are specified formally. Describing agents in terms of their mental states allows for higher-

level specifications. When matched with the appropriate agent interaction language (e.g., 

FIPA ACL [FIPA, 2001] or KQML [Finin et al., 1997]), these specifications support 

reasoning about the effects of inter-agent communication without knowing the exact 

content of the messages (knowing the type of the message is enough to predict the type of 

effect it has on the mental state of the agent). This allows for more thorough analysis of 

multiagent systems and for prediction of changes in the agents’ behaviour in response to 

change in the agents’ environment. Equipped with appropriate reasoning tools, agents can 

determine the best course of action under changing circumstances, thus displaying 

autonomy and reactivity in the environment. They can change partners, form teams, 

request assistance, switch to achieving lower priority goals while higher priority ones 

cannot be effectively achieved, etc. Moreover, in open and dynamic systems that are well 

suited for agent technology, agent interactions cannot be fully specified at design time 

since multiagent system configurations are very fluid. Using AI agent technologies 

allows designers to create highly flexible and dynamic systems by deferring much of the 

decision making until runtime. 
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Agent research argues that agent orientation is the next logical step for software 

engineering. Jennings ([Jennings, 1999]) shows that agents are a good way of partitioning 

the complex problems and that agent-oriented systems are much better equipped for 

dealing with complex organizational relationships that exist in today’s software than 

systems built using other paradigms, most notably the object-oriented one. Agents, unlike 

objects, have a much greater degree of control over which actions they execute. While 

objects (or, more generally, software components) are passive and need some sort of 

invocation to become active, agents “encapsulate behaviour activation (action choice)” 

[Jennings, 1999]. Any object can call any publicly accessible method of another object 

and the called object cannot refuse the invocation. This may not be appropriate for 

competitive environments. On the other hand, an agent can refuse to execute an action for 

one reason or another. This way action invocation becomes a “process of mutual consent” 

[Jennings, 1999]. Another advantage of agent-oriented approach is that agent interactions 

occur at a higher level than interactions among components and objects. Agents usually 

employ a speech act-based agent communication language that allows them to 

communicate at a semantic level as opposed to the purely syntactic-level communication 

employed by objects. 

 

Agent orientation, while a very promising approach, also has some important problems 

[Jennings, 1999]. For example, agents heavily loaded with AI may be hard to implement 

efficiently and require substantial expertise in artificial intelligence. Designers must 

balance reactive and proactive behaviour, which is hard even for small systems (e.g., 

[Lapouchnian and Lespérance, 2002]). Since agents interact in flexible ways, quite 

frequently the pattern of interactions as well as their timing cannot be predicted. Also, 

generally the behaviour of the multiagent system is difficult to understand only in terms 

of the behaviour of its individual agents. The system’s overall emergent behaviour can be 

hard to predict. 
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3.4 Agent-Oriented Development Methodologies 
 

The growth of interest in agents and multiagent systems in the 1990’s generated a need 

for software engineering methodologies designed specifically for agent-based systems. A 

number of agent-oriented software development methodologies were reviewed in 

[Iglesias et al., 1998] and in [Wooldridge and Ciancarini, 2001]. Iglesias et al. note that 

many researchers avoid developing agent-oriented methodologies from scratch. Instead, 

most agent-oriented methodologies extend existing methodologies to include aspects 

relevant to agents. The majority of agent-oriented methodologies are based on two types 

of existing methodologies [Iglesias et al., 1998]: object-oriented (OO) and knowledge 

engineering (KE).  

 

Extending existing object-oriented approaches to support agents appears to be quite 

natural since there are a lot of similarities between agents and objects. Shoham [Shoham, 

1993] noted that the agents can be considered as active objects (objects with a mental 

state that act on their own volition). Message passing, inheritance, and aggregation are 

used in both agent-oriented and object-oriented analysis paradigms [Iglesias et al., 1998]. 

The popularity of object-oriented analysis and design methods and the abundance of tools 

for object-oriented development are other factors in the selection of object-oriented 

methodologies as a base for the development of new agent-oriented ones.  

 

One example of the above approach is the methodology of Kinny et al. [Kinny et al., 

1996] developed at the Australian AI Institute. This approach is mainly based on object-

oriented methodologies with the addition of some agent concepts. It provides internal and 

external models, which define a multiagent system specification. The external model is 

concerned with agents and relationships among them. On the other hand, the internal 

model describes the internals of the agents, their beliefs, desires, and intentions. The 

external model is divided into an interaction model and an agent model, which is in turn 

subdivided into an agent class model and an agent instance model. They define classes of 
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agents and their relationships via inheritance, aggregation, and instantiation. The 

methodology in can be briefly described as follows:  

 

• relevant roles are identified in the problem domain;  

• the responsibilities of the roles, and the services required and provided by it are 

then identified;  

• the goals associated with each role are identified;  

• achievement plans are chosen for each goal, along with the context conditions that 

determine when the plan is appropriate; 

• the belief structure of the system (the information required for each plan and goal) 

is mapped out. 

 

The resulting model is closely related to the Procedural Reasoning System (PRS) 

[Ingrand et al., 1992] agent architecture and thus could be easily implemented using PRS. 

The PRS, developed at the Stanford Research Institute, is “the first agent-based 

architecture based on the belief-desire-intention paradigm” [Wooldridge and Ciancarini, 

2001]. The PRS was used in Australia in some of the most complex multiagent systems 

ever built (including an air traffic control system and an air force simulation system). 

 

Another example of a methodology based on object-oriented concepts is Gaia 

[Wooldridge et al., 2000]. This methodology aims at allowing analysts to systematically 

go from a requirements statement to a sufficiently detailed, directly implementable design 

[Wooldridge and Ciancarini, 2001]. Gaia borrows some notation as well as terminology 

from object-oriented analysis methods, but instead of applying them naively to agent-

oriented analysis, it introduces a new set of concepts for modeling complex agent-

oriented systems. Gaia encourages designers to think of building agent-based systems as 

a process of organizational design [Wooldridge and Ciancarini, 2001]. When applying 

Gaia, the analyst moves from more abstract concepts (e.g., roles, permissions, 

responsibilities, etc.) to progressively more concrete concepts (e.g., agent types and 
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services). Abstract entities are used during conceptual analysis of the system. They do not 

usually have direct realizations within the system, unlike the concrete concepts, which are 

used during the design of the system and are typically realized in the system at runtime. 

Each step brings the specification closer to the final design, reducing the number of 

possible systems that could be implemented to satisfy the requirements specification.  

 

The analysis stage in Gaia is aimed at understanding the system and its structure (no 

implementation details are introduced at this point). This understanding is captured by the 

system’s organization [Wooldridge and Ciancarini, 2001]. An organization in Gaia is 

viewed as a collection of roles that have relationships with each other and take part in 

interactions. Roles are defined by their responsibilities (divided into liveness and safety 

properties), activities (private internal actions of a role), permissions (resources available 

to a role to realize its responsibilities), and protocols (ways a role can interact with other 

roles). 

 

Gaia is somewhat similar to the i* modeling framework, which is used in this thesis, 

since in both i* and Gaia, organizational aspects are given a very prominent role in the 

analysis and development of the system-to-be. Similarly, organizations in Gaia are 

described using roles and their relationships, while i* uses the concepts of actor (actors 

can be agents, positions, and roles, see Section 2.1.1) and intentional dependencies 

between actors. These dependencies, when operationalized, become patterns of 

interaction among the actors in the system. 

 

There are also a number of approaches for agent-oriented software engineering that 

extend knowledge engineering methodologies. As noted in [Iglesias et al., 1998], 

knowledge engineering methodologies can provide a good basis for modeling multiagent 

systems since agents have cognitive characteristics. By extending these methodologies, a 

rich experience in knowledge engineering as well as ontology libraries and problem 

solving methods can be reused for agent-oriented software engineering. The agent-
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oriented methodologies based on knowledge engineering approaches concentrate mainly 

on modeling knowledge acquisition and use. 

 

Several agent-oriented methodologies extend the CommonKADS approach [Schreiber et 

al., 1994], which can be considered a European standard in knowledge modeling [Iglesias 

et al., 1998]. Glaser [Glaser, 1996] proposed one such extension. The approach defines 

the following models to capture the properties of multiagent systems:  

 

• The Agent model is the main model and is used to define the agent architecture 

and knowledge, which is classified as social, cooperative, control, cognitive, or 

reactive. 

• The Expertise model is used to describe the cognitive and reactive capabilities of 

agents. It models three types of knowledge: task knowledge (task decomposition 

knowledge described in the task model), problem solving knowledge (problem 

solving methods and strategies for their selection), and reactive knowledge 

(procedures to react to various events). 

• The Task model describes the decomposition of tasks and assigns tasks to the 

agents of the system or the user. 

• The Cooperation model describes the cooperation among the agents. 

• The System model defines the organizational aspects of the MAS. 

• The Design model collects all the above models to operationalize them. It also 

describes non-functional requirements for the system. 

 

Other agent-oriented development methodologies include DESIRE [Brazier et al., 1995], 

which is used for specifying composite systems and has an extensive tool support, and 

Cassiopeia [Collinot et al., 1996], which, unlike the Gaia and many other approaches, is 

bottom-up in nature. A lot of research has been recently focused on adapting the 

Universal Modeling Language (UML) [Booch et al., 1999] notation to the specification 

of agent-oriented systems. One of the outcomes of this research is the AgentUML 
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notation [Odell et al., 2000] (it is not a methodology). It is being used in some agent-

oriented methodologies (e.g., Tropos [Castro et al., 2002]). 

 

 

3.5 Goal-Oriented Requirements Engineering 
Methodologies 
 

3.5.1 KAOS 
 

The KAOS (Knowledge Acquisition in autOmated Specification) approach [Dardenne et 

al., 1993] is a goal-oriented requirements engineering framework supporting formal 

modeling and analysis of both functional and non-functional requirements. It can be used 

for elicitation, specification, and analysis of system goals, scenarios, and responsibility 

assignments. It was one of the first requirements engineering approaches that put 

emphasis on “high-level system goals as opposed to their operationalization into 

constraints” [Dardenne et al., 1993]. Thus, in KAOS, one starts with the system-level 

goals and organizational objectives and subsequently refines them to produce low-level 

constraints that can be guaranteed by agents through appropriate actions. 

 

KAOS provides a conceptual meta-model and requirements models are acquired as 

instances of this meta-model. The meta-model is represented as a graph with nodes 

capturing the abstractions such as goals, actions, agents (in KAOS, agents are objects that 

are processors for some actions; they have a choice on their behaviour and could be 

humans, physical devices, or programs [Dardenne et al., 1993]), etc. and edges capturing 

the semantic links between these abstractions. A requirements acquisition process is then 

a particular way of traversing the meta-model graph to acquire the instances of 

abstractions and their relationships. A way to traverse the meta-model graph is called an 

acquisition strategy.  
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KAOS specifications consist of a number of complementary models. The goal model is 

the basis for the KAOS methodology. Goals are statements of what the composite system 

should achieve. Goals in KAOS are classified according to the temporal behaviour 

patterns required by the goal. The goals can be achieve goals, cease goals, maintain 

goals, and avoid goals. The KAOS goal model is a graph that shows the refinement of the 

high-level goals of the combined system into lower-level goals suitable for assignment to 

agents in the system or in the environment. Goals are refined into subgoals through AND 

or OR-decompositions. An AND-decomposition is used if all of the subgoals must be 

achieved in order to achieve the parent goal. An OR-decomposition is used if the parent 

goal can be achieved by achieving alternative subgoals. Examining the goal graph top-

down, one can see how the system goals are realized, while examining the graph bottom-

up, one sees why particular subgoals are to be achieved. Goal decomposition in KAOS is 

done centrally and from the designer’s point of view. The i* framework [Yu, 1995], on 

the other hand, allows for the subjective analysis of high-level goals from the point of 

view of actors that are part of the system-to-be or its environment. Another difference 

between KAOS and i*-based methods (and thus between KAOS and our approach) is that 

the KAOS process starts at the late requirements phase by analyzing the goals of the 

combined system, while the i*-based frameworks support both the early and the late 

requirements phases and allow the modeling of the environment of the system-to-be as 

well as the system under development separately. 

 

The KAOS agent responsibility model shows the assignment of responsibilities for 

achieving goals to agents. In this model, agents can be the components of the system-to-

be, existing software components, hardware devices, and humans. Goals assigned to 

agents are deemed sufficiently fine-grained and are not refined any further. This means 

that unlike the i* modeling framework, KAOS only allows the assignment of leaf-level 

goals to agents. The delegation of subgoals to agents is thus the responsibility of the 

designer and is done at design time. In i*, on the other hand, any goal/task can be 

assigned to an actor, refined within that actor (based on the actor’s own reasoning), and 
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lower-level subgoals/subtasks produced during this refinement can be further delegated to 

other actors or achieved/performed by the actor itself. We feel that this makes the i* goal 

decomposition more flexible and more suitable for agent-oriented development. With the 

use of appropriate goal-supporting formal notation in conjunction with the i* framework, 

goal analysis and decomposition can be performed at runtime. 

 

The KAOS approach includes refinement strategies for goal decomposition. For example, 

[Darimont and van Lamsweerde, 1996] describe a number of tactics for goal refinement 

including milestone-driven (refines achievement goals by introducing some intermediate 

milestone assertion) and case-driven (splits goal achievement into cases). These 

strategies help the modeler to systematically refine high-level goals into more 

manageable ones. Moreover, agent-based refinement strategies are described in [Letier 

and van Lamsweerde, 2002]. In KAOS, goals can only be assigned to agents if they are 

capable of achieving them. Agent-based refinement tactics are designed to help in dealing 

with goals that cannot be realized by agents due to the lack of monitorability (the agent 

cannot monitor the variables that need to be evaluated in the formulation of the goal) or 

controllability (the agent cannot control the variables that need to be controlled to achieve 

the goal).  

 

Obstacle analysis is a major component of the KAOS framework. [van Lamsweerde et 

al., 1995] note that quite frequently initial specifications of goals, refinements, and 

assumptions are too ideal and are easily violated due to the unexpected behaviour of 

agents (software, devices, or humans). The need to anticipate exceptional circumstances 

is at the heart of obstacle analysis. Obstacles are duals of goals — they capture 

undesirable conditions. An obstacle obstructs some goal: when the obstacle becomes true, 

the goal may not be achieved [Letier and van Lamsweerde, 2000]. Obstacles can be 

refined (AND/OR-refinement) into subobstacles. Techniques for obstacle identification 

and avoidance are also proposed. Obstacle avoidance techniques include goal substitution 

(coming up with an alternative refinement of goals that does not give rise to the obstacle), 
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agent substitution, obstacle prevention (a new goal, which requires that the obstacle be 

avoided, is added), and goal deidealization (reformulating the goal so that the obstacle 

disappears).  

 

3.5.2 Albert II  
 

Albert II [du Bois, 1995a; du Bois et al., 1997] is a formal requirements specification 

language based on a real-time temporal logic [Chabot et al., 1998]. The name is an 

acronym for Agent-oriented Language for Building and Eliciting Real-Time 

requirements. The main purpose of the framework is to model distributed heterogeneous 

real-time cooperating systems. The development of the language started in 1992. 

Throughout its development, the language was tested on specifications of non-trivial 

systems like computer-integrated manufacturing [Dubois and Petit, 1994], process 

control, and telecommunications systems [Wieringa and Dubois, 1998].  

 

The underlying formal framework of Albert II is based on Albert-CORE [du Bois, 

1995a], an object-oriented variant of temporal logic with actions that have been 

introduced as a means of solving the frame problem. Albert II specifications are centered 

on describing the behaviour of agents found in the environment and the system-to-be. 

This way large specifications are structured in terms of smaller agent specifications that 

each guarantee a part of the global behaviour of the system [du Bois, 1995b]. Albert II, 

like the original Albert [Dubois et al., 1994] language, treats agents as specializations of 

objects (agents do not have intentions in Albert II). This “object-oriented” [du Bois, 

1995b] approach compares favourably to the use of purely logical frameworks that results 

in large unstructured specifications.  

 

Agents are autonomous entities that can perform actions, which may modify the internal 

state (physical state or the state of knowledge about the outside world) of the agent or 

external agents. Actions may have duration. In this case, the effect of the action on the 
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state takes place at the end of the action. Actions may also be executed concurrently. 

Conflicting actions, actions that affect the same component of an agent’s state, are not 

allowed. Agents perform their actions based on their obligations that are expressed in 

terms of local constraints or cooperation constraints. Local constraints apply to the agent 

itself while cooperation constraints apply to inter-agent communication in agent societies. 

Therefore, specifications may be considered at two levels. The agent level specifies the 

set of possible behaviours of individual agents without regard to the behaviours of other 

agents in the system. At this level, the modeler specifies which actions the agent is 

responsible for, the effects of these actions, and the trigger conditions for them. The 

society level, on the other hand, takes into account the interactions among agents. 

Constraints on the interactions lead to additional constraints on the behaviours of 

individual agents. The language supports specification of agent knowledge, which is 

restricted to action perception and state perception (actions and parts of the states of other 

agents that are visible to the agent). 

 

Albert II specifications consist of two main components: the graphical component where 

the vocabulary of the specification is declared and a textual part where temporal logical 

formulae organized using the above-mentioned templates are used to constrain the 

admissible behaviours of agents. The graphical declarations for agents define the state 

components of agents, the actions that the agents perform, and the visibility relationships 

that link the agents to the other agents. These relationships specify which state 

components and actions of each agent are not visible from the outside and which are 

exported to the outside. One can specify to which agent or to which society of agents the 

information is exported. While these importation and exportation constraints are static 

properties of specifications, perception and information constraints, their dynamic 

counterparts, are available for more detailed specification of state and action visibility. 

The graphical notation supports the specification of agent societies. Both individual 

agents and classes of agents (i.e., roles) can be declared.  
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Michael Jackson [Jackson, 1995] proposed to separate requirements into indicative — 

related to the environment of the system-to-be (assumptions about the environment), and 

optative — concerned with the system itself. One of the features of Albert II is that it 

supports the distinction between optative and indicative requirements. Among other 

features of the language is its naturalness: the language offers the ability to map informal 

customer requirements statements into formal Albert II statements. The goal is to avoid 

introducing any new elements in the formal specification, which do not have counterparts 

in the informal customer statements. This is achieved by supporting operational and 

procedural styles of requirements specification [Dubois et al., 1998]. The language also 

helps modelers by providing various templates to guide the elicitation and structuring of 

requirements.  

 

A number of projects evaluated the use of the Albert II language in combination with the 

i* framework and/or the KAOS approach to specify and analyze requirements for 

cooperating systems. In [Yu et al., 1997], the combined use of i* and Albert II for 

requirements engineering in cooperative multiagent systems is proposed and evaluated. i* 

is employed for modeling the organizational aspects of the system-to-be. The modeling 

notation helps in generating and evaluating organizational alternatives, while Albert II is 

used to produce formal requirements specifications for the system. The authors stress the 

iterative nature of the requirements engineering process where the detailed elaboration of 

functional requirements using Albert II may reveal unresolved organizational issues, 

resulting in further use of i* to refine the organizational model. A banking system is used 

as a case study to evaluate the approach. 

 

Another approach, which is described in [Dubois et al., 1998], proposes the use of 

KAOS, Timed Automata [Merritt et al., 1991], and Albert II together in a requirements 

engineering framework. In this approach, the authors consider three distinct activities in 

requirements engineering: the modeling of goals associated with the introduction of the 

new system into an organization, the modeling of software requirements for the system 
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solving the organizational goals, and the modeling of the internals of the software system. 

The approach uses three formal languages for each of the three above activities: KAOS is 

used for reasoning about system goals, Albert II is used to specify the requirements for 

the software system, while Timed Automata are used for the specification of system 

internals. The three resultant models are linked at a high level using the i* modeling 

framework, which is used to model the organizational issues and rationale behind the 

introduction of the new system and the particular system configuration. Thus, the i* 

model is used to link together the three formal models by creating a high-level intentional 

model that captures the organizational perspective on the new system. A small process 

control case study is used to illustrate the approach. 

 

Bissener [Bissener, 1997] proposed a requirements engineering methodology that 

combined the i* and Albert II frameworks. He attempts to provide an approach that deals 

with organizational issues and can effectively model and analyze both functional and 

non-functional requirements. Here, the i* modeling framework is used to model and 

reason about organizational issues and non-functional requirements, while Albert II is 

used for system specification. The process consists of three main steps: the modeling of 

the domain and the identification of system objectives, the introduction of the system that 

achieves the identified objectives, and the specification of the system’s internals.  

 

Albert II specifications are completely declarative. On the other hand, the CASL [Shapiro 

and Lespérance, 2001] specification language used in this thesis, while supporting the 

declarative specification of agent goals, knowledge, actions and their effects, is process-

oriented and is used to specify the behaviour of agents procedurally. The account of 

knowledge in CASL is more general than in Albert II, where one can only specify action 

and state perception. Therefore, CASL can be used to model rich agent interactions, to 

analyze the epistemic feasibility of agent plans [Lespérance, 2002], etc.  
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3.6 i*-based Goal-Oriented Development Methodologies 
 

In this section we introduce the Tropos methodology [Castro et al., 2002] and the i*-

ConGolog framework [Wang, 2001], which both form the basis of our own approach.  

 

3.6.1 Tropos 
 

Tropos is a requirements-driven agent-oriented software development methodology. One 

of the goals of the methodology is to reduce the mismatch between the concepts used to 

describe the operational environment of information systems and the concepts used to 

describe the architecture and high-level design of these systems [Castro et al., 2002]. 

While the environment of the system-under-development is described in terms of 

stakeholders, responsibilities, objectives, and so on, high-level descriptions of systems 

typically use the notions of modules, interfaces, objects, etc. The quality of the systems 

developed using many popular software development methods suffers from this 

mismatch, which is due to the fact that usually development methodologies are driven by 

the dominant programming paradigm of the day. For example, the current dominant 

approach to programming is object orientation and object-oriented analysis and design is 

the most popular type of software development methods. While using the same concepts 

to align the design process with the requirements analysis process is a good idea, the 

authors of the Tropos approach (e.g., [Castro et al., 2002]) stress that the development 

methodology should be based on concepts from requirement engineering and not on 

implementation concepts. The reason for this is the growing realization that the 

requirements analysis phase of software development is crucial to the success of software 

systems. It is the phase where “technical considerations have to be balanced against 

social and organizational ones and where the operational environment of the system is 

modeled” [Castro et al., 2002]. Therefore, the Tropos approach is requirements-driven, 

that is, based on the concepts from early requirements analysis. The approach adopts the 
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concepts used in the i* modeling framework [Yu, 1995], such as actor and intentional 

dependency, and extensively uses i* diagrams for modeling. 

 

Below we present an outline of the phases of the Tropos methodology adapted from 

[Castro et al., 2002]: 

 

1. Acquisition of Early Requirements. In this phase, the environment of the system-

to-be is analyzed. The stakeholders are identified, as are their goals, and the 

intentional dependencies among them. The output of this phase is two models: 

a) The SD model that captures the stakeholders, their goals, and their 

dependencies. 

b) The SR model that gives a better understanding of the processes in the 

organization. 

2. Definition of Late Requirements. In this phase, the new system is introduced in 

the diagrams and possibilities for the reconfiguration of the intentional 

dependencies are proposed and analyzed. The output of this phase is the revised 

models: 

a) An actor to represent the new system is included in the original SD 

diagram with its dependencies. 

b) Means-ends analysis is done on the new system actor and a revised SR 

diagram is produced. Based on this analysis, the system actor can be 

decomposed into multiple actors. Both steps in this phase can be 

iteratively repeated. 

3. Architectural Design. In this phase, the high-level architecture of the system is 

produced. The methodology makes use of the NFR framework [Chung et al., 

2000] and a repository of organizational architectural styles [Kolp and 

Mylopoulos, 2001] to select the most suitable (from the organizational point of 

view) architecture for the system (see Section 5.4.1 for more information). This 

phase involves the following: 
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a) Selecting the architectural style based on the desired quality attributes 

such as security, modularity, etc. At this point, the NFR diagram 

identifying the rationale for the selected alternative is produced. 

b) New system actors, dependencies, sub-actors and sub-dependencies may 

be introduced if needed. The SD and SR models are revised. 

c) Roles and positions are assigned to the agents. 

4. Detailed Design. In this phase, one uses various types of UML [Rumbaugh et al., 

1999] diagrams modified to accommodate Tropos concepts within UML 

[Mylopoulos et al., 2001b] and possibly AUML [Odell et al., 2000]. This 

involves: 

a) Producing class diagrams based on the SD and SR models. 

b) Producing sequence and collaboration diagrams depicting inter-agent 

interactions. 

c) Developing state diagrams describing both inter- and intra-agent 

dynamics. 

5. Implementation. In this phase, an appropriate development platform (possibly 

agent-oriented) is used to produce the implementation of the system.  

 

The approach proposed in this thesis can be easily integrated into the Tropos 

methodology and offers new modeling, analysis, and verification capabilities to the 

Tropos framework. In Chapter 5, we present an agent-oriented requirements engineering 

methodology that is based on Tropos and makes use of the iASR diagrams (see Chapter 

4), CASL models, and the CASLve verification tool [Shapiro et al., 2002]. It covers the 

first three steps of the Tropos approach (early and late requirements and architectural 

design). The later steps can be performed with agent-oriented or conventional design and 

implementation methods. 

 

Formal Tropos [Fuxman et al., 2001b] is an addition to the Tropos framework designed 

to provide a formal analysis tool for the early requirements specification phase. During 
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the early requirements analysis phase the analysts concentrate on modeling the 

environment of the system-to-be (the domain): the stakeholders, their goals and their 

relationships. The authors note that most formal approaches are designed to be used later 

in the software development process and attempts to apply formal techniques at the early 

requirements stage are often hindered by a concept mismatch between the constructs of 

the formal approaches and the notions used during the early requirements analysis. 

Formal Tropos bridges this gap by using the concepts of i* [Yu, 1995] such as actors, 

goal, and dependencies, while also adding a KAOS-inspired rich temporal specification 

language. The Formal Tropos language describes the relevant domain objects and their 

relationships. The description of objects has two layers: the outer layer defines the 

structure of instances and their attributes, while the inner layer consists of constraints on 

the lifetime of the object specified using a linear-time temporal logic. The i*’s Strategic 

Dependency (SD) diagrams used during the early requirements analysis can be mapped 

into the Formal Tropos language. The latter can, then, be mapped into the input language 

of the NuSMV model checker [Cimatti et al., 1999] for analysis. Thus, early 

requirements specifications expressed using SD models can be checked for consistency 

and their properties can be validated. 

 

The Formal Tropos approach is complementary to the method proposed in this thesis. 

Formal Tropos allows for the formal analysis of early requirements specifications 

expressed using Strategic Dependency models. Capturing all the properties and only the 

properties of the domain can be a difficult task. Formal models of the domain along with 

the appropriate analysis tools can help in identifying inconsistent, missing, etc. properties 

of the system’s environment. Our approach, which combines the i* modeling framework 

with the CASL specification language [Shapiro and Lespérance, 2001], is geared more 

towards late requirements (and possibly high-level design): rather than checking whether 

the environment is correctly modeled, we use our approach to analyze whether the system 

together with its environment achieves its goals. 
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3.6.2 The i*-ConGolog Approach 
 

An approach to requirements engineering that combines the use of the i* framework with 

ConGolog agent programming language [De Giacomo et al., 2000] for requirements 

analysis is proposed in [Wang, 2001]. ConGolog is a formal process specification and 

agent programming language and is also a major part of Cognitive Agents Specification 

Language (CASL) [Shapiro and Lespérance, 2001], where it is used to specify the 

behaviour of agents. In Wang’s approach, the i* framework is used to model the 

environment of the system-to-be, analyze the dependencies among the actors in the 

environment, explore alternative system configurations and the rationale behind agent 

processes and design choices, while ConGolog is used to formally specify and analyze 

agent behaviour described informally in i* [Wang and Lespérance, 2001]. Since fully 

developed ConGolog specifications are executable, ConGolog system specification can 

be validated by simulation. Unexpected system behaviour during execution will be 

indicative of problems with the model such as incomplete or conflicting requirements, 

etc. The goal of the approach is to devise a method for the analysis and validation of 

requirements models represented in i* with ConGolog. 

 

The main difficulty in relating i* models and ConGolog specifications is that the level of 

detail and precision provided by i* is simply not sufficient to derive a corresponding 

ConGolog specification from an i* model. ConGolog models suitable for automated 

analysis need to be complete and precise, while i* models, intended for informal analysis 

by requirements engineers are often incomplete and are quite imprecise. For example, 

goal and task decompositions used in i*’s Strategic Rationale diagrams (SR) (see Section 

2.1.4 for details) do not specify in which order the subgoals/subtasks must be 

achieved/executed and whether the subtasks or subgoals can be executed/achieved in 

parallel.  
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To bridge this gap, a set of annotations to the SR diagrams is introduced. These 

annotations allow the modeler to add the necessary precision to the diagrams. Two types 

of annotations are introduced: composition annotations and link annotations. 

Composition annotations are applied to goal/task decompositions in SR diagrams. They 

specify how the subgoals/subtasks are to achieved/executed — sequentially, in parallel, 

with different priorities, or non-deterministically. The link annotations, on the other hand, 

are applied to individual subgoals/subtasks. They specify under what circumstances or 

how many times they are to be achieved/executed. The resulting diagrams are called the 

Annotated SR (ASR) diagrams. These diagrams are detailed enough to be mapped into 

the corresponding ConGolog models. To support requirements traceability, a mapping 

between the ASR diagrams and ConGolog models must be defined by the modeler. Using 

this mapping, it is easy to identify which parts of the i* model are related to which parts 

of the ConGolog model and vice versa. In order to “ensure that the mapping respects the 

semantics of both frameworks” [Wang and Lespérance, 2001] a set of mapping rules is 

defined, which ensures that the i* and ConGolog models are closely aligned. 

 

The mapping rules state how each type of node and link of ASR diagrams is to be 

mapped into ConGolog. In a nutshell, actor nodes are mapped into ConGolog procedures 

specifying the behaviour of the actor, task nodes are mapped into procedures, and goal 

nodes are mapped into a pair consisting of a ConGolog fluent (a predicate that changes 

from situation to situation, see Section 2.2.1 for details) that represents the desired state 

of affairs for the actor and a procedure that encodes the means for achieving this goal. 

Leaf-level task nodes are mapped into procedures or primitive actions that represent the 

task. SR diagram links are also mapped into ConGolog. For example, a portion of an SR 

diagram with a task node decomposed into a number of subgoals/subtasks is going to be 

mapped into a ConGolog procedure. The composition and link annotation are reflected 

by the use of the corresponding ConGolog operators (see [Wang, 2001; Wang and 

Lespérance, 2001] for details) for composing the ConGolog procedures for the subtasks 

together. In this way the procedure for accomplishing the parent task captures the 
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meaning of the ASR diagram. Means-ends links are handled similarly — the achievement 

procedure for the goal being decomposed must involve the constructs specified by the 

composition and link annotations, which are used in the ASR goal decomposition. We 

apply the same approach to Intentional ASR diagrams for mapping task and goal 

decompositions in into CASL specifications in this thesis (see Sections 4.2.3 and 4.3.9 

respectively).  

 

Intentional dependencies present in ASR diagrams are not present per se in the ConGolog 

model. They have to be operationalized in ASR diagrams: the modeler must specify the 

tasks that the depender and the dependee must carry out in order to ensure that the 

dependency is fulfilled (e.g., requests, communication protocol, etc.). The framework 

provides no formalization for softgoals, which are used to model non-functional 

requirements in i*. Softgoals help in the evaluation and selection of the best process 

alternatives and then are either approximated by some hard goals, or are abstracted out of 

the model before the mapping takes place.  

 

Once the ASR diagram is mapped into the corresponding ConGolog model, the 

ConGolog code can be used to animate the model. Using the ConGolog interpreter, one 

can run this high-level model of the system on some sample environment/agent 

parameters and determine if the behaviour of the program corresponds to the expected 

behaviour of the system-to-be. If discrepancies are found, they can be analyzed and 

appropriate changes can be made to the ConGolog model and the original ASR diagram. 

Because of the tight mapping between ASR diagrams and ConGolog models, it is easy to 

find parts of the ASR diagram that are related to specific parts of the ConGolog program 

and vice versa.  

 

The approach proposed in this thesis is based on the same idea of mapping appropriately 

annotated SR diagrams into a formal language for analysis, validation, and verification. 

The key difference is that in our work, we use a more powerful formal language for the 



 56 

analysis of i* models. The Cognitive Agents Specification Language is built on top of 

ConGolog adding support for reasoning about agents’ mental states, goals and 

knowledge. While the i*-ConGolog approach handles goals purely procedurally, goals 

and knowledge in our framework are handled declaratively, thus allowing for formal 

reasoning about them. Therefore, formal analysis of agent goals, goal delegation, agent 

knowledge, and inter-agent communication is possible in our framework. 
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4 Modeling and Formalism 

 

In this chapter we will discuss the approach that we are taking to integrate the i* 

modeling notation with the CASL agent specification/programming language. First, we 

describe the Intentional Annotated Strategic Rationale diagrams (Section 4.1), an 

intermediate notation between i* and CASL. Then we discuss the mapping to CASL of 

the basic diagram elements such as tasks, task decompositions, annotations, agents, and 

roles (Section 4.2). We later introduce the new concepts of goal (Section 4.3), knowledge 

(Section 4.4), and capability (Section 4.5) along with their mapping into CASL.  

 

4.1 Intentional Annotated Strategic Rationale Diagrams 
 

i* is a modelling framework that provides a diagrammatic notation for representing the 

intentional aspects of the system through inter-actor dependencies. i* diagrams are a tool 

for modelling the intentional aspects of systems and organizations. It could be used for 

strategic analysis and the exploration of alternative system models and designs at the 

requirements engineering stage of the software engineering process. We can represent the 

motivations and intentions of the stakeholders, give a high-level view of the processes in 

the system, and represent inter-agent dependencies and (possibly alternative) ways to 

provide services to other agents. i* is an intuitive and easily understandable informal 

notation that can be very beneficial in early requirements engineering and systems 

modeling.  

 

i* is a diagrammatic analytical tool and as such allows for incompleteness and 

impreciseness. On the other hand, CASL is a precise language that, while allowing for 

non-determinism, concurrency and incomplete information, requires the designer to 

specify the agents’ behaviour with a much greater level of precision. To allow the two 
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approaches to be used together we need an intermediate notation that provide a smooth 

and semantically correct transition from i* diagrams to CASL specifications. While SD 

diagrams are more high-level and are mainly used as a tool for strategic analysis, SR 

diagrams are much more detailed models of the system. In this sense, SR diagrams are 

closer to CASL specifications. We therefore will use the SR diagrams as a basis for our 

intermediate notation. Annotations will be added to SR diagrams. Annotated SR diagrams 

were introduced in [Wang, 2001] for use in the combined i*-ConGolog approach and we 

believe the same idea can be successfully applied in our work. Annotations will provide a 

way for adding the CASL-needed details to the SR diagrams. In order to simplify the 

mapping process and make the semantics of the ASR diagrams clearer, we will introduce 

Intentional Annotated SR (iASR) diagrams, which are different from the ASR diagrams 

of [Wang, 2001] in that they streamline the use of goals in the ASR diagrams, add new 

link annotations to the set of annotations proposed in [Wang, 2001], and add the support 

for the new capability nodes. These modifications and extensions are described in Section 

4.3. Coupled with methods that provide a mapping from iASR diagram elements (e.g., 

task nodes) to CASL specifications, the iASR diagrams allow the designer to gradually 

move from high-level i* models to more precise and design-oriented CASL 

specifications. These specifications can then be formally analyzed. CASL programs can 

also be used in simulations.  

 

4.1.1 Annotations 
 

To add the CASL-required precision to the i* process specifications we will use SR 

diagram annotations, which are textual constraints on the Strategic Rationale diagrams. 

The annotations allow the modeler to add details to task and goal decompositions and to 

specify the applicability conditions for the alternative ways of achieving goals, 

performing tasks, etc. There are two types of annotations: composition annotations and 

link annotations. Composition annotations specify how subgoals/subtasks with the same 

parent goal/task are to be composed together to achieve the parent goal or task. Link 
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annotations are assigned to each subgoal/subtask and describe how this subgoal/subtask 

is to be performed and under which conditions. There are certain differences in the way 

goals and tasks are used in iASR diagrams. For example, we require that the link 

annotations accompanying goal nodes be interrupts or guards. We will go over the 

restrictions on the goal nodes and the reasons behind those restrictions later in this 

chapter.  

 
 

 

 

Figure 4.1. The composition and link annotations 

 

Figure 4.1 illustrates the use of composition and link annotations. The task Task_1 is 

decomposed into subtasks/subgoals n1 through nk (filled ellipses denote nodes that are 

either goals or tasks) with the link annotations γ1 through γk. The subgoals/subtasks are 

composed using the composition annotation σ.  

 

4.1.2 Composition Annotations  
 

There are four types of composition annotations: sequence (“;”), concurrency (“||”), 

prioritized concurrency (“>>”), and alternative (“|”).  

 

 
Figure 4.2. The sequence annotation 
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The sequence annotation (Figure 4.2) is the default composition annotation and can be 

omitted. Here, the task Task_1 is decomposed into subgoals/subtasks n1 through nk. The 

sequence annotations means that the subtasks will be performed in sequence from left to 

right, so in the case of  Figure 4.2 the subgoal/subtask n1 will be performed first, followed 

by n2 and so on. The sequence annotation corresponds to the sequence operator in CASL 

(“;”). 

 

||

Task_1

n1 n3n2 nk...
 

Figure 4.3. The concurrency annotation. 

 

The concurrency annotation “||” (Figure 4.3) specifies that the subtasks/subgoals that the 

task Task_1 is decomposed into are to be executed concurrently in order to perform 

Task_1. The concurrency annotation corresponds to the concurrency operator in CASL 

(“||”). 

 

The prioritized concurrency annotation “>>” means that the subgoals/subtasks are to be 

executed concurrently with priority decreasing from left to right. If we were to replace 

the concurrency annotation in Figure 4.3 with a prioritized concurrency annotation, then 

the subtasks/subgoals n1 through nk will be executed concurrently with n1 having the top 

priority, n2 having lower priority than n1, but higher than n3 and so on. Thus, n2 is able to 

execute only if n1 is blocked or finished executing, n3 can execute only if n2 is blocked or 

finished and so on. The subgoal/subtask nk has the lowest priority, so it will be executed 

only when the other subgoals/subtasks are blocked or done executing. The prioritized 

concurrency composition annotation corresponds to the prioritized concurrency operator 

in CASL (“>>”). 
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The alternative annotation “|” is used to specify alternative ways of accomplishing a task. 

Any of the subtasks/subgoals that the super-task is decomposed into can be selected to 

accomplish the super-task. The alternative composition annotation corresponds to the 

nondeterministic choice operator in CASL (“|”). 

 

4.1.3 Link Annotations 
 

Link annotations allow the modeler to present an even more detailed view of the process. 

A link annotation is applied to a single decomposition link and specifies under which 

conditions the subtask or subgoals is performed and whether and how it should be 

repeated. There are six types of link annotations: the while loop annotation 

(while(condition)), the for loop annotation (for(variable,valueList)), the pick 

annotation (π(variableList,condition)) , i.e., non-deterministically pick a value for 

the variables in variableList that satisfies condition and do the subtask/subgoal for 

these bindings, the if annotation (if(condition)), the interrupt annotation 

(whenever(variableList,condition,cancelCondition)), which adds a cancellation 

condition to the version used in [Wang, 2001], and guard annotation 

(guard(condition)) that blocks the execution of a subtask until a certain condition is 

true. Goal nodes can only be linked with the interrupt or guard annotations.  

 

 
Figure 4.4. The While loop link annotation. 

 

The while loop link annotation (Figure 4.4) is used to specify that the subtask of the link 

is meant to be executed repeatedly while condition is true in order to accomplish the 

super-task. The condition is tested before each iteration of the loop and the loop 
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terminates when the condition becomes false. This annotation corresponds to the while 

loop construct in CASL. 

 

Suppose that the while loop link annotation is replaced with the for loop link annotation 

in Figure 4.4. The for loop link annotation for(variable,valueList) is used to specify 

that Subtask_1 has to be performed for every value of valueList sequentially from left 

to right. The subtask could be parameterized over variable so that Subtask_1 is 

performed for every element of valueList (e.g., to inform every meeting participant of 

something) or the loop can be used only to execute the subtask a certain number of times. 

This annotation corresponds to the for loop in CASL.  

 

The pick link annotation π(variableList,condition) applied to the task 

decomposition link in Figure 4.4 specifies that the subtask Subtask_1 must be executed 

for some binding of variables from variableList that satisfies condition. This 

annotation corresponds to the π (the non-deterministic argument choice operator) in 

CASL. The if link annotation if(condition), if applied to the task decomposition link 

in Figure 4.4, indicates that Subtask_1 is to be executed only if condition is true. This 

link annotation corresponds to the conditional operator in CASL. 

 

 
Figure 4.5a. The guard annotation used with a task. Figure 4.5b. The guard annotation used with a goal. 

 

The guard annotation is similar to an interrupt, which fires just once. There is no guard 

operator in CASL as defined in [Shapiro and Lespérance, 2001], so we introduce one in 

Section 4.2.2. Figure 4.5 illustrates the use of the guard annotation with goals and tasks. 

When used with the task node Subtask_1 (Figure 4.5a) the guard link annotation makes 
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sure that the task is to be executed only when condition becomes true. The difference 

between the guard annotation used with a task node and the if annotation is that in case of 

the if annotation, if condition is false, Subtask_1 is skipped, while in case of the guard 

annotation, when condition is false, the execution is blocked until condition becomes 

true.  

 

The acquisition of goals in CASL is done declaratively (e.g., through the successor state 

axiom for goals and the request/commit actions). To monitor for newly acquired 

intentional dependency-based goals designers usually (but not always) employ interrupts 

(see Section 4.3.9.3). On the other hand, self-acquired goals are mostly used with guard 

annotations (see Section 4.3.8). For example, when used with the goal node Goal_1 

(Figure 4.5b), the guard annotation blocks the execution of the program until the goal is 

in the mental state of the agent. Thus, the interrupt and guard link annotations are used 

with both subtasks and subgoals (see Figures 4.5 and 4.6). 

 

 

Figure 4.6. The interrupt link annotation. 

 

The interrupt link annotation (Figure 4.6) specifies that the subtask/subgoal n is activated 

whenever condition becomes true for some binding of the variables on the list 

variableList provided the cancellation condition cancelCondition is false. The 

cancellation condition used here is a new feature of the interrupt annotations over [Wang, 

2001]. When the cancellation condition is true, the interrupt stops firing even though 

there might be a binding of variables in variableList that makes condition true.  
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To illustrate the expressivity of annotations, let us look here (Figures 4.7a and 4.7b) at a 

simple SR diagram fragment. The diagram is presented with and without the annotations. 

 

 
Figure 4.7a. An example diagram without annotations. 

 

The first version of the diagram (Figure 4.7a) is a regular SR diagram. It allows the 

modeling of agents’ internals, but does not provide the level of detail required to map the 

diagram into CASL. It is not clear from this diagram how the subtasks are related and 

under what conditions they are executed. 

 

 
Figure 4.7b. An example diagram with annotations. 

 

With the use of annotations we can present much more information in SR diagrams 

(Figure 4.7b). The diagram corrects the sequencing of subtasks (the default sequence 

annotation is used here): tire pressure is checked before the car is driven to work. We can 

now see that the CleanCar task has to be executed only if the car is covered with snow 

and that the pressure has to be checked for all the tires. Most important, however, is the 

fact that we now can clarify the relationship between the subtasks OperateCar and 
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ListedToRadio, which are composed to achieve the task DriveToWork: they are done 

concurrently and OperateCar has a higher priority than ListenToRadio. As well, the 

tasks CleanCar, CheckTirePressure, and DriveToWork are done in sequence, the 

default composition annotation. This detailed version of the diagram is much easier to 

map into CASL, but regardless of whether we are mapping iASR diagrams into CASL or 

not, the annotations provide us with a precision that is quite beneficial for the i*-based 

analysis. 

 

4.1.4 Obtaining Intentional Annotated SR Diagrams 
 

In order to get an iASR diagram that is easily mappable to the CASL formalisms, the 

designer needs to produce a much more precise SR diagram with (in addition to the 

presence of the required annotations) softgoals operationalized or removed, and inter-

agent interactions specified in details. Also, resource dependencies will be represented 

through goal or task dependencies. A resource dependency either is converted to a goal 

dependency with the goal being the supply of the required resource or to a task 

dependency, which executes the task that provides the resource. We will discuss the 

process of converting a Strategic Rationale diagram into an Intentional Annotated SR 

diagram thoroughly in this chapter as well as in Chapter 5.  

 

4.2 Mapping ASR Diagrams 
 

iASR diagrams are mapped into CASL models by specifying a mapping m for every 

diagram element. Mapping rules are defined for each class of iASR diagram elements. 

These are constraints on the mapping process that ensure it is consistent with the 

semantics of i* and CASL. We will now describe the mapping rules for link annotations, 

agents, roles, and tasks. Later in this chapter, we will introduce the new notions of goal, 

knowledge, and agent capability and provide mapping rules for them. 
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4.2.1 Mapping Task Nodes 
 

The tasks that are leaf nodes (without any subtasks) of the Intentional Annotated 

Strategic Rationale diagrams are generally mapped into CASL procedures or primitive 

actions. These tasks are routines that are simple enough to be represented atomically in 

iASR diagrams, without further decompositions or analysis.  

 

 

Figure 4.8. The task node SomeTask is a leaf node. 

 

Figure 4.8 shows a simple iASR diagram with a task SomeTask being a leaf node. The 

mapping m will map this task into either a primitive action or a CASL procedure. Figure 

4.9 displays the two possible CASL mappings for SomeTask.  

 

  

 

Figure 4.9. The two possible CASL mappings for someTask. 

 

4.2.2 Mapping Link Annotations 
 

Link annotations that accompany decomposition links, which connect super-tasks with 

subtasks, are mapped into the corresponding CASL operators. These operators are then 
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applied to the mapping of the subtasks since link annotations specify under what 

conditions and in what manner the subtasks are performed.  

 

 

Figure 4.10. The γ link annotation applied to the link connecting SuperTask with SomeTask. 

 

In Figure 4.10, we have a decomposition link with the link annotation γ connecting 

SuperTask with its subtask called SomeTask. As explained above, the CASL mapping for 

γ will be applied to the mapping of SomeTask. Here, m is a mapping function from iASR 

diagram elements into CASL formalisms. m(γ) is then the mapping from the link 

annotation γ into the corresponding CASL operator. It gives us the function to be applied 

to the mapping of SomeTask: 

 

m(γ)(m(SomeTask)) 

 

Conditions that appear in some link annotations (e.g., the if annotation) are mapped into 

CASL formulae.  

 

 

Figure 4.11. An example subtask with an if link annotation. 

 

For example, the mapping of the area inside the box on the diagram fragment above 

(Figure 4.11) will be: 
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m(if(φ))(m(SomeTask)) 

 

The if annotation contains condition φ that has to be mapped into a formula. We therefore 

expand the mapping for the annotation to get the following: 

 

if m(φ) then m(SomeTask) endIf 

 

By applying the mapping function m to the remaining elements, we would ultimately get a 

CASL expression.  

 

Suppose that the γ link annotation in Figure 4.10 is guard(φ). For the task node 

SomeTask and the associated link annotation guard(φ) we get the following mapping 

formula: 

 

m(guard(φ))(m(SomeTask)), 

 

which then, based on the definition of guard(φ,δ) (see below) transforms into 

    

guard m(φ) do 

m(SomeTask) 

endGuard 

 

We define the new guard operator guard(φ) do δ endGuard as follows: 

 

if φ then δ else False? endIf 

 

The above conditional operator executes the program δ when the condition φ holds. If the 

condition is false, the else branch of the operator is chosen, but it always blocks since 

False will never become true. Therefore guard φ do δ endGuard makes the program 
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block until the condition φ becomes true and then executes the program δ. This is similar 

to having an interrupt that fires just once. While the semantics of the guard operator can 

be expressed using interrupts with the cancellation conditions that make the interrupts fire 

only once, using the guard operator is more convenient for the analyst.  

 

Now suppose that the γ link annotation in Figure 4.10 is π(variableList,condition). 

Here, the agent must nondeterministically pick the list of arguments that satisfy 

condition and then execute the procedure for the task node SomeTask. The CASL code 

corresponding to this diagram will then be:  

 

π variableList. m(condition)(variableList)?; m(SomeTask) 

 

4.2.3 Mapping Task Decompositions and Composition Annotations 
 

Task decompositions are abundant in i* diagrams and are one of the main instruments in 

the modeling approach. The subgoals/subtasks that are linked to a super-task with the 

decomposition links are subcomponents of the super-task and have to be combined to 

perform this parent task.  

 
SuperTask

n1 n3n2 nk...
 

Figure 4.12. A super-task that is decomposed into k subtasks/subgoals. 

 

The code for the CASL procedure that the super-task is mapped into has to include the 

code for all the subgoals/subtasks appropriately combined to perform the super-task. i* is 

not strict in requiring that the decomposition of a super-task into subgoals/subtasks be 

complete — there may be other ways of performing the super-task (other subtask/subgoal 
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decompositions) that are not presented in the SR diagram. In addition, there may be some 

subtasks that are necessary, but that are not represented. Since CASL, on the other hand, 

if process-oriented language, it assumes that every way of achieving a goal or performing 

a task is specified in its models. In our approach we will make a completeness 

assumption — we assume that all the possible alternative ways of achieving goals and 

performing tasks that are of interest to the designer are represented in SR diagrams before 

they are converted into iASR diagrams.  

 

In Figure 4.12, we have SuperTask being decomposed into k subtasks/subgoals. Each 

decomposition link connecting SuperTask with subtask/subgoal ni is accompanied by a 

link annotation γi. The composition annotation σ is applied to the subtasks. Complex 

tasks, such as SuperTask of Figure 4.12 will be mapped into CASL procedures according 

to the following generic rule:  

 
(SuperTask)

n1 nk
...

SuperTaskProc

SuperTaskProc
(γ1)( (n1))

(σ)
(γ2)( (n2))

(σ)
(γ3)( (n3))

(σ)
(γk)( (nk))

SuperTask

 
Figure 4.13. The CASL mapping of a complex task decomposition. 

 

The complex task SuperTask is mapped into a CASL procedure called SuperTaskProc. 

To obtain the code for that procedure we recursively apply our mapping m to the 

subtasks/subgoals that SuperTask is decomposed into as well as to the composition and 

link annotations that are present in the decomposition. Intuitively, CASL operators 

matching the composition annotations are used to join the procedure calls (or primitive 

actions), which correspond to the subtasks/subgoals and are wrapped by the CASL 
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operators corresponding to the appropriate link annotations. If subtasks/subgoals are 

further decomposed into other subtasks/subgoals, we recursively repeat the mapping 

process for those subtasks/subgoals thereby moving down the decomposition tree. 

 

We now present a small example illustrating the mapping of complex tasks (Figure 4.14): 

 

 
Figure 4.14. An example of a complex task. 

 

The task in the example is DriveToWork. It is mapped into the following procedure: 

 

proc DriveToWorkProc 

if m(SnowCovered) then m(Clean) endIf; 

m(Start); 

m(Drive); 

<m(RedLight) → m(Stop) until SystemDone> 

...   
endProc 

 

Start, Drive and Stop will be mapped into CASL procedures, while SnowCovered and 

RedLight will be mapped into fluents or formulae. SystemDone is a special condition 

that becomes true once the system is terminated. The use of this condition in interrupts 

indicates that these interrupts will not stop firing while the system is running.  
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4.2.4 Mapping Agents, Roles, and Positions 
 

Agent, role and position nodes are used in the iASR diagrams to encapsulate the 

behaviour(s) associated with the corresponding actors. Agent nodes contain the behaviour 

specifications of concrete agents in the system and are mapped into a CASL agent name 

— this name has to be included in the set of agents (we assume that 

IsAgent(AgentName) holds) and a CASL procedure,  AgentBehaviour, that defines the 

behaviour of the agent: 

 

m(iASRAgent) = <AgentName,AgentBehaviour> 

 

The notation below will be used to access the name and the procedure for the agents: 

 
m(iASRAgent).name = AgentName 

m(iASRAgent).behaviour = AgentBehaviour 

 

Figure 4.15 illustrates the mapping: 

 

m(iASRAgent)

<AgentName, AgentBehaviour>,

where Agent(AgentName) holds
and AgentBehaviour is defined as

     proc AgentBehaviour
…

     endProc

iASR 
Agent

 
Figure 4.15. The mapping of agent nodes. 

 

A role specifies a certain behaviour that could be exhibited by many different agents in 

the system. We will map an iASR role node into a CASL procedure that models the 

behaviour associated with that role. In i*, a role can be played by various agents. Since 

roles describe the behaviour of many different agents, procedures corresponding to iASR 
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roles will most likely have the agent playing that role as a parameter. On the other hand, 

agent procedures will have the name of the agent built into them. 

 

 
Figure 4.16. The mapping of role nodes. 

 

A position node will be mapped into a CASL procedure that specifies the behaviour 

associated with the position.  

 

m(iASRPosition) = PositionBehaviour(AgentName) 

 

Since a position is “a set of socially recognized roles typically played by one agent” [Yu, 

1995], it will also feature the agent occupying the position as its parameter. The 

procedure for a position calls the CASL procedures for roles that are covered by the 

position. For example, in the code below, procedures for the roles, which are covered by 

position1 are combined using prioritized concurrency. 

 

proc Position1Proc(Agent) 

   Role1Proc(Agent) 

   >> 

   ...  

   >> 

   RoleNProc(Agent) 
ensProc 
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4.3 Goals 
 

4.3.1 Introducing Goal-Oriented Analysis 
 

Goal-oriented analysis starts with the identification of the goals — the objectives to be 

achieved — of the stakeholders or of the software system as a whole. Such goals provide 

rationale for the software system requirements. Various alternative decompositions of 

these goals are then discovered and analyzed and the possible assignments of 

responsibility for the subgoals to the agents of the system-to-be are explored.  

 

While goal-oriented analysis has been around for some time (e.g., KAOS [Dardenne et 

al., 1993]), goals were commonly used only in the earliest stages of the analysis. 

Frequently, functional goals were operationalized during the late phase of the 

requirements engineering process and softgoals were removed, operationalized, or 

metricized [Davis, 1993]. We, on the other hand, try to give the modeler the ability to 

operate with goals at later stages of the RE process. 

 

One of the most important advantages of CASL is that it supports reasoning about agents’ 

goals (as well as knowledge). Therefore, in our combined i*/CASL method we can push 

goals down to the simulation and verification stage and use goal-oriented analysis 

throughout the whole requirements engineering process. Moreover, leaving goals and 

goal dependencies in the late requirements, verification, and design stages instead of 

operationalizing them early provides improves the flexibility of the software development 

process. Leaving goals as part of the late requirements specifications, design, and 

possibly even implementation means that the new system will be designed with many 

alternative approaches for achieving those goals in mind. Some of the decisions on the 

choice of the strategy for achieving these goals can be made at the RE stage, while other 

decisions will be made during the design phase and the rest will be postponed until 

runtime. Removing goals early on leads to fragile software systems [Mylopoulos, 1999] 
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with possibly incorrect decisions being hard-coded into the system. Once a goal has been 

operationalized, the system (at runtime) or the designer (at design time) will cease to 

recognize the existence of alternative ways of achieving this particular goal (Figure 5.13 

illustrates this). 

 

4.3.2 The Use of Goal Decompositions 
 

As previously mentioned, goal decomposition is one of the main aspects of goal-oriented 

analysis. The i* approach provides us with means-ends links, which are most commonly 

used together with goal nodes in the i*’s SR diagrams, linking task nodes that are means 

to achieve some goal with that goal node (see Figure 4.17). This way we can represent 

various design choices or refinements in the system. The sub-tree rooted at Means1 

represents one possibility for achieving Goal_1, one design choice, while the sub-tree 

rooted at Means2 represents another design choice. Which alternative will be selected 

depends on many factors. Some of these factors (e.g., the positive or negative 

contribution of these alternatives to various softgoals) could be taken into consideration 

at design time while others may be left until runtime. We no longer need to preselect the 

alternative before moving from i* diagrams to CASL models. We can model all the 

alternatives in CASL and capture the semantics of this choice point: the agent will have 

the goal in its mental state with various procedures for achieving this goal available. 

Instead of having to make the choice of approach to achieve a goal at the requirements 

analysis stage, we can now leave the choice to design time or even runtime, if needed. 

Another advantage of this approach is that it allows us to better document the design 

decisions that led to the selection of one alternative over the others even if this selection 

is not made until the verification or design stages. If the goal is abstracted out before 

runtime, the model that shows appropriate means for achieving this goal and the 

applicability conditions for those means will help establish the traceability link between 

the design and the requirements. 
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Figure 4.17. Means-ends links connect goals with means to achieve them. 

 

To make our modeling framework more intuitive, and to streamline the way goals are 

used in Annotated SR diagrams, we introduced Intentional Annotated Strategic Rationale 

(iASR) diagrams. Let us discuss the features of iASR diagrams. 

 

In i*, a means-ends link indicates a relationship between an end — which can be a goal to 

be achieved, a task to be accomplished, a resource to be produced, or a softgoal to be 

satisficed — and a means of attaining it [Yu, 1995]. Several means to an end model 

alternative ways to accomplish that end. The ends are usually the goal nodes, since they 

are used to represent the desired state of affairs in the world for actors and do not specify 

how the goals are to be achieved, thus allowing for alternatives to be explored. The 

means are usually expressed in a form of task nodes, since the notion of task embodies 

how to do something. 

 

We would like to capture the above intuitive use of goal nodes in iASR diagrams. This 

will streamline both the use of these nodes in the iASR models and the mapping of the 

goal nodes and goal decompositions into the corresponding CASL code. The iASR 

diagrams will therefore have the following feature: the means-ends links only connect 

goal nodes as ends and task/capability nodes as means to achieve these goals (see Section 

4.5 for the discussion of capabilities). The alternative composition annotation is applied 

to the various means, which are specified in the means-ends decompositions. 

 

This restriction provides a clear guidance for the use of goal decompositions in the 

models and their mapping to CASL. It stresses the fact that goals are a tool to be used in 

SR diagrams to allow for the exploration of alternatives in system models. While it is 
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| 
SuperTask 

AltTask_1 AltTask_2 

quite common for some of the alternative means of achieving goals to be goals 

themselves (e.g., one of the ways to achieve the goal “become rich” is to achieve the goal 

“win a lottery”), these means will still have to be tasks nodes in iASR diagrams. The 

reason for this constrains will be thoroughly examined later in the chapter. It is related to 

the way the agents acquire goals in CASL and the fact that agents need to use procedural 

means to monitor for their goals.  

 

The constraint, while restricting the use of means-ends links to goal decomposition only, 

does not preclude the designer from using other i* facilities to represent, for example, 

alternative ways of performing tasks. This can be easily expressed without the use of 

means-ends links through the use of task decompositions accompanied by the alternative 

composition link annotation (see Figures 4.18a and 4.18b). 

 

 
Figure 4.18a. Means-ends links are used to 
represent alternative ways to execute SuperTask. 

Figure 4.18b. The alternative composition 
annotation is used to represent alternative ways to 
execute SuperTask. 

 

iASR diagrams can easily support various goal decomposition techniques. Figure 4.19a is 

an example of an AND goal decomposition in the notation of [Mylopoulos et al., 2001a]. 

AND-decompositions are marked with an arch in this notation.  

 

Since Goal_2 and Goal_3 both must be achieved for Goal_1 to be achieved, this is in fact 

a single possibility for achieving Goal_1. The diagram in Figure 4.19b satisfies the 

constraint described above in that the goal node Goal_1 has the task node Means_1 as the 

means of achieving it. The task is further decomposed into several subgoals that must be 

achieved concurrently. The concurrency annotation is used to represent the AND-

SuperTask 

AltTask_1 AltTask_2 
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decomposition since it is the most unrestrictive way of executing any two programs — it 

does not specify any ordering of the primitive actions that comprise the two programs. 

Note that Figure 4.19b omits some details of the decomposition of the task Means_1 

related to another constraint (discussed later) on the use of goal nodes in the iASR 

diagrams as well as the fact that Goal_2 and Goal_3 both have to be acquired by the 

agent by executing a special commit action. The details will be described in the 

subsequent sections.  

 

 
Figure 4.19a. AND-Decomposition of Goals. Figure 4.19b. Task decomposition with the 

concurrent composition annotation is used to model 
AND-decomposition of goals. 

 

It is important to note that the restriction that the means to achieve goals can only be task 

nodes is present because of the way goals are handled in CASL. It is not a conceptual 

restriction, unlike the one that requires that the means to achieve goals be alternatives. 

 
4.3.3 Applicability Conditions 
 

If alternative means of achieving a certain goal exist, the designer is able to specify under 

which circumstances it makes sense to attempt to execute each alternative. We call these 

applicability conditions and introduce a new annotation ac(Condition) to be used with 

means-ends links to specify these conditions. The presence of the applicability condition 

(AC) annotation specifies that only when the condition is true the agent may select the 

associated alternative in attempt to achieve the parent goal. The absence of the condition 

says that the alternative can always be selected. The applicability condition may, for 
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example, specify the conditions under which the corresponding alternative is effective, 

efficient, etc. 

 

 
Figure 4.20. The applicability condition annotation. 

 

Figure 4.20 shows that the goal MeetingSetup has two means of achieving it: 

SetupMeetingManually and UseMeetingSchedulter. We assume that in the first case 

the organizer of a meeting will manually contact the participants in attempt to setup a 

meeting, while in the second case the organizer will use a specialized agent to achieve the 

goal. The figure shows that the first alternative has an applicability constraint, which says 

that the task SetupMeetingManually can be selected as a means for achieving the goal 

MeetingSetup only when the number of the intended participants is less that four. The 

idea here is that while it makes sense to attempt to organize a meeting of up to 3 people 

manually (e.g., by calling or emailing them), it is much better to let an automated 

Meeting Scheduler agent schedule the meeting with the larger number of participants. 

The absence of an applicability condition for the task UseMeetingScheduler means that 

the Meeting Scheduler agent can be used under any circumstances. 

 

4.3.4 Using Link Annotations in Goal Decompositions 
 

In addition to applicability constraints, means-ends links can be supplemented with the 

regular link annotations: while loops (while(condition)), for loops (for(variable, 

valueList)) and pick annotations (π(variableList,condition)). The if, interrupt, 

and guard annotations are not allowed since they specify under which condition the 

associated task is to be performed, something that is already covered by the applicability 
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constraints. The link annotations used together with means-ends links provide the details 

on how the means are to be used in achieving the parent goal. 

 

 
Figure 4.21. The use of link annotations with means-ends links. 

 

Figure 4.21 illustrates the use of link annotations with means-ends links. In the above 

example, we have the goal NotifyParticipants from the Meeting Scheduler domain. 

Suppose there are two ways to notify the meeting participants of the time of the meeting: 

by phoning them and by emailing them. The for link annotation specifies that the tasks 

EmailParticipant and PhoneParticipant are to be executed for every member of the 

set Participants. Note that we use the applicability condition for the first alternative — 

we assume that if the number of participants is greater than three, it will not be effective 

to phone each of them, so the first alternative will not be executed. 

 

4.3.5 Explicit Goals in CASL 
 

While other methods (e.g., Formal Tropos [Fuxman, et al., 2001] and the formal notation 

of KAOS [Dardenne, et al., 1993]) represent goals as assertions, we are able to support 

explicit goals (e.g., Goal(MI,Eventually(MeetingScheduled(mid,now),now,then), 

s)). Such explicit goals represent the desirable states of the world for agents and are part 

of their mental state. These goals allow us, among other things, to model goal acquisition 

and propagation through speech act-based [Searle, 1969] interaction so that in addition to 

having some initial goals an agent can communicate and acquire new goals from other 

agents that are being served or helped by it and delegate some of its goals to agents that 

are helpful and capable of achieving these goals. Agent interactions is one of the most 
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important components of multiagent systems and the ability to represent interaction 

protocols accurately using knowledge and goals is crucial for agent-oriented software 

engineering approaches. Explicit goals allow us to build more “intentionality” into CASL 

models, thus preserving the i* idea of strategic, intentional actors. They also allow us to 

model the conflicts of interests of the system’s stakeholders and help in their resolution. 

One could say that this layer of explicit goals and goal delegation is an added complexity 

over the simple method/procedure invocation approach used in [Wang, 2001], but it is 

this layer that allows us to model systems more naturally and flexibly and to match i* in 

representing the strategic and intentional aspects of systems.  

 

The support for explicit goals by CASL also helps us in supporting AND/OR goal 

analysis [Mylopoulos et al., 2001a] or other types of goal decompositions or goal 

refinements, which are quite common at the early stages of the requirements engineering 

process with i* framework, even at runtime. We expect that most of such goal analysis 

tasks will be carried out before the i* diagrams are mapped into CASL so that the CASL 

models do not contain all of the intermediate goal nodes and all the possible alternatives. 

Nevertheless, CASL models can include whole chains of goal refinements and goal 

decomposition if necessary, thus allowing agents to reason about these refinements at 

runtime. The support for explicit goals also allows us to represent conflicting goals of 

agents/stakeholders. 

 

4.3.6 Declarative vs. Procedural Specification in CASL 
 

In CASL, agent behaviour (what actions the agent does) is specified procedurally, while 

goal and knowledge changes (changes to the agent’s mental state) are handled 

declaratively. This means that while behaviour specification in CASL is fairly similar to 

mainstream programming languages (the programmer has the usual high-level constructs 

like loops, procedure calls, etc.), changes to the mental state of the agent can be the 

effects of perception or commitment actions performed by the agent himself or of 



 82 

communication actions performed by other agents. In CASL, one cannot explicitly ask 

the agent to change its mental state; it must be done by executing the actions, which have 

the desired effect on the mental state of the agent. The effects of these actions are 

specified through the appropriate successor state axioms. In CASL, as it is described in 

[Shapiro and Lespérance, 2001], only the communication actions such as inform (for 

knowledge acquisition) and request (for goal acquisition) have effects on the mental 

state of the agents. We, on the other hand, would like to get the flexibility of having 

agents change their mental state on their own. This will support self-acquired goals, 

which we talk about later in the chapter. We, therefore, need a new action to support the 

acquisition of goals without communications from other agents. We call this action 

commit. This primitive action is thoroughly discussed later in the chapter (Section 4.3.8). 

In addition, self-acquisition of knowledge is possible with the new action assume 

(Section 4.4.5). See Section 4.6 for the overview of how procedural and declarative 

components of CASL agents can be synchronized. 

 

 
Figure 4.22. An example illustrating the use of the commit action in iASR diagrams. 

 

Since goal change in CASL is handled declaratively, but behaviour is specified 

procedurally, the agents need to monitor for newly acquired goals and to respond 

accordingly. The agent must recognize that some goal is in its mental state. This is true 

for the agent agt and some goal φ when the formula Goal(agt,φ,s) holds. The natural 

CASL constructs for this monitoring are the interrupt and the guard. An interrupt fires as 

soon as some condition (an instance of some goal in this case) is true, executes its body 

(presumably, the procedure that attempts to achieve the goal), and then goes back into the 



 83 

waiting state. A guard, on the other hand, blocks the execution until the condition (an 

instance of the goal in the mental state of the agent) is true and then executes some 

procedure. Figure 4.22 shows how the commit action and the guard annotation are used 

with self-acquired goals.   

 

Therefore, in iASR diagrams the decomposition link connecting a goal node with its 

parent task node must be accompanied by an interrupt link annotation with the 

appropriate trigger and cancellation conditions or a guard link annotation with the 

appropriate condition. Since interrupts and guards can only be used in CASL procedures, 

in iASR diagrams the parent of a goal node must be a task node.  

 

Figure 4.23 illustrates how goal nodes are used with interrupt or guard link annotations in 

iASR diagrams. We will talk more about the trigger and cancellation conditions for 

interrupts associated with goal acquisition in Section 4.3.9.3. 

 

 
 

Figure 4.23. The use of the interrupt and the guard link 
 annotations with goal nodes in iASR diagrams. 

 

In Figure 4.23, the parent task is responsible for monitoring for the newly acquired 

instances of Goal_1. The parent task node, ParentTask, will be mapped into the 

appropriate CASL procedure that will contain the interrupt or the guard that is designed 

to monitor for Goal_1.  

 

In summary, the presence of goal nodes in iASR diagrams indicates that the actor 

recognizes that it has the corresponding CASL goals in its mental state. In order for those 
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goals to be achieved the modeler has to provide the necessary means of achieving them 

(task nodes), which will be placed below the goal nodes and connected to them by 

means-ends links. The parent nodes of the goal nodes will be tasks that are responsible 

for monitoring for the goals. 

 

4.3.7 Acquiring Goals: Dependency-Based Goals 
 

In our approach, agents acquire goals in two different ways: through requests coming 

from other agents in the system and by themselves using the commit action. The requests 

correspond to the inter-agent dependencies in which the agent receiving the request is the 

dependee, while the goals acquired by the agent on its own are self-acquired goals. We 

discuss goals coming from inter-agent dependencies here and then cover self-acquired 

goals in the next section. 

 

In CASL, an agent can acquire a goal after receiving a request from some other agent. 

This is very important since it allows for agents acting together as a team to achieve 

certain goals together. It also allows agents to delegate some tasks or goals to other 

agents that are capable of performing/achieving them or can perform or achieve them 

better than the delegating agents. The ability to model this delegation of goals in CASL is 

also important for the support of i* style of systems modeling in which the notion of 

dependency is of utmost importance. Goal acquisition through requests coming from 

other agents is a natural way to model inter-agent dependencies. In fact, in our approach 

goal dependencies and task dependencies are modeled through requests to achieve a goal 

or perform a task respectively. Resource dependencies are represented through either goal 

or task dependencies. The agent in need of a resource can ask the provider of that 

resource to use a specific means to supply it. In this case, we map the resource 

dependency into a task dependency. Alternatively, the depender may give the provider of 

the resource complete freedom in choosing the best way to supply it. This naturally maps 

into a goal dependency. Note this is more specific and operational than the dependencies 
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in i* (which do not specify how goals are delegated). It may be a bit restrictive in some 

contexts, where delegation is done without communications (e.g., a mother monitoring 

her child), but it seems quite appropriate for agent-based systems. 

 

As previously discussed, we use interrupts (and guards) in CASL models to check for 

newly acquired goals. These interrupts are placed inside the procedures responsible for 

monitoring for the new goals. As can be seen in Figure 4.24, the node inside the 

dependee actor at which an intentional dependency terminates is the node responsible for 

fulfilling the dependency. It represents the goal the dependency must achieve or the task 

it must execute. In iASR diagrams, dependencies originate from task nodes. The details 

of the trigger conditions and cancellation conditions for the interrupts will be presented 

later in this chapter. 

 

Depender 
Task

Monitoring 
Task

Depender

Dependee

Goal_1

Goal_1

whenever(tCond, cCond)

 
Figure 4.24. An example of inter-agent goal dependency. 

 

To be successfully mapped into CASL models for simulation and verification, SR 

diagrams have to be sufficiently detailed. We try to preserve as much of the strategic and 

intentional aspects of SR diagrams as possible while mapping them into the 

corresponding CASL models. The CASL language is much more process-oriented than i* 

and requires that we add the missing details to the iASR diagrams. The particulars of 

inter-agent dependencies are one of the areas that need to be modeled at a more detailed 

level. While at an early stage the inter-agent dependencies may look like (or be even less 

detailed than) the goal dependency depicted in Figure 4.24, before mapping the iASR 

diagram into CASL they need to be refined as in Figure 4.25. 
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Figure 4.25. The iASR-level details of an inter-agent goal dependency. 

 

As you can see in Figure 4.25 above, the idea is for every inter-agent dependency (of any 

type) to add a task that makes a request to another agent to supply the dependum. In 

Figure 4.25, this task is called RequestAchieveGoal_1. It is the origin of the inter-agent 

goal dependency in the iASR diagram. Usually agents continue executing their tasks after 

the dependee has performed the required task, achieved the goal, or provided the 

resource. If the depender made a synchronous request to the dependee, it will need to 

wait until the dependum is provided before continuing with other activities. This situation 

is illustrated by Figure 4.25. We added an additional task, Task_2, inside the Depender 

agent. This task is the one executed after the dependum (here, it is the goal Goal_1) is 

provided. One way to base that task’s execution upon the supply of the dependum by the 

dependee is to add the guard link annotation, which blocks until the dependum is 

supplied. Alternatively, the Depender may continue with its activities without waiting for 

the achievement of Goal_1 (asynchronous request). In this case, it may be concurrently 

monitoring for Goal_1. If the dependum is not observable by the depender, the depender 

may require the dependee to notify it after providing the dependum. The details of this 

refinement of goal delegation will depend on the application context. 

 

In general, the origin of an inter-agent dependency in an iASR diagram is the depender’s 

task that sends the request to provide the dependum to the dependee.  The end of an inter-
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agent dependency is the node in the iASR diagram for the dependee that represents the 

goal the dependee must achieve or the task it must execute to provide the dependum.  

 

Agents use the request communicative action to request services of other agents. In the 

request below, the Depender requests the Dependee to achieve φ, which can be either a 

goal in the CASL sense (a constraint on the future states of the world for the Depender) 

or a goal to perform some task.  

 

request(Depender,Dependee,φ) 

 

For a goal dependency, a request for some agent to achieve φ is usually represented as 

follows:  

 

request(Depender,Dependee,Eventually(φ)) 

 
Note the use of Eventually — it gives the requested agent flexibility in terms of when 

the goal can be achieved. Eventually(φ) states that the goal φ has to be achieved by the 

depender at some time in the future. Eventually is not the only temporal predicate that 

can be used with request action. With the use of other temporal operators we can 

express, for example, goals that have to be maintained at all times (Always(φ)). 

However, in this thesis, we concentrate on achievement goals in the form of 

Eventually(φ). 

 

4.3.7.1 Task Dependency-Based Goals 

 

While goal dependencies allow the dependee to select appropriate ways of achieving 

goals for the depender, quite frequently the depender wants to specify what exactly the 

dependee has to do in order to provide the dependum of the dependency. In this case, a 

task dependency is established. In our approach, in a task dependency the depender 
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requests the dependee to execute a known procedure. A request by one agent to another 

to perform a procedure SomeProc, which must be a properly defined procedure of the 

Dependee, is represented as follows: 

 
request(Depender,Dependee,DoAL(SomeProc,now,then)) 

 
Here, DoAL(δ,s,s′) (Do At Least) is an abbreviation for Do(δ||(πa.a)*,s,s′). This 

means that the program δ must be executed, but other concurrent activities may be 

executed as well. The dependee will have the flexibility to do other things while 

executing the requested procedure. After finishing the execution of SomeProc, the 

dependee will most likely notify the depender of this fact if the completion of the task is 

not observable by the depender.  

 

Below we present an example of a task dependency (see Figure 4.26). Here, the Meeting 

Scheduler (MS) agent requests the intended meeting participant to send his/her available 

dates to it so that the MS can come up with possible mutually agreeable (for all the 

participants) dates for the meeting. GetAvailDates task of the Meeting Scheduler sends 

a request to the Participant to execute the Participant’s task SendAvailDates: 

 

request(MeetingScheduler,Participant,DoAL(SendAvailDates,now,then)) 

 

Figure 4.26. The detailed version of the iASR diagram for the SendAvailDates task dependency. 
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The FindAgreeableDate task of the Participant monitors for the acquisition of the goal 

DoAL(SendAvailDates,now,then). This is not a goal to achieve some state in the 

system. Here, the depender asks the dependee to execute one of the dependee’s 

procedures. Therefore, the number of alternative ways of achieving this goal is limited to 

exactly one — to execute the requested procedure.  

 

In general, a means-ends decomposition of a goal to perform a task is limited to having 

just one means — that means being the execution of the task. By acquiring a goal to 

perform a task (see the note on the Serves relationship and how it can affect the 

acquisition of goals later in this section), the agent acquires the responsibility to perform 

the task. The task therefore must be performed unconditionally. This means that 

applicability conditions and link annotations are not allowed to be used with task nodes 

that are means to achieve such goals. For example, in Figure 4.26 the task 

SendAvailDates is the only means to achieve the goal 

DoAL(SendAvailDates,now,then)and is unaccompanied by any annotation. 

 

Figure 4.27. A simpler version of the iASR diagram for the SendAvailDates task dependency. 

 

Figure 4.26 is a hypothetical diagram that presents the full details of the task dependency 

SendAvailDates including the acquisition of the goal by the Participant and the means-

ends decomposition of the goal. Since the only means to achieve a goal that requests the 

dependee to perform a task is to execute this task, modeling means-ends decompositions 

in such cases is unnecessary. The designer can replace the diagram of Figure 4.26 with a 
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simpler diagram, where the means-ends decomposition is removed. Since there is no 

means-ends decomposition anymore, we can even remove the goal node from the 

diagram as in Figure 4.27. In this simplified version of the diagram, the task 

SendAvailDates (the means to achieve the goal) becomes a subtask of the task 

FindAgreeableDate (the task responsible for monitoring for the goal) and is executed 

whenever the goal is acquired since it is now accompanied by the interrupt annotation, 

which was previously associated with the removed goal node. The resultant diagram is 

much simpler and much more straightforward to map into the corresponding CASL code. 

However, there may be cases where the dependee dos not want to execute the requested 

procedure unconditionally. In this case, the model of Figure 4.26 may be extended to 

include other conditions. 

 

4.3.7.2 Resource Dependency-Based Goals 

 

In i*, a resource dependency is a separate type of dependency, different from goal and 

task dependencies. While modeling systems at high level of abstraction, we talk about 

one actor depending on another for some resource to be provided. At the iASR level, 

however, we can model resource dependencies more precisely. When one agent is in 

need of a certain resource that is provided by another agent, it can either ask that agent to 

furnish the resource without specifying the exact means of doing it, or it can instruct the 

provider of the resource on how exactly it is supposed to provide the resource. Therefore, 

resource dependencies are modeled through requests to either achieve a goal of making 

the resource (the dependum of the resource dependency) available to the requesting 

agent, or performing some task that provides the resource. A special case of resource 

dependency — information resource dependency — will be discussed in Section 4.4.3. 

 

Below we have an example of an SR resource dependency that becomes a goal 

dependency at the iASR level. In this case, the resource is money. The SR diagram 

fragment shows the resource dependency where the actor representing a telecom 
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company (Telecom) depends on its customer (Customer) for the payment of his bills. In 

this scenario, the Customer actor will have a reciprocal dependency on the Telecom actor 

to provide various communication services. This dependency is not shown in the 

example. 

 

 
Figure 4.28. The SR diagram with the Payment resource dependency. 

 

Figure 4.28 shows the SR diagram that represents the Telecom-Customer payment 

dependency. At the SR level, we show Payment as being a resource dependency 

originating at GetPayment task of Telecom. On the Customer end, the task PayBills is 

responsible for supplying the resource. When we go to the Intentional Annotated SR level 

however, we need more precision in modeling the dependency (see Figure 4.29). 

 

 
Figure 4.29. The iASR-level details of the Payment dependency. 

 

Figure 4.29 presents the detailed version of the Payment dependency and is a typical 

example of the iASR-level refinement of inter-agent dependencies. First, we specify the 

Telecom task that is responsible for requesting the Customer to pay for the Telecom 

services. This task is called SendBill and as its subtask we have the appropriate request 
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action, which is the origin of the dependency. We assume that the value of the predicate 

fluent BillPaid becomes true once the Customer pays its telecom bill. The task 

CreditAccount is executed by the Telecom once it becomes aware of the payment. Here, 

we assume that there are many alternative ways to pay the Telecom bill and the Telecom 

actor prefers to leave it up to the Customer to select the way to pay the bill. Therefore, the 

resource dependency Payment is converted to a goal dependency TelecomBillPaid. 

When this dependency is mapped into CASL code, the request will look like this (we 

omit the parameters of the goal here): 

 

request(Telecom,Customer,Eventually(TelecomBillPaid)) 

 

On the Customer side, the above request causes the agent to acquire the goal 

TelecomBillPaid. As previously discussed, the Customer agent needs to have an 

interrupt that monitors for newly acquired goals of this type. The task PayBills contains 

the corresponding interrupt. Upon acquiring the goal TelecomBillPaid, the Customer 

agent will select one of the means (not shown in the figure) for achieving it. 

 

4.3.7.3 The Serves Relationship 

 

In the discussion so far, we have assumed that agents acquire goals (either to achieve 

some conditions or to perform some tasks) whenever they are asked to do so by other 

agents. In real-life scenarios, however, agents may not always be helpful and 

collaborative, or at least not to every agent in the system. There may be many reasons for 

that. Certain services offered by the agents could be too costly and the designer may want 

only to allow the use of such services by a restricted number of agents; due to security 

concerns, some capabilities may only be offered to some trusted agents. It is very easy to 

address the above concerns with the use of the Serves relationship. 

Serves(Dependee,Depender,φ) specifies that the Dependee is going to be helpful to the 

Depender in providing φ. Another possibility is to use a more general version of the 
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Serves relationship, Serves(Dependee,Depender), which specifies that the Dependee is 

willing to help the Depender in everything. One possible use of this version of Serves is 

the specification of the managerial structure of the company. We will return to this issue 

in Chapter 5. 

 

In order to make use of the Serves relationship we need to make changes to the way 

agents acquire goals. This means that we have to modify the successor state axiom for the 

W relation, the accessibility relation on situations that specifies which situations are 

compatible with what the agent wants.  Below is the modified version of the successor 

state axiom for W that takes the Serves relationship into consideration. It specifies that in 

order for agt to adopt the goal φ requested by depender, agt needs to be helpful to 

depender in achieving φ, i.e., Serves(agt,depender,φ)has to hold. 

 

   W(agt,then,do(a,s)) ≡ [W(agt,then,s) ∧  

∀depender,φ,now (a = request(depender,agt,φ) ∧ K(agt,now,s) ∧ 

now ≤ then ∧ Serves(agt,depender,φ) ∧ ¬Goal(agt,¬φ,s) ⊃  

φ[do(a,now),then])] 

 

The above axiom states that a situation then is accessible from do(a,s) iff it is W-

accessible from s and if the action a is a request action requesting that φ hold, and now 

is the current situation along the path defined by then, and the agent agt is helpful to 

depender, and the agent does not have the goal that ¬φ in s, then φ  holds at 

[do(a,now),then)]. 

 

4.3.7.4 Reasoning about Inter-Agent Communication 

 

Since the semantics of request and other communication acts available to agents is 

formally defined in CASL, the framework allows us to reason about the effects they have 

on agents’ mental states without knowing the detailed content of those messages. For 
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example, if we know that when some agent requests the agent agt to achieve the goal 

Eventually(φ) and later some other agent requests agt to achieve Eventually(¬φ), 

we can conclude that agt may acquire both goals since they are not necessarily 

conflicting. On the other hand, if the goals are Always(φ) and Always(¬φ), then the 

agent will not acquire the goal Always(¬φ) since the successor state axiom for W 

prevents agents from acquiring conflicting goals. 

 

4.3.8 Acquiring Goals: Self-Acquired Goals 
 

Sometimes an agent needs to acquire a goal without other agents requesting it. Most 

commonly, these goals are used in goal decompositions or to analyze several possible 

scenarios or design alternatives. By making the agent acquire a goal by itself the modeler 

makes sure that the agent’s mental state reflects the fact that multiple alternatives exist in 

that particular place in the model of the agent’s behaviour. Moreover, unlike task 

decompositions with alternative composition annotations, the presence of a goal node 

suggests that the designer envisions new possibilities of achieving the goal. This way the 

agents would be able to reason about various alternatives available to them or come up 

with new ways to achieve the goals. Self-acquired goals are the tool that can be used by 

the modelers to identify and analyze problems with multiple solutions and document the 

possible alternatives. These goals also add flexibility to the system models in that 

alternative approaches for solving the goals can be kept in the model and the designers 

will not have to operationalize the goals early.  

 

The agent is able to self-acquire goals by performing a special action called commit. By 

executing commit(Agent,φ), where Agent is the name of the agent and φ is the formula 

that the agent wants to hold, the agent adds the goal of achieving φ to its mental state. By 

executing the commit(Agent,φ) action the agent essentially makes a request to itself to 

achieve the goal φ.  
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Unlike the request action, which is only possible when the requestor agent has the 

corresponding goal in its mental state, the commit action does not have any 

preconditions. The agents can therefore try to acquire any goal that is consistent with its 

existing goals. The successor state axiom for the W accessibility relation is modified to 

take into consideration the new commit action. As is the case with the goals that are 

acquired through requests coming from other agents, the axiom will guard against 

adopting self-acquired goals that are inconsistent with the previously acquired goals: 

 

W(agt,then,do(a,s)) ≡ [W(agt,then,s) ∧  

      ∀depender,φ,now((a = request(depender,agt,φ) ∧  
Serves(agt,depender,φ) ∨ a = commit(agt,φ)) ∧  

K(agt,now,s) ∧ now ≤ then ∧  

¬Goal(agt,¬φ,s) ⊃ φ[do(a,now),then])] 

 

Similarly to goals coming from the inter-agent dependencies, upon the execution of the 

commit action the agent needs to recognize that the goal is in its mental state. Guard 

annotations are used with self-acquired goals in iASR diagrams: the commit action 

changes the mental state of the agent and a guard allows the behaviour of the agent to be 

modified to reflect the change in the agent’s mental state. We do not need to use 

interrupts (which fire multiple times) to monitor for self-acquired goals since agents 

acquire up to one goal per every execution of the commit action (goals may not be 

acquired if they conflict with existing agent goals, so the agent may acquire no goals for 

some executions of the commit action). So, we use the guard annotation instead of an 

interrupt since the agent needs to achieve the goal once per each commit action. 

 

The general iASR diagram pattern for handling self-acquired goals is shown in Figure 

4.30. The commit action is presented in its own task node so that it is easily visible on the 

diagram. The commit action is then followed by a goal node with the corresponding 

guard link annotation. The guard condition becomes true when the goal is acquired by 
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the agent. This happens immediately after commit is performed. The children of a goal 

node are the means to achieve this goal. 

 

 
Figure 4.30. The iASR diagram pattern for handling self-acquired goals. 

 

Let us look at the example that demonstrates the use of self-acquired goals (Figure 4.31). 

Suppose that after finishing the scheduling process, the Meeting Scheduler agent needs to 

inform participants about the time and location of the meeting. Since there are many 

possibilities of contacting participants, any many more may become available later, it is 

wise to include the goal ParticipantInformed into the iASR model for the scheduler 

instead of simply selecting a means for informing participants and modeling it as a task in 

the iASR diagram. The goal ParticipantInformed adds flexibility to the process 

specification, allows for documenting all the alternative ways of achieving the goal along 

with their applicability conditions (not shown in Figure 4.31), and enables the agent to 

select the best way to achieve this goal at runtime based on the most current context. 

 

 
Figure 4.31. Using self-acquired goals. 
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One of the main uses of designer goals is to model various types of goal refinement 

including AND-decompositions and OR-decompositions of goals. For example, now we 

can show the full details of the decomposition of the Figure 4.19b. In the case of goal 

decompositions, self-acquired goals enable the agent to go through its designer’s 

reasoning at runtime. 

 

 
Figure 4.32. The fully detailed iASR diagram for the AND-decomposition of goals. 

 

In Figure 4.32, Goal_1 is AND-decomposed into Goal_2 and Goal_3. Goal_2 and 

Goal_3 are the self-acquired goals — there are no inter-agent dependencies that make the 

agent acquire these goals. Since the goals have to be achieved in parallel, we have two 

tasks, AcquireG_2 and AcquireG_3, which are executed concurrently and are responsible 

for the acquisition and achievement of Goal_2 and Goal_3 respectively. Each task is 

decomposed into the commit action that acquires the required goal. It is followed by the 

goal node, which is guarded by the guard that blocks until the goal is acquired. The above 

diagram illustrates the fact that at the iASR level the diagrams get quite detailed and 

complicated since they have to be easily mapped into CASL code. A lot of the diagram 

modifications are quite mechanical and could be automated. Note that in iASR diagrams, 

we usually omit the first parameter of the commit action since it is clear what agent is 

executing this action. We conclude that there is a price in complexity if one wants to 

model goals explicitly in our approach. 
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4.3.9 Mapping Goals into CASL 
 

4.3.9.1 Introduction 

 

One of the essential features of CASL is that it supports reasoning about agents’ goals, 

which play a major role in the i* approach. In this section, we describe the mapping of 

goal nodes of iASR diagrams and the associated means-ends decompositions into CASL 

models. 

 

The presence of a goal node in an iASR diagram indicates that an agent has the 

corresponding goal in its mental state. We, therefore, need to make sure that the 

counterparts of the goals that the designer utilizes in the iASR diagrams are present in the 

corresponding CASL models. Designers use goal nodes in their iASR diagrams to model 

the agents’ objectives that can be achieved by a number alternative approaches. Means-

ends decompositions are used to encode various alternative means of achieving the goals 

of the agents. These means-ends decompositions will have to be encoded in CASL and 

associated with the goals that they are designed to achieve.  

 

4.3.9.2 Mapping Goal Nodes 

 

An iASR goal node will be mapped into a CASL formula that corresponds to the goal and 

a procedure that specifies the approaches that the agent will use to try to achieve the goal. 

In our approach, we mostly handle achievement goals. The formulae that we are mapping 

the iASR goals into are situation-dependent. They represent the desired states in the 

system: when the formulae are evaluated to false, this means that the corresponding goals 

are not yet achieved; the fact that the values of such formulae change to true signals the 

achievement of the goals. Alternatively, we can map goals into primitive fluents, if 

appropriate.  
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Let us see how the mapping is defined for an iASR goal node called iASR_Goal (see 

Figure 4.33). For now, we do not consider the parent and children nodes of iASR_Goal. 

 

 
Figure 4.33. The mapping of the goal node iASR_Goal. 

 

The mapping m will map the goal node iASR_Goal into the following tuple: 

 

m(iASR_Goal) = <GoalFormula, AchieveGoalProc>,  

where  

• GoalFormula is a CASL formula with a free situation variable 

• cPName∈AchieveGoalProc   and AchieveGoalProc is defined in Pc 

 

We remind here that PNamec is a set of procedure names in the CASL theory C and Pc is 

a set of procedure definitions in this theory. The constraints on AchieveGoalProc 

prevent iASR goal nodes from being mapped into undefined procedures. 

 

 We use the following notation to access the goal formula and the achievement procedure 

of a goal node: 

m(iASR_Goal).formula = GoalFormula 

m(iASR_Goal).achieve = AchieveGoalProc 

 

The achievement procedure for the goal encodes the ways the agent may achieve this 

goal. It may use the appropriate applicability conditions and/or link annotations to specify 

the means precisely. We assume that generally, the agent has means to achieve the goal 

that typically work, but it is rare that they will always work. Thus, we cannot guarantee 

that any of the means for achieving the goal that are represented in the achieve procedure 

for that goal are always able to achieve it. In order to be assured that AchieveGoalProc 
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in fact makes GoalFormula true every time it is executed we need to carefully specify, 

for instance, the restrictions on the situation in which the procedure is invoked. Making 

sure that the applicability condition for the AchieveGoalProc holds when the agent starts 

executing the procedure cannot, however, guarantee that it successfully achieves the goal 

(the executability of AchieveGoalProc does not imply the achievement of the goal). The 

main difficulty here is the fact that we are modeling a multiagent system with lots of 

interacting concurrent processes in a shared environment. When the procedure is 

executing, other agents’ actions may modify the parameters of the environment (and even 

the agent’s own mental state), which are crucial for the successful execution of 

AchieveGoalProc. There are a number of ways to deal with the problem. One could 

divide the set of fluents in the system into subsets that are each controlled by one agent in 

the system, thus making it impossible for other agents to directly affect the values of the 

fluents and making sure that procedures relying on those fluents and executed by the 

‘owner’ agent cannot be disrupted by other agents. Alternatively, we can set up a system 

for managing shared (for reading) and exclusive (for writing) locks on fluents to 

guarantee that only one agent at a time can change the value of a shared fluent. We leave 

this to the future work. We note here that while some of the approaches for concurrent 

systems verification were applied to the problem of multiagent systems verification, the 

problem remains largely open. 

 

Here, we assume that AchieveGoalProc is designed to achieve the corresponding goal, 

but may not do that at all times. We therefore state that AchieveGoalProc will try to 

achieve the goal, instead of saying that it will in fact achieve the goal. The above 

semantics is expressed in the following formula: 

 

∃s,s′.Do(AchieveGoalProc,s,s′) ∧ GoalFormula[s′] 
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The above formula says that sometimes executing AchieveGoalProc in some situation s 

in the absence of concurrent actions will lead to its successful termination in situation s’ 

and in that situation GoalFormula will hold (the goal will be achieved). 

 

Agent capabilities, which are described later in this chapter, provide a greater level of 

assurance that the goal will be achieved. They should be used, among other things, as 

means of achieving critical goals. 

 

4.3.9.3 The Use of Interrupts 

 

Since goal acquisition in CASL is done declaratively through the use of successor state 

axioms and agent behaviours are specified procedurally, the agents need to monitor their 

mental states for changes and to modify their behaviour in response to these changes. The 

synchronization of the declarative part of the agent — its mental state — and the 

procedurally specified behaviour is achieved through the use of interrupts (see Figure 

4.34) or guards.  

 

whenever(TrigCond, 
CancelCond)

Parent
Task

iASR_Goal
 

Figure 4.34. The use of interrupts for goal monitoring. 

 

Let us now look more closely at the use of interrupts and interrupt annotations. In the 

iASR diagrams, goal nodes always have task nodes as their parents and are connected to 

them with the task decomposition links. These tasks are used to monitor for the newly 

acquired goals, therefore the interrupts must be placed in the goals’ parent tasks. When 

the trigger condition becomes true, it signals that the goal has been acquired in the mental 

state of the agent. When the interrupt fires, the agent will attempt to achieve the newly 
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acquired goal by executing the goal’s achievement procedure. This is how the goal in the 

mental state triggers the appropriate achievement behaviour. For example, let us consider 

the mapping of the ASR diagram fragment in Figure 4.34. Suppose that the ParentTask 

task node is mapped into ParentTaskProc by the mapping m (m(ParentTask) = 

ParentTaskProc). When the trigger condition becomes true the achievement procedure 

for iASR_Goal is executed. Based on the task decomposition mapping rules presented 

earlier in this chapter the procedure for the parent node of iASR_Goal will look like this: 

 

   proc ParentTaskProc 

... 
<m(trigCond) → m(iASR_Goal).achieve until m(CancelCond)> 

... 
   endProc 

 

In our approach, we use a new version of interrupts that provides us with more flexibility 

in mapping from iASR diagrams into CASL models. This new version of interrupts 

includes a cancellation condition that, unlike the original ConGolog version, allows the 

programmer to control when interrupts stop firing. We use cancellable interrupts mainly 

to specify under which circumstances the parent task of a goal node stops monitoring for 

the new instances of the goal. The reason for that is the fact that many goals have to be 

repeatedly achieved, some have to be achieved exactly once (these goals are normally 

used with guards), some have to be monitored for only during some specific activities, 

etc.  

 

Let us discuss how our extended version of interrupts is defined. We first go over the way 

interrupts are handled in ConGolog [De Giacomo et al., 2000]: 

 

<φ → δ> ≡ while Interrupts_runnning do 

if φ then δ else False? endIf 
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Here, φ is the trigger condition, while δ is the program that is executed whenever φ 

becomes true. It is assumed that a special fluent Interrupts_running is initially True. 

When control is given to the interrupt, it repeatedly executes δ until becomes φ false. At 

this point, the interrupt blocks and gives up control to another part of the program. Based 

on the transition semantics of ConGolog, if φ becomes false, the process blocks right at 

the beginning of the loop. If later some action makes φ true, the loop is resumed. To 

terminate the loop (not just suspend it) a special primitive action called 

stop_interrupts is used. Its sole effect is to make Interrupts_running false. 

Therefore, the general pattern for a program δ1 that contains interrupts is 

start_interrupts;(δ1>>stop_interrupts). start_interrupts and 

stop_interrupts are automatically added by the ConGolog interpreter, so the 

programmer does not have to worry about them. This program would stop all the blocked 

interrupt loops in δ1 when there are no more actions in δ that can be executed (since 

stop_interrupts runs at the lower priority, it is executed only when δ1 blocks). 

 

The cancellation condition in the new version of interrupts allows the user to decide when 

the interrupt should be stopped: 

 

< TriggerCondition → Body until CancelCondition > 

 

The above interrupt is in fact defined as a while loop: 

 

while ¬CancelCondition do 

if TriggerCondition then Body else False? endIf 

 

The cancellation condition is assumed to be false initially. The loop terminates when the 

cancellation condition becomes true. The fluents that correspond to the cancellation 

conditions are defined by the programmer. The system specification must ensure that the 
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cancellation condition is false at the beginning and during the execution of the interrupt 

and that it eventually becomes false. 

 

We also define the fluent SystemDone, which, when used as a cancellation condition, 

emulates the original ConGolog interrupts. The interrupts with SystemDone are not 

stopped until the program is terminated. So, the interrupt 

 

<TriggerCondition → Body>  

is viewed as an abbreviation for 

<TriggerCondition → Body until SystemDone>. 

 

Quite frequently, we need to use interrupts with parameters. The interrupt fires when 

there are bindings for the variables v1, v2, etc. for which TriggerCondition holds:  

 

< v1, v2,…,vn: TriggerCondition → Body until CancelCondition > 

 

The above interrupt is mapped into the following: 

 

while ¬CancelCondition do 

if π v1,v2,…,vn: TriggerCondition(v1,v2,…,vn) then 

Body(v1,v2,…,vn) else False? endIf 

 

On the other hand, one quite frequently needs interrupts that fire only once. In our 

approach, it is possible to use the guard annotation, guard(φ), instead of such interrupts. 

This approach saves the developer from defining the unnecessary cancellation conditions. 
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4.3.9.4 Mapping Dependency-Based Goals 

 

Goals coming from inter-agent dependencies are acquired by agents through request 

communication actions. We assume that the agents that acquire these goals have the 

commitment to do everything possible in order to achieve them. The dependency-based 

goals will most likely have to be constantly monitored for and will have to be repeatedly 

achieved. These goals are generic (parameterized) ones: every time the depender agent 

makes a request to the dependee to achieve a goal, it actually requests an instance of the 

goal to be achieved.  

 

The dependency-based goals are acquired through the actions of other agents — when an 

agent receives the appropriate request from some agent in the system, its mental state 

changes accordingly. The agent has to detect the change in its mental state and modify its 

behaviour in order to respond to the request by attempting to achieve the goal, perform 

the requested task, or supply the needed resource. The dependee’s tasks that are 

responsible for monitoring for new goals acquired through inter-agent dependencies will 

therefore contain the interrupts that will fire when the new goals are acquired. The bodies 

of those interrupts will contain the achievement procedure for the goal. 

 

In the example in Figure 4.35, we show the dependency MeetingScheduled between 

Meeting Initiator (MI) and Meeting Scheduler (MS).  The MS’s task MSBehaviour 

monitors for the goal MeetingScheduled and contains an interrupt with the trigger 

condition TriggerC and the cancellation condition CancelC. Furthermore, the MS has 

one means to achieve the goal MeetingScheduled — by using the task 

ScheduleMeeting. 

 

As expected, MSBehaviourProc (the CASL procedure, into which the task MSBehaviour 

is mapped) will contain the following code that deals with the goal MeetingScheduled: 
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  proc MSBehaviourProc 

    ... 
    <m(TriggerC) → m(MeetingScheduled).achieve until m(CancelC)> 

    ... 
  endProc 

 

 
Figure 4.35. The MeetingScheduled goal dependency. 

 

Let us now examine the trigger and cancellation conditions for the above interrupt. As 

mentioned earlier, many inter-agent dependencies exist throughout the life of system and 

therefore the dependee has to continuously monitor for the new goals coming from these 

dependencies. In the example diagram of Figure 4.35, MeetingScheduled is a goal 

dependency of this type. Here, achieving the goal MeetingScheduled is the main 

responsibility of the Meeting Scheduler agent and it acquires the goal whenever the 

Meeting Initiator needs to schedule meetings. In cases like this, goal-monitoring 

interrupts run until the system is terminated. We use the fluent SystemDone as a 

cancellation condition when we only need it to become true upon the termination of the 

system.  

 

On the other hand, unlike the top-level dependencies (similar to MeetingScheduled 

dependency above) that are generally present throughout the life of the agent, there are 

many cases of dependencies that are present only in certain contexts. For example, when 

agents are using an interaction protocol to negotiate about something, request 
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clarification, etc., the associated dependencies exist only in the context of some other, 

higher-level dependencies. Figure 4.36 shows a diagram with a dependency that only 

exists in a certain context. 

 

 
Figure 4.36. Top-level and context-only dependencies. 

 

The diagram in Figure 4.36 models a common scenario of servicing products under 

warranty. In the above figure, we have two actors, Service Centre and Customer. 

Customer depends on Service Centre for the shipment of replacement products. At the 

same time, we have another dependency, this time going from Service Centre to 

Customer, where Service Centre requires Customer to ship the defective product back. 

While ReplacementShipped is clearly the top-level dependency here, 

DefectiveShipped dependency exists only in the context of ReplacementShipped. 

When the service centre attempts to solve the instance of the goal ReplacementShipped, 

it will in turn request the customer to ship the defective product back. For the Customer 

agent it does not make sense to monitor for the goal DefectiveShipped unless it has 

already requested the replacement product from Service Centre. Therefore, we can model 

the cancellation condition for the interrupt that monitors for the acquisition of 

DefectiveShipped with the fluent ReplacementComplete. It could be either a primitive 

or a defined fluent. This fluent is false initially and the program will make sure that it 

holds once the replacement is complete. Of course, in order to differentiate between 

instances of the goal ReplacementShipped, both the formula that the goal node is 

mapped into and the fluent ReplacementComplete need to be parameterized. We present 

the interrupt for handling DefectiveShipped goals below: 
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<m(TriggerC) → m(DefectiveShipped).achieve  

until m(ReplacementComplete)> 

 

Now we will discuss the trigger conditions. In CASL, once an agent acquires a goal, it 

cannot be removed from the agent’s mental state unless the cancelRequest action is 

executed for the goal. Even if some goals are achieved, the agent still has them in its 

mental state in the sense that they are true in desirable histories for the agent. When 

monitoring for new, not yet achieved goals, we need to select only those instances of 

goals for which the formula they map into is false. Therefore, the triggering condition for 

the dependency-based interrupts will normally be (here we use the version of interrupts 

with parameters): 

 

< t
r
: Goal(agt,Eventually(m(G).formula( t

r
),now,then)) 

∧ Know(agt,¬m(G).formula( t
r
),now) → …>, 

 

where t
r
 is a parameter list and G is a goal node in an iASR diagram. Here, we assume 

that m(G).formula( t
r
) (the CASL formula, which the goal is mapped into) is an 

achievement goal and therefore was requested as 
Eventually(m(G).formula( t

r
),now,then) by the depender. Our assumption is that all 

goals are of this form. 

 

In the trigger condition above we pick the parameter list t
r
 such that the goal 

Eventually(m(G).formula( t
r
),now,then) is in the mental state of the agent agt. This 

means that the agent had to achieve the goal m(G).formula( t
r
) some time after it 

acquired it. Additionally, we require that Know(agt,¬m(G).formula( t
r
),now) be true, 

meaning that the agent knows that the goal m(G).formula( t
r
) has not yet been achieved. 

If there is an instance of the goal that has not been achieved, then the agent must try to 

achieve it. Here, we assume that once achieved goals stay true. 
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In the context of the diagram of Figure 4.36, the interrupt that the Service Centre agent 

will use for handling the inter-agent goal dependency ReplacementShipped will look 

like this (we omit the situation parameters here): 

 

<sn: Goal(SC,Eventually(m(ShipReplacement).formula(sn))) ∧  

Know(SC,¬m(ShipReplacement).formula(sn)) →  

m(ShipReplacement).achieve(sn) until SystemDone> 

 

Here, we check if there is a serial number (we assume that it uniquely identifies the 

product) for which a customer requested a replacement and Service Centre has not yet 

shipped that replacement. In this case, the agent knows that the goal formula, which is 

supposed to be true when the goal is achieved, is, in fact, not true for the selected value of 

sn. The cancellation condition is SystemDone since this is a high-level dependency 

independent of any other dependencies. 

 

Since most of the trigger conditions and many cancellation conditions are quite lengthy, 

we expect that many of them could be replaced with special labels (for example,  

TCondShipRepl is the label for the trigger condition of the interrupt that hands the goal 

ReplacementShipped), which are substituted by corresponding CASL formulae or 

fluents before we use the mapping m to map iASR diagrams into CASL models. The 

modeler must keep track of these labels. 

 

4.3.9.5 Mapping Task Dependency-Based Goals 

 

In a task dependency, the depender asks the dependee to perform a certain task. Since the 

request is made with the use of the request action, the dependee acquires the 

corresponding goal to perform the task. As described previously, task dependency-based 

goals are special kind of goals since there are no alternative solutions for these goals — 

the only way to achieve them is to execute the required task. Therefore, the CASL 
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mapping for the task dependencies is simpler than for other dependencies. We now 

present the code that the Participant agent will use for handling the task dependency 

SendAvailDates (see Figure 4.27 for the iASR diagram for this example). The procedure 

FindAgreeableDateProc (the CASL procedure that the task node FindAgreeableDate 

of Participant is mapped into) will look like the following: 

 

proc FindAgreeableDateProc 

  ... 
<TC → SendAvailDates until SystemDone> 

... 
 endProc 

 

The trigger condition TC for the above interrupt should become true if the task 

SendAvailDates has not yet been performed by the Participant agent, hence we take it to 

be the formula below: 

 

<Goal(Ptcp,DoAL(SendAvailDates,now,then)) ∧  

Know(Ptcp,¬∃s,s’(s≤s’≤now ∧ DoAL(SendAvailDates,s,s’))) → … > 

 

The above expression becomes true if the Participant agent (Ptcp in the code above) has 

the goal to perform at least the task SendAvailDates and knows that it has not done that 

before the current situation. Note here that once the Participant agent performs the 

required task, the Know part of the trigger can never evaluate to True since the agent will 

know that it performed the task. Therefore, no matter how many requests to perform 

SendAvailDates it receives, it will simply ignore them. To remedy the situation the 

designer might want to incorporate some parameters (e.g., time, request ID, etc.) into the 
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task so that different instances of the goal to perform the task can be distinguished from 

each other. 1 

 

In general, the agents could be asked to perform tasks with parameters. Below we have a 

parameterized version of the trigger condition for handling goals to perform tasks: 

 

< t
r
: Goal(agt,DoAL(SomeTask( t

r
),now,then)) ∧  

Know(agt,¬∃s′,s″[s′≤s″≤now ∧ DoAL(SomeTask( t
r
),s′,s″)]) → … > 

 

When using the parameterized version of the trigger condition, the agent is able to 

distinguish among various requests asking it to perform the task SomeTask, provided the 

parameters of the task are different. If it is required that some task be performed for each 

and every request (e.g., the task “check radiation level”), this task could get a time stamp 

parameter that will make every request different. The depender then can use the 

following code to request some other agent to perform a task with a time stamp: 

 

π t (t = Time(now))?; request(agt1,agt2,DoAL(SomeTask(t),now,then))) 

 

4.3.9.6 Mapping Self-Acquired Goals 

 

Self-acquired goals are the ones obtained without requests from other agents. They could 

be used by the designer to model alternative ways of achieving the required results. As 

previously described, designer goals are also needed to handle goal refinements if these 

refinements are to be analyzed at the CASL level. 

 

                                                 
1 A simple account of time is presented in [Shapiro et al., 1998]. A special functional fluent Time(s) is 
introduced, which maps a situation into the current time at the situation. It is also assumed that all the 
actions in the domain increment Time by the amount it takes to perform those actions.   
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In the example diagram below (Figure 4.37) we have a fragment of a task decomposition 

of the ScheduleMeeting task of the Meeting Scheduler agent (we are not showing all the 

subtasks of ScheduleMeeting). One of the responsibilities of the task is to get the 

information about participants’ availability. There could be some number of ways to 

achieve this goal and the designer wants to keep his options open and therefore uses a 

self-acquired goal to capture the (potential) existence of alternatives. To acquire the 

designer goal AvailableDatesKnown we have to execute the commit action that adds the 

instance of the goal into the agent’s mental state. Note that we use the parameter mid 

(meeting ID) to allow the MS to acquire and achieve instances of the goal 

AvailableDatesKnown for every meeting it schedules.  

 

 
Figure 4.37. The AvailableDatesKnown self-acquired goal. 

 

We assume that m(ScheduleMeeting)=ScheduleMeetingProc. The guard condition in 

Figure 4.37 is mapped into the CASL formula Goal(MS, 

AvailableDatesKnown(mid),s), however it is labelled as 

Goal(AvailableDatesKnown(mid)). We frequently omit some parameters in 

conditions, goal/task node labels, etc. in iASR diagrams for brevity or replace complex 

conditions with acronyms, etc. The CASL mapping of Figure 4.37 into CASL is quite 

simple:  

 

proc ScheduleMeetingProc(mid) 

 ... 
 commit(MS,Eventually(m(AvailableDatesKnown(mid)).formula(mid))); 

 guard Goal(MS,Eventually(m(AvailableDatesKnown(mid)).formula(mid))) do 
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  m(AvailableDatesKnown(mid)).achieve(mid) 

 endGuard 

endProc 

 

We assume that the task node ScheduleMeeting is mapped into the CASL procedure 

ScheduleMeetingProc(mid), which takes the meeting ID as parameter. The commit 

action is then executed for that specific meeting ID acquiring the goal 

AvailableDatesKnown for a specific meeting request. The guard condition is the 

presence of this goal in the mental state of the Meeting Scheduler. Since the goal has just 

been acquired for the meeting mid, we know that it has not yet been achieved. Therefore, 

we do not check whether the goal has been already achieved as we usually do when we 

map interrupts into CASL.  

 

In fact, since the execution of the commit action makes an agent acquire a single instance 

of a goal, the guard condition can check only for that particular instance, thus making this 

condition much simpler than the usual trigger condition of an interrupt. We now present a 

generic procedure for handling the self-acquired goal SomeGoal: 

 

   proc ParentTaskProc( t
r
) 

      ... 
 commit(agt,Eventually(m(SomeGoal).formula( t

r
))); 

guard Goal(agt,Eventually(m(SomeGoal).formula( t
r
))) do 

m(SomeGoal).achieve( t
r
) 

endGuard 

   endProc 

 

Here, the procedure for the parent task takes a parameter list t
r
. Somewhere in the code of 

the procedure, the agent acquires the goal SomeGoal with the parameters t
r
 by executing 

the commit action. Next, we have the guard operator, whose condition becomes true once 
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this instance of SomeGoal is in the mental state of the agent agt. Since we know which 

instance of the goal has just been acquired and we also know that the instance could not 

have been achieved yet, the guard condition does not check whether the instance has been 

achieved or not.  

 

In this discussion, we assume that the task node that is mapped into the commit action 

and the goal node representing the self-acquire goal are next to each other in an iASR 

diagram, as in Figure 4.37. If an agent is self-acquiring instances of a goal in one place, 

while monitoring for them in another, then the modeler must be careful in using guards 

since they block the process until their conditions become true.  

 

4.3.9.7 Mapping Achievement Procedures 

 

Achievement procedures for goals encode the ways in which these goals can be achieved. 

The achievement procedure for a goal is produced by mapping the means-ends 

decomposition of the goal node, which corresponds to that goal, into CASL. As discussed 

previously, in iASR diagrams, the means for achieving goals have to be task nodes and 

the only composition annotation available for the means-ends links is the alternative 

annotation. In coming up with a goal achievement procedure we must take into 

consideration the applicability conditions as well as the link annotations associated with 

the various means of achieving the goal. 

 

 
Figure 4.38. Generic means-ends decomposition. 
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Figure 4.38 shows generic means-ends decomposition for the goal G. There are n ways to 

achieve the goal G, each represented by the task Meansi. The means-ends links that 

connect the means with the goal G are each augmented with applicability conditions and 

link annotations that provide additional details on the ways the goal G could be achieved. 

Figure 4.38 is a diagram representation for the procedure that achieves the goal G. 

Suppose that m(G).achieve = G_Achieve. The code for G_Achieve is presented below: 

 

proc G_Achieve 

guard m(φ1) do m(α1)(m(Means1)) endGuard 

      | 
   guard m(φ2) do m(α2)(m(Means2)) endGuard 

           | 

   … 

           | 
   guard m(φn) do m(αn)(m(Meansn)) endGuard 

endProc 

 

For example, below (Figure 4.39) we have a case, which is a modification of the example 

in Figure 4.21. It displays three possibilities for notifying the participants of a meeting: 

phoning them, emailing them and coming up to them and notifying them personally. 

 

 
Figure 4.39. An example of a means-ends decomposition. 

π(p, Participants(p))
for(p, Participants(p))

Email 
Participant 

Phone 
Participant 

SpeakTo 
Participant 

NotifyParticipants 

ac(NumberOfParticipants =1)
 

ac(NumberOfParticipants ≤ 3) 
for(p, Participants(p))
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The means for achieving the goal NotifyParticipants in Figure 4.39 have a mix of 

applicability conditions and link annotations. The applicability conditions specify under 

which circumstances the means can be selected. If the number of meeting participants is 

one, all three alternatives can be considered; if the number of the participants is two to 

three, then only two means are considered, etc. The link annotations that are used in 

Figure 4.39 are for loops that indicate that each participant must be notified by the chosen 

method and the pick annotation, which is used with the first alternative and selects the 

only meeting participant. Let m(NotifyParticipants).achieve = 

NotifyParticipantsProc. We present the mapping of the means-ends decomposition of 

Figure 4.39 below. The absence of an applicability condition for a means to achieve a 

goal indicates that the means is applicable under any circumstances. So, the absence of 

the applicability condition for the task EmailParticipants means that unlike the two 

other tasks there is no guard operator in the mapping of the task procedure and the link 

annotation for that means: 

 

proc NotifyParticipantsProc(Participants) 

 guard NumberOfParticipants=1 do  

π p. Participants(p)?;  m(SpeakToParticipant)(p) 

 endGuard 

     | 
 guard NumberOfParticipants≤3 do  

     for p: Participants(p) do m(PhoneParticipant)(p) endFor 

endGuard 

     | 
for p: Participants(p) do m(EmailParticipant)(p) endFor 

endProc 

 

In mapping means-ends decompositions, we have to take into consideration the 

applicability conditions for the means and the link annotations associated with the means. 
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The mappings of every means to achieve the goal are joined by the non-deterministic 

choice operator (”|”) since the means are alternative ways to achieve the parent goal.  The 

code obtained from mapping a generic means-ends link is shown below: 

 

guard m(φi) do m(αi)(m(Meansi)) endGuard, 

 

which, based on the definition of the guard operator, is defined as follows: 

 

if m(φi) then m(αi)(m(Meansi)) else False? endIf 

 

The conditional construct (and thus the condition of the guard operator) takes care of the 

applicability condition m(φi). If the applicability condition m(φi) holds, then we execute 

m(αi)(m(Meansi), which is a mapping of the task Meansi augmented with the mapping of 

the link annotation αi. Based on the semantics of the if-then-else operator, the test of the 

applicability condition and the first transition of the associated means are performed as a 

single atomic step. Therefore, we are sure that the applicability condition holds when the 

procedure for the means starts executing. If the applicability condition is false, then the 

above expression blocks without performing any transitions since the test False? can 

never succeed.  

 

In general, if we have several means of achieving some goal, we will have the CASL 

code below (we removed the mapping m for brevity). The same discussion applies to any 

number of means. 

 

guard AC1 do Means1 endGuard | … | guard(ACn) do Meansn endGuard 

 

Based on the semantics of the non-deterministic choice operator (a | b), either one of the 

actions has to be successfully executed for the whole construct successfully execute. In 

the code above, if several applicability conditions are true, then either of the means is 
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executed. If only one applicability condition holds, then only the associated means can be 

executed. If none of the applicability conditions hold, then the whole construct blocks 

until something makes one of the applicability conditions true. 

 

 

4.4 Knowledge 
 

4.4.1 Introduction 
 

Information exchange plays an extremely important role in human organizations. It is 

used for passing knowledge, coordination, etc. In modern society, information becomes 

more and more important and is frequently treated as a critical resource on which the 

lives of people and organizations depend. Information resources are becoming 

increasingly valuable and many are willing to pay a premium for convenient access to 

reliable information. It is hard to find cases where humans working together do not 

exchange information 

 

Since multiagent systems mimic human societies in that they are systems with multiple 

autonomous and social agents that work together to achieve goals (alternatively, they can 

be in competition), they too benefit immensely from information exchange. Not unlike 

CASL’s support for reasoning about goals, the ability of the CASL language to model 

agent knowledge and knowledge exchange allows us to model multiagent systems more 

naturally. Instead of talking about one software entity invoking a mutator method of 

another entity to modify the variable, which stores the price of some product, we say that 

one agent informs another of the change in price for the product they are negotiating 

about. 

 

The support of CASL for reasoning about knowledge allows the designer to model 

information exchanges precisely and enables verification of information-related 
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requirements. Information exchange is abundant in multiagent systems and 

communication, coordination, cooperation, etc. all involve the sending and receiving of 

information that can be formalized and reasoned about in CASL.  

 

4.4.2 Acquiring Knowledge 
 

The CASL formalism allows us to model two aspects of the mental state of the agents: 

their goals and their knowledge. Agents acquire knowledge about something when they 

are informed of it by other agents. There are several communicative actions that allow 

agents to exchange information with each other. These actions, inform, informRef, and 

informWhether, are used by the agents in the system to send information to other agents. 

To avoid the situation where agents lie, they can only tell others what they know. The 

mental state of the agents receiving the new information changes accordingly. We 

discussed how knowledge is represented in CASL in Section 2.2.2.  

 

4.4.3 Mapping Information Resource Dependencies 
 

Since CASL supports reasoning about agents’ knowledge and goals, it is useful for 

modeling of information flow in distributed systems. Information exchange and 

interaction protocols play an important role in multiagent systems and we are able to 

model them well in CASL. As far as we know, the only other approach that explicitly 

represents agent knowledge is ALBERT-II [du Bois et al., 1997]. In i*, the flow of 

information can be modeled through information resource dependencies. We distinguish 

information resource dependencies based on the requests that the dependers make to the 

dependees. The request requires the dependee to inform the depender of the value of a 

functional fluent or of the truth value of a certain formula. 

 

Figure 4.40 shows a generic information resource dependency example where the 

Depender agent asks the Dependee to inform it of the truth value of the formula φ. The 
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task AskAboutφ is responsible for asking the Dependee agent for information about the 

truth value of φ. This is the SR diagram for the dependency and it does not contain 

enough information to be mapped into a CASL model. 

 

AskAbout
φ Behaviourφ

Depender Dependee

 
Figure 4.40. A generic info resource dependency. 

 

At the iASR level, the above diagram will be modified to include more details about how 

the  dependency is fulfilled. First of all, as is the case with all resource dependencies, an 

information resource dependency is turned into a task or a goal dependency. If the 

information dependency is turned into a goal one, the goal of that dependency is the fact 

that the depender eventually has the requested information. The dependee can achieve the 

goal by executing the appropriate inform action, thus passing the needed information to 

the depender. We will also include a depender task node that will actually make the 

request to the dependee (it will be mapped into the appropriate request action). The 

dependee model will include the means to achieve the information goal. To illustrate the 

above discussion let us look at the iASR diagram for the example from Figure 4.40 (in 

the diagram below, EvKnowφ is an abbreviation for 

Eventually(KWhether(Depender,φ))): 

 

 
Figure 4.41. The iASR diagram for a generic info resource dependency. 
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The task AskAboutφ now includes a subtask, which is a request action, the new origin 

of the dependency. In order to receive the information that it needs, the Depender agent 

will execute the following request action (we omit the situation argument): 

 

request(Depender,Dependee,Eventually(KWhether(Depender,φ))) 

 

Here, the Depender agent asks the Dependee agent to be informed of the truth value of 

the formula φ. The dependee agent will then acquire the goal 

Eventually(KWhether(depender,φ)) and will achieve it by executing the task 

Informφ. Since the Depender agent wants to know whether the formula φ is true or false, 

the Dependee task InformPhi might be the following (we omit the situation arguments 

for brevity): 

 

proc InformPhi 

  if Know(Dependee,φ) then  

   inform(Dependee,Depender,φ) 
  else 

   if Know(Dependee,¬φ) then 

    inform(Dependee,Depender,¬φ) 
   endIf 

  endIf 

endProc 

 

At first, it may seem that there is only one way of achieving an information goal, namely 

to provide the requested information. However, the agent may need to perform some 

computation to get the requested information first (or in turn ask other agents for the 

information), and then send it to the requestor. As seen from the above example, 

achieving information goals is not done by simply executing the appropriate inform 

action. 
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Alternatively, agents can ask to be informed of the value of functional fluents. The way 

for the Dependee agent to achieve the goal Eventually(KnowRef(Depender,θ)) is to 

execute the corresponding informRef action. The consequence of an agent receiving one 

of the inform-type communications is that its knowledge base is updated with the new 

information. The details of the interactions will vary according to the application.  

 

4.4.4 The Trusts Relationship 
 

When an agent receives information from other agents through inform actions, its mental 

state changes to include the knowledge of the newly communicated information. This is 

done unconditionally in that no matter who the sender agent is, the new information is 

accepted. This may not be acceptable for all the applications. Trust plays an increasingly 

important role in the multiagent systems and it could be very useful for the modeling 

framework to support trust and distrust among agents. One of the ways to base 

information acquisition on the level of trust among the pair of agents is to introduce a 

Trusts relationship, which is similar to the Serves relationship for goals in that it filters 

out information coming from untrusted sources. A simple way to specify that an agent 

trusts another one is to say Trusts(Depender,Dependee). This says that the Depender 

agent trusts all the information provided by the Dependee agent. We can fine-tune the 

relation to include the subject of trust in it: Trusts(Depender,Dependee,φ), which says 

that the Depender agent trusts the Dependee for updates on the value of the fluent or 

formula φ.  

 

In order to make use of the Trusts relationship we need to make changes to the way 

agents acquire information. Here is an example of the modifications that one needs to 

make to the successor state axiom for the K accessibility relation for knowledge 

(assuming that inform is the only knowledge-producing action): 
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K(agt,s”,do(a,s)) ≡  

∃s’ (K(agt,s’,s) ∧ s” = do(a,s’) ∧ Poss(a,s’) ∧  

∀informer,φ (a = inform(informer,agt,φ) ∧  

Trusts(agt,informer) ⊃ φ[s’])) 

 

The above axiom states the conditions the situation s” is K-accessible from situation 

do(a,s). For non-inform actions, the predecessor of s”, called s’, must be K-accessible 

from s and the action a, which takes s’ to s”, must be executable in s’. If, however, the 

action is an inform action, then, provided that the agent agt trusts the informer, in 

addition to the above constraints, the subject of the communication, φ, must hold in 

situation s’. 

 

4.4.5 Self-Acquisition of Knowledge 
 

Agents acquire knowledge about something when they are informed of it by other agents. 

There could be cases when an agent needs to come to know something without being 

informed about it. For example, the agent might compute a value of a function and then 

communicate that information to other agents, etc. For these situations we propose the 

action assume(agt,φ), whose effect is that agt knows that φ is true. Alternatively, the 

agents could use the action assumeRef(agt,θ), whose effect is that the agt knows 

who/what θ is. 

 

In CASL, the precondition of the inform action is that the agent knows what it is 

informing another agent about (Poss(inform(informer,agt,φ),s) ≡ 
Know(informer,φ,s)). The assume action does not have this precondition, however, we 

require that agents can only assume true propositions (perhaps unknown): 

Poss(assume(agt,φ),s) ≡ φ(s). 
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4.4.6 Specifying Interaction Protocols 
 

There has been a lot of work on the specification of agent interaction protocols. For 

example, AgentUML [Odell et al., 2000] is a rich, non-formal, UML-based notation, 

while commitment machines [Yolum and Singh, 2001] provide a formal way to specify 

protocols that can be executed flexibly. Let us show how goals and knowledge can be 

used in describing interactions among agents. More work has to be done to support 

intuitive, flexible and formal specifications of interaction protocols in the combined i*-

CASL approach, but even with the facilities we currently have, it is possible to model 

interaction protocols and execute them flexibly. Here, we look at the simplified version 

of the NetBill protocol discussed in [Yolum and Singh, 2001]. This protocol describes 

interactions between a customer and a merchant. In NetBill, once a customer accepts a 

quote, the merchant sends the encrypted goods (e.g., software) and waits for payment 

from the customer. Once the payment is received, the merchant sends the receipt with the 

decryption key. The interactions are shown in Figure 4.42. 

 

 

Figure 4.42. A simplified NetBill protocol. 

 

For an agent playing a role of customer, a very simple specification of the protocol may 

look like the following: 

 

 

 

 

Customer 

(6) Send receipt 
(5) Send payment 

(3) Accept quote 
(4) Deliver goods 

(2) Present quote 
(1) Request quote 

Merchant 
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proc CustomerBehaviour(Cust) 

set(¬Done); 

assume(¬Done); 
   (<Goal(Cust,Eventually(KRef(Cust,Quote(product)))) →       

    request(Cust,Merch,Eventually(KnowRef(Cust,Quote(product))))  

    until Know(Cust,Done)> 

  || 
   <KRef(Cust,Quote(product)) →  

       if Know(Cust,GoodPrice(Quote(product))) then  

              inform(Cust,Merch,AcceptQuote(Cust,product)))  
       else set(Done); assume(Done) endIf  

    until Know(Cust,Done)> 

  || 
   <Know(Cust,ReceivedGoods) → 

       commit(PaymentSent); 
  guard Goal(Cust,PaymentSent) do 

   SendPaymentProc 
  endGuard 

    until Know(Cust,done)>  

  || 
   <Know(Cust,ReceiptReceived) →  

       set(Done); assume(Done)  
    until Know(Cust,Done)>) 

endProc 

 

In the above code, Done means that the interaction protocol has finished executing. We 

initially set Done to false. We change the value of Done by first executing the action set, 

which changes the value of the fluent, and then executing the action assume, which 

updates the mental state of the agent accordingly. There are four interrupts in the 
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program. All of them are running concurrently and correspond to the states in the 

execution of the protocol, where action on the part of the customer is required. The first 

interrupt is triggered when the agent has the goal of knowing the merchant’s quote for 

product. In the body of the interrupt the customer asks the merchant for the quote. Once 

it knows the quote, the second interrupt is triggered. The customer then evaluates the 

quote with the GoodPrice function (we omit its definition here). If the price is good, the 

customer informs the merchant that it accepts the quote, otherwise the protocol is 

terminated. Once the customer knows that it has received the goods, it commits itself to 

sending the required payment to the merchant. Note here that unlike the previous 

interrupts, the agent does not simply execute the body of the interrupt, but rather adopts 

the goal PaymentSent. This is an example of a self-acquired goal. Since there are a 

number of ways the customer can pay the merchant, hard-coding one of the methods into 

the protocol can greatly reduce the flexibility of the system. Therefore, the agent acquires 

the goal of paying the merchant through the commit action. The usual guard operator that 

blocks until the goal is in the mental state of the customer follows this action. The 

achievement procedure for the goal PaymentSent, PaymentSentProc is the body of the 

guard operator. Finally, the last interrupt is triggered when the customer receives the 

receipt from the merchant. At this point, the interaction protocol terminates. 

 

Note that by using assume and commit appropriately to acquire goals or knowledge in the 

triggering conditions of the interrupts, an agent can execute this interaction protocol 

flexibly by jumping into it at any place. 

 

4.4.7 Conditional Commitments in Interaction Protocols 
 

When humans and human organizations are involved in joint business or other activities, 

they (if they are benevolent) are committed to fulfilling their obligations to the other 

parties involved in the activities. Quite frequently, the parties have a lot of conditional 

commitments related to some possible future situations. In a business setting, these 
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commitments are usually explicit. For example, when a customer orders a car from a car 

dealer, the dealer commits to customizing the car according to the customer wishes (e.g., 

installing the optional equipment) and delivering the car to the customer. It also commits 

to fixing the car in case the car breaks down during the warranty period provided that the 

car is properly maintained by the customer.  

 

When several agents are involved in some joint activity according to a particular 

interaction protocol, they are not only committed to the immediate action that is required 

by the protocol, but also are conditionally committed to fulfilling their obligations down 

the road, provided their counterparts do the same. In the NetBill protocol, for example, 

when the merchant sends the quote to the customer, it also commits to sending the goods 

upon the customer's acceptance of the quote. Moreover, the merchant is committed to 

sending the receipt upon receiving the payment for the delivered goods. Logically, all of 

these commitments have to be in the mental state of the merchant, but handling these 

conditional commitments declaratively will greatly increase the number of goals for the 

agents (a lot of the conditional commitments are many layers deep resulting in complex 

expressions with nested goals) and make the execution of the interaction protocols quite 

cumbersome. [Yolum and Singh, 2001] provide a way to solve this problem by 

introducing commitment machines that can be compiled into an easily traversable 

structure similar to a finite state automaton.  While this approach is quite interesting and 

the applicability of it (or some of its ideas) to the specification of interaction protocols in 

CASL should be investigated, we leave this as a future work. Here, we adopt a simple 

approach for handling conditional commitments that can be summarized as follows: 

• The agent commits to executing the required interaction protocol (as shown for 

the NetBill protocol earlier), thus implicitly acquiring all the conditional 

commitments associated with this protocol. 

• At each step of the protocol, the agent explicitly acquires the appropriate 

commitments deemed appropriate by the designer (e.g., once the merchant 
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receives the payment, it acquires the commitment to send the receipt to the 

customer). 

This way we can avoid the potentially huge expansion of the agent’s goals due to the 

conditional commitments. In our approach, the designer determines which commitments 

should be in the mental state of the agent and which should be handled procedurally, 

without any changes to the mental state of the agent. For example, upon receiving the 

payment for the goods, the merchant should send the receipt to the customer. We can 

make the merchant acquire the goal SentReceiptTo(Customer), thus changing the 

mental state of the agent: 

 

<Customer: Know(Merchant,ReceivedPaymentFrom(Customer) → 

        commit(SentReceiptTo(Customer))  
until Know(Merchant,Done)> 

 

Alternatively, the commitment can be handled purely procedurally by executing the 

procedure SendReceiptProc(Customer): 

 

<Customer: Know(Merchant,ReceivedPaymentFrom(Customer) → 

        SendReceiptProc(Customer)  
until Know(Merchant,Done)> 

 
 
4.5 Capabilities 
 

In this section, we discuss capabilities. Capabilities are a new notion introduced into the 

i* modeling framework in this thesis. Goal capabilities and task capabilities map into 

epistemically feasible CASL procedures and are always guaranteed to achieve their 

goals/perform their tasks provided their context conditions hold when the capabilities are 
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invoked and other agents in the environment do not interfere with the execution of the 

CASL procedures corresponding to the capabilities.  

 

We introduce capabilities in Section 4.5.1, discuss physical executability and epistemic 

feasibility in Section 4.5.2, and describe the use of capability nodes in SD, SR, and iASR 

diagrams in Section 4.5.3. We talk about the mapping of goal capabilities into CASL and 

the formal restrictions on the CASL procedures corresponding to goal capabilities in 

section 4.5.4. The mapping of task capabilities is described in section 4.5.5. We discuss 

some capability-related issues in section 4.5.6. 

 

4.5.1 Introducing Capabilities 
 

In analyzing multiagent systems and the interdependencies among the agents in such 

systems, it makes sense to talk about the capabilities of agents. These capabilities are 

typically viewed as the services that the agents are able to provide. An agent with a 

certain capability is usually understood to have at least one plan to achieve the goal 

corresponding to that capability. Each plan may have preconditions associated with it or a 

context, which describes the circumstances under which the plan is to be used. Some 

researchers (e.g., [Sycara et al., 1999]) use the term to describe what agents advertise to 

other agents in a multiagent system. Martin, et al. [Martin et al., 1999] call generic goals 

that the agents are able to achieve “solvables” and describe them as being the capabilities 

of agents. These capabilities could be viewed as a high-level interface to the agents in a 

multiagent system.  

 

We, on the other hand, use the term capability to refer to the goals that the agent can 

always achieve and the tasks that the agent can always perform in a certain context. 

Capabilities of an agent can be the ends of a top-level dependency, thus being part of the 

agent’s interface to other agents in the system. Alternatively, capabilities can be used 

internally as sub-behaviours of agents. Capabilities will also include the context 
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conditions and the specifications of other agents’ compatible behaviour that specify when 

the capabilities are guaranteed to achieve their goals or perform their tasks. The 

capabilities have to be carefully specified to provide this guarantee. In a sense, we use 

Design by Contract [Meyer, 1997] here: if the user of a capability makes sure that its 

context condition holds (and the behaviours of other agents are compatible with the 

capability), the capability is guaranteed to succeed. 

 

There are two types of capability nodes that we can use in diagrams: capabilities to 

achieve goals and capabilities to perform tasks. They are used for specifying goals that 

can always be achieved and tasks that can always be performed because the 

plans/procedures that the agent has for achieving the goals or performing the tasks are 

guaranteed to succeed in environments satisfying the context conditions of these 

capabilities and when no outside processes interfere with the capabilities. Note that the 

goal capability of achieving a goal G first acquires the goal using the appropriate commit 

action if the agent does not already have this goal in its mental state and then achieves it. 

Capability nodes can be used in both SD diagrams and in SR/iASR diagrams in i* 

models. 

 

 
Figure 4.43. The goal capability RoomBookedCap. 
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Figure 4.43 is an example of a goal capability node used as a means to achieve a goal. It 

is taken from the meeting scheduling case study (see Chapter 6). Here, a goal capability 

RoomBookedCap is used as a means of achieving the goal RoomBooked. It is capable of 

booking a room for a meeting on a certain date. The top-level procedure of the capability 

is called RoomBookedProc. It is decomposed into a commit action and a goal node 

RoomBooked. The action is only executed if the particular instance of the goal 

RoomBooked with the parameters mid and d (meeting ID and date) is not in the mental 

state of the agent (see Section 4.5.4). Once the goal is in the mental state of the agent, 

BookRoomProc is executed. A thorough discussion of how capability nodes are used in 

iASR diagrams is presented in Section 4.5.3. 

 

4.5.2 Physical Executability vs. Epistemic Feasibility 
 

Recall that we imposed only very weak constraints on the achievements procedures for 

goals, i.e., that there be some situations where these procedures achieve the goal when no 

concurrent actions occurred (see Section 4.3.9.2). The key difference between regular 

goals and capabilities is that in the case of regular goals it is enough that the agent tries to 

achieve the goal and it is not required that the agent actually succeed in achieving the 

goal; in case of capabilities we require that that the agent always be able to achieve the 

goal or perform the task provided the corresponding context conditions hold. To ensure 

this, we require that the plans the agent has for achieving the goal/performing the task of 

the capability be both physically executable and epistemically feasible in all situations 

satisfying the context condition. Note that for ordinary goals, we do not even require 

physical executability of the means in all situations — we only require physical 

executability in some situation. 

 

Since in our framework we assume that agents have incomplete knowledge, there may be 

plans that the agents are not able to execute due to the lack of knowledge. Thus, it is 

important that the ability of CASL to reason about knowledge provides us with the means 
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to evaluate the epistemic feasibility of agents’ plans [Lespérance, 2002] (see also Section 

2.2.4). While some researchers (e.g., [Padham and Lambrix, 2000]) have proposed new 

mental state modalities to account for agent capabilities, in this work we characterize 

capabilities through the notion of epistemic feasibility. Here, agent capabilities are sub-

behaviours that are carefully scripted to be both physically executable and epistemically 

feasible, meaning that the agent has to have enough knowledge to be able to successfully 

execute the behaviours. This should increase the designer’s confidence in the routines’ 

workability and the workability of other routines and dependencies that rely on these 

capabilities.  

 

To illustrate the difference between the physical and the epistemic abilities to execute a 

program let us look at a small example. Suppose we want the agent to open a safe by 

dialling its combination, i.e.: 

 

π number((combination(safe1,number))?; dial(safe1,number)) 

 

While the above program is physically executable, i.e: 

 

∀s ∃s′.Do(π number((combination(safe1,number))?; 

dial(safe1,number)),s,s′), 

 

it is not epistemically feasible if the agent does not know the combination, i.e.: 

 

¬∃number.Know(agent,combination(safe1,number),s). 

 

The capability notation we use in i* (see Figure 4.44) diagrams is inspired by the way 

packages are represented in UML [Rumbaugh et al., 1999]. Similarly to UML packages, 

capabilities aggregate modeling elements into conceptual wholes. When an agent has a 

goal or a task capability, it means that the agent has an epistemically feasible as well as 
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G1CAP 
Goal_1 Task_1 

T1CAP 

Goal/Task that is achieved/executed 
 

Capability Name (optional) 

physically executable plan to achieve the goal or perform the task. All capabilities have 

context conditions that must be true for the capabilities to be guaranteed to succeed (see 

Sections 4.5.4 and 4.5.5 for more on this). These context conditions are static properties 

of capabilities. In most cases to guarantee successful execution of goal capabilities (i.e., 

to assure that the goal achievement procedure actually achieves the goal of a goal 

capability) one also needs to specify what actions by other agents are allowed to be 

executed concurrently with the execution of the CASL procedure corresponding to the 

capability. The specification of the allowed behaviour of other agents is also a static 

property of capabilities. The notation of Figure 4.44 shows just the goal/task that the 

capability achieves/executes. A more detailed notation showing the internals of the 

capability can also be used (see Figure 4.43).  

 

 

 

Figure 4.44a. A goal Capability. Figure 4.44b. A task capability. 

 

4.5.3 Using Capability Nodes in SD, SR and iASR diagrams 
 

 
Figure 4.45. Using capability nodes in SD diagrams. 

 

Capability nodes proposed in this thesis can be used in SD, SR, and iASR diagrams. 

Capability nodes in SD diagrams are used mostly to model the abilities of agents that are 

part of the environment of the system-to-be. These include humans, hardware devices, or 

legacy software systems. Figure 4.45 illustrates the use of capabilities in SD diagrams. 
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Here, the actor Actor1 has capabilities to achieve Goal_1 and to perform Task_1. See 

Section 5.2.3 for more details on using capabilities in SD diagrams. 

 

Capability nodes can be used anywhere task nodes are used in iASR diagrams, namely as 

subtasks of other tasks and means to achieve goals. The goal and task capability nodes in 

Figure 4.44, which simply show the task that the capability performs or the goal it 

achieves, can be used in SD, SR, and iASR diagrams, while capability nodes that show 

the internals of the capabilities, i.e., the detailed plan to achieve a goal or perform a task, 

can be used only in iASR diagrams (see Figure 4.46). 

 

 
Figure 4.46 A goal capability node that shows the internals of the capability. 

 

This more detailed view of the capabilities allows the designer to specify various means 

of achieving the goal of the goal capabilities and the detailed decompositions of the tasks 

that the task capabilities are able to execute. The task and means-ends decompositions are 

specified as usual. The usual iASR rules for means-ends decompositions apply, meaning 

that the means to achieve the goal of the capability can only be tasks and (nested) 

capabilities, that the only composition annotation available is the alternative, that the 

means can be labelled by the appropriate link annotations and applicability conditions, 

etc. (see Figure 4.46).  

 



 135 

The ability to use capability nodes both with and without internal details allows the 

designer to concentrate on certain parts of the model while leaving other parts sketchy: on 

an iASR diagram, the capabilities that are not pertaining to the specific aspect of the 

agent behaviour being analyzed can be represented as single nodes showing just their 

goals or tasks, while other capabilities can be fully described through the usual goal or 

task decomposition facilities (see Figure 4.47): 

 

 
Figure 4.47. An iASR diagram with both types of capability nodes. 

 

In Figure 4.47, the goal G2 has two means of achieving it, a task and a capability. The 

capability G1Cap is modeled in full detail, showing how the goal G1 is acquired and then 

achieved using two means, the tasks Means1 and Means2. Here, the assumption is that 

achieving G1 implies the achievement of G2. Another means of achieving the goal G2 is 

the task Means3, which is decomposed into the task capability T1Cap. Note the iASR 

diagram does not show the details of the task capability (e.g., whether the task Task_1 is 

decomposed into subtasks or not). It just shows that the capability executes the task 

Task_1. 

 

As previously noted, a goal capability, which achieves the goal G, may acquire this goal 

by using the commit action. The reason for this is that we would like to treat capabilities 

as modules that contain not only the agent behaviour specification, but also all the 



 136 

necessary changes to the mental state of the agent. Since we want an agent to be aware of 

the goals that it is achieving, we would like it to have the goal that G1 holds in its mental 

states if it is executing the capability G1Cap that achieves the goal G1. When an agent is 

executing one of its goal capabilities, it may or may not already have the goal of the 

capability in its mental state. For example, if the capability is used as a means of 

achieving some goal that has been previously acquired either through an intentional 

dependency or by executing a commit action, then the goal is already in the mental state 

of the agent and does not need to be reacquired.  

 

 
 

Figure 4.48a. Goal capability as a subtask. Figure 4.48b. Goal capability as a refinement of a 
parent goal.  

 

On the other hand, there are cases that require the agent to acquire the goal of the 

capability by executing a commit action. For example, if a goal capability is used as a 

task in a task decomposition (Figure 4.48a), then the agent must acquire the goal of the 

capability since it is not in the mental state of the agent. Also, the goal capability that 

achieves G2 can be used as a means of achieving the goal G1 (it makes sense if by 

achieving G2 the agent automatically achieves G1). In this case (Figure 4.48b), the agent 

must explicitly acquire the goal G2 by using the appropriate commit action.  

 

Therefore, the commit action in goal capabilities is annotated with an if-annotation that 

lets the agent acquire the goal of the capability only when it does not already have it in its 

mental state. The explicit overall structure of a goal capability is shown in Figure 4.49. 
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There, the goal capability G1CAP with its top task, AcquireAndAchieveG1, is responsible 

for both acquiring the goal G1 when necessary and providing the means for achieving it. 

As it is usual with self-acquired goals, the goal node, which indicates the presence of a 

goal in the mental state of an agent, follows the task node for the commit action together 

with the corresponding guard annotation (self-acquired goals are discussed in Section 

4.3.8). Finally, the means for achieving the goal G1 are specified by the tasks Meansi, 

connected to the goal node by the means-ends links with the appropriate link annotations 

and applicability conditions (not shown). Since a goal capability has a task at its top 

level, it can be used as a task in a larger diagram. 

 

 

Figure 4.49. The full details of a goal capability node. 

 

4.5.4 Mapping Goal Capability Nodes 
 

A goal capability node will be mapped into a CASL formula that corresponds to the goal, 

a procedure that acquires and achieves the goal, a CASL formula that specifies the 

context condition (i.e., the circumstances under which the capability is guaranteed to 

achieve its goal), and a program that specifies compatible behaviour of other agents 

(Figure 4.50).  

 

 
Figure 4.50. The mapping of a goal capability node into CASL. 
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The following is the mapping rule for goal capabilities. The mapping m will map the goal 

capability G1CAP into the tuple: 
 

m(G1CAP) = <GoalFormula, AcquireAndAchieveProc,  

ContextCond, EnvProcessesSpec>, 

where 

• GoalFormula is a CASL formula with a free situation variable 

• cPName∈AcquireAndAchieveProc  and AcquireAndAchieveProc is defined in Pc 

• EnvProcessesSpec is a program that specifies the template of behaviour of other 

agents in the environment that is compatible with the achievement procedure of 

the capability 

• ContextCond is a CASL formula with a situation variable 

 

Thus, the mapping of a goal capability node is quite similar to the mapping of a goal 

node. The differences are the addition of the context condition and the specification of 

the allowed processes in the environment. Also, note that instead of AchieveGoalProc 

here we have AcquireAndAchieveProc, which is responsible for both acquiring the goal 

and achieving it. We think of a goal capability as a module, which is responsible for both 

acquiring and achieving the goal.  

 

We use the following notation to access the goal formula, the achievement procedure, the 

compatible behaviour of other agents, and the context condition: 

 

m(G1CAP).formula = GoalFormula 

m(G1CAP).achieve = AcquireAndAchieveProc 

m(G1CAP).context = ContextCond 

m(G1CAP).envProc = EnvProcessesSpec 
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Constructing Achievement Procedures 

 

Achievement procedures for goal capabilities are constructed in a similar way to the 

achievement procedures for goal nodes. Each achievement procedure is produced by 

mapping the means-ends decomposition of the goal that the capability achieves. The 

decomposition specifies the ways that the goal can be accomplished. As is the case with 

goal nodes, the mapping of the achievement procedures for the goal capabilities will take 

into consideration the applicability conditions that may accompany the task nodes, which 

represent various means for achieving the goals of the capabilities (see Figure 4.51). 

 
GCAP

...

AcquireAnd 
AchieveG

commit(G) G

guard( (G))if(¬ (G))

Means1 Means2 Meansn

ac(φ1) ac(φ2)
ac(φn)

α1 α2 αn

 
Figure 4.51. Specifying means to achieve the goal of a goal capability. 

 

Figure 4.51 shows a generic goal capability GCAP that achieves the goal G and its means-

ends decomposition that models various approaches for achieving the goal G. We show 

the full details of the goal capability here, including the acquisition of the goal G. Each of 

the means to achieve the goal, represented by the task Meansi, is accompanied by the 

applicability conditions φi and link annotations αi. Suppose that m(GCAP).achieve = 

GCAP_achieve, then the code for GCAP_achieve is as follows: 
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proc GCAP_achieve( t
r
) 

if ¬Goal(agt,m(G1CAP).formula( t
r
)) then 

commit(agt,m(G1CAP).formula( t
r
)) endIf; 

 guard Goal(agt,m(G1CAP).formula( t
r
)) do 

   guard m(φ1) do m(α1)(m(Means1) endGuard 

               | 

     ... 

            | 
   guard m(φn) do m(αn)(m(Meansn) endGuard 

  endGuard 

endProc 

 

The above procedure did not make use of the context condition of the capability GCAP. 

The condition is not used in the achievement procedures of goal capabilities or the 

procedures that perform the required tasks of task capabilities. Instead, the context 

condition for a capability can be used to guard the selection of the capability as a means 

to achieve a goal or a way to perform a task (similar to the applicability condition for 

means-ends links). In addition, a context condition can be used as an assertion that would 

help in proving properties about the system. When its context condition does not hold, a 

capability is not guaranteed to execute successfully. We use the generic example below 

(Figure 4.52) to illustrate this. 

 

 
Figure 4.52. A goal capability used as a means to achieve a goal. 
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Figure 4.52 shows a means-ends decomposition of the goal G1. There are n+1 means for 

achieving G1: the goal capability G2CAP and n tasks Meansi. Each of the means for 

achieving G1 is accompanied by a link annotation: the goal capability has the link 

annotation γ, while each task Meansi has the link annotation αi. Additionally, all of the 

means to achieve the goal G1 have applicability conditions: the capability G2CAP has the 

applicability condition ψ, while the tasks Meansi each have the condition φi. The 

applicability conditions specify, as usual, when it makes sense to use the means to try to 

achieve the goal G1. The achievement procedure for the goal G1 will then look as follows 

(suppose that m(G1).achieve = G1_achieve): 

 

  proc G1_achieve 

 guard m(ψ) do m(γ)(m(G2CAP).achieve) endGuard 

    | 
 guard m(φ1) do m(α1)(m(Means1) endGuard 

    | 

 … 

    | 
 guard m(φn) do m(αn)(m(Meansn) endGuard 

  endProc 

 

The context conditions of capabilities are mostly used to prove properties of the system. 

However, we do not require that the capabilities only be used when their context 

conditions hold. One may want to use a capability even though its context condition is 

not satisfied. In cases like this, there is no guarantee that the capability successfully 

achieves its aim. When the designer wishes to make sure that a capability is used only 

when its context condition is satisfied, he should make it part of the applicability 

condition. This will guarantee that the capability is not invoked when its context 

condition is not satisfied. The context condition for the goal capability G2CAP in Figure 

4.52 will become the following: 
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m(G2CAP).context ∧ m(ψ) 

 

Achievement Procedure Constraints 

 

A CASL procedure that achieves the goal of a goal capability must be written much more 

carefully than a regular goal achievement procedure. We require that the procedure 

(provided that the context condition for the capability holds) be both physically 

executable and epistemically feasible. There is an important restriction on the 

achievement procedures for goal capabilities: 

 

∀s.contextCond(s) ⊃  
AllDo(Subj(agt,AcquireAndAchieveProc ; Formula?) || EnvProcessesSpec,s) 

 

The above constraint states that in all situations satisfying the context condition, every 

subjective execution (see Sections 2.2.4.1 and 2.2.4.2 for the discussion of subjective and 

deliberative execution of programs) of the achievement procedure of a capability by the 

agent in an environment in which processes specified by EnvProcessesSpec may occur 

terminates with the goal being achieved. We note here that for smart agents that 

deliberate and use lookahead, the Delib(agt,δ) notation can be used instead of 

Subj(agt,δ). 

 

The designer must determine exactly what behaviour guarantees the successful execution 

of the achievement procedure for a goal capability. One of the extreme cases is when 

EnvProcessesSpec is empty (i.e., EnvProcessesSpec = nil). In this case, no outside 

processes are permitted if one wants a guarantee that the achievement procedure 

succeeds. On the other hand, if EnvProcessesSpec is as follows: 
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EnvProcessesSpec = (π act.(Agent(act) ≠ agt)? ; act)≤k2, 

 

then we are saying that the goal will be achieved no matter what the other agents do. Of 

course, the specification for most capabilities will identify concrete behaviours for the 

agents in the environment, which assure the successful execution of the achievement 

procedure. For example, suppose an agent has a goal capability to fill a tank with water. 

It is guaranteed to succeed unless the tank’s valve is opened. Here is the corresponding 

specification for the outside processes compatible with the capability: 

 

EnvProcessesSpec = (π act.(act ≠ openValve)? ; act)≤k 

 

As we mentioned previously, a goal capability that achieves the goal G2 can be used to 

achieve another goal, G1, if G2 is a refinement of G1. In other words, we can put the goal 

capability node G2CAP beneath a goal node G1 as a means of achieving that goal if the 

following holds: 

 

∀s.m(G2CAP).context(s) ∧ m(G2CAP).formula(s) ⊃ m(G1).formula(s) 

 

4.5.5 Mapping Task Capability Nodes 
 

The mapping rules for task capabilities are simpler than the rules for goal capabilities 

described above. Task capabilities are mapped into the corresponding CASL procedures 

that execute the task, the context conditions that, as before, describe the circumstances 

under which the capabilities are guaranteed to succeed, and the specifications of other 

agents’ behaviour, which are compatible with them succeeding. It should always be 

possible to successfully execute the CASL procedures that task capabilities are mapped 

into, provided the corresponding context conditions hold and the actions of other agents 

                                                 
2 δ≤k specifies that the program δ is iterated nondeterministically up to k times. 
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in the environment are restricted to the ones allowed by EnvProcessesSpec. These 

procedures are also required to be epistemically feasible. 

 

 
Figure 4.53. The mapping of a task capability node into CASL. 

 

A task capability node will be mapped into a CASL procedure that corresponds to the 

task, a context condition that must hold for the procedure to be successfully executed, and 

a CASL program that describes the behaviour of other agents that is compatible with the 

procedure that the capability maps into (see Figure 4.53). 

 

m(T1CAP) = <TaskProc, ContextCond, EnvProcessesSpec>, 

where 

• cPName∈TaskProc   and TaskProc is defined in Pc 

• EnvProcessesSpec is a program that specifies the behaviour of other agents in 

the environment that is compatible with TaskProc 

• ContextCond is a CASL formula with a free situation variable 

 

The following notation is used to access the CASL procedure associated with the 

capability, the context condition, and the compatible behaviour of other agents: 

 

   m(T1CAP).procedure = TaskProc 

   m(T1CAP).context = ContextCond 

   m(T1CAP).envProc = EnvProcessesSpec 

 

A task capability can be used anywhere a task node can be used in i* diagrams. Figure 

4.54 is an example of a task capability used as a subtask of another task. 
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In Figure 4.54, we have the task capability STCAP as a subtask of ParentTask. It is 

accompanied by the link annotation γ. The code for ParentTask is not different from the 

CASL code that the task would map into if none of its subtasks were capabilities. Below 

we show the part of the CASL procedure for ParentTask that involves the capability 

STCAP (suppose that m(ParentTask) = ParentTaskProc): 

 

proc ParentTaskProc 

    m(γ)(m(STCAP).procedure); 

    … 
 endProc 

 

;

...Means1 Meansn

α1 αn
γ

STCAP

SubTask

Parent 
Task

 
Figure 4.54. Task capability used as a subtask. 

 

Constructing Procedures for Task Capabilities 

 

The CASL procedure that the task capability is mapped into, TaskProc, is constructed 

just like a procedure for an ordinary task, taking into consideration the decomposition of 

the main task of the capability, along with the corresponding composition and link 

annotations. See Section 4.2.3 for details on the mapping of task decompositions into 

CASL.  

 

Task Procedure Constraints 

 

The procedure of a task capability must be successfully executable whenever the context 

condition holds at the time of its invocation and the actions by other agents in the 
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environment are restricted to the ones specified by EnvProcessesSpec. The procedure 

must also be epistemically feasible. Thus, the constraint that guarantees the successful 

execution of the procedures of task capabilities is very similar to the constraint for goal 

capabilities: 

 

∀s.ContextCond(s) ⊃ AllDo(Subj(agt,TaskProc) || EnvProcessesSpec, s) 

 
4.5.6 Discussion 
 

Goal capabilities have to be able to achieve their goals whenever their context condition 

holds at the time of invocation and provided that other agents in the environment are 

executing actions compatible with the achievement procedure of the capability. Therefore 

the designer needs to be careful in defining the goals of the capabilities, their context 

conditions, and the specification of compatible processes in order to avoid the situations 

where goal capabilities are supposed to achieve goals that are not, in fact, always 

achievable with the available plans. For example, the capability of an agent to book a 

meeting room might be conditional upon the availability of meeting rooms. Such goals 

must be properly deidealized (relaxed to make them always achievable). 

 

While the context condition of a capability specifies the restrictions on the starting 

situation (where the capability is invoked), more research needs to be done on how to 

formalize some assumptions on what activities can and cannot be performed by other 

agents while the capability is running so as to avoid interference. However, our 

formalization of capabilities seems to be compatible with many ways of specifying 

allowable outside processes. 
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Using capabilities 

 

Generally, there are agents that are being created as part of the system-to-be and there are 

agents that already exist in the organization or in the environment in which the system is 

to be situated. Therefore, it is necessary for our analysis to model the environment where 

our system is to be integrated. Capabilities provide a reasonable abstraction for 

describing agents that are part of the environment. This environment may include legacy 

systems that we want to interface with as well as human agents and we will need to 

include the relevant agents from the environment into our models. We may have quite 

detailed information about some of these agents, while having no information about the 

internals of the others. Either way, capabilities seem to be an appropriate formalism to 

model these agents. If we know that an agent that is part of some legacy system is able to 

achieve a certain goal or perform a certain task, we can model that by putting a capability 

box corresponding to the goal or the task inside the agent even if we don’t know the 

internals of this capability. By doing this we state that we are confident that under certain 

conditions these agents will be guaranteed to succeed in executing their capabilities.  

 

For the agents that are being designed as part of the system-to-be, turning some 

behaviours into capabilities requires the designer to be very careful in modeling those 

behaviours. On the other hand, capabilities guarantee that they can be successfully 

executed provided their context conditions hold at the time of invocation and no agent 

executes actions incompatible with the capability. This could be viewed as an instance of 

the Design by Contract principle [Meyer, 1997].  

 

Capabilities as Components  

 

The problem of software reuse is very important in software engineering. Software 

components are currently in use in all sorts of applications, from consumer-oriented to 

enterprise-level ones. The Internet opened the doors to an even wider use of component 
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technologies (e.g., Enterprise JavaBeans [Sun Microsystems, 2002]). The domain of 

open, dynamic multiagent systems with agents that adapt to changes in the environment 

and switch their roles depending on their objectives is an ideal domain for 

componentization. Capabilities are good candidates for the specification of components. 

Agent capabilities seem to be at the right level of abstraction for the analysis of 

multiagent systems and exploration of software reuse possibilities. Pluggable behaviours 

could be analyzed and verified separately and building agents will involve loading 

modules with the required behaviour. Components could also very naturally support 

agents that change roles — the agents will just load the behaviours that correspond to the 

new role and start using them.  

 

Based on the above discussion, it is quite desirable to have a formal framework that can 

support the notion of agent capability as a pluggable behaviour. The capabilities will then 

have an interface that clearly identifies the goal that the capability is able to achieve, the 

preconditions for the use of the capability, or the context of the capability. The 

capabilities will essentially be plans that achieve certain goals or perform certain tasks, 

possibly with their own local fluents and a fragment of the knowledge base in order to 

isolate the modules as much as possible. The capabilities then become “black boxes” that 

have precisely defined input and output and hide their internals. However, this is a 

potential problem since in many applications it is important to optimize the agents’ 

activities, construct plans to achieve very high-level goals, and so on, which could be 

hard without the ability to peek inside the plans the agents are executing as part of their 

capabilities. It seems, therefore, that it makes sense to turn capabilities into “grey boxes”, 

which reveal at least their high-level structure and can be tuned according to individual 

agents’ demands. These are the topics that require further exploration. 
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4.6 Synchronizing Procedural and Declarative Components 
of CASL Agents 
 

As discussed in Section 4.3.6, CASL agents have two components: the procedural 

specification of their behaviour and the declarative specification of their mental states. 

iASR diagrams represent the procedural component of CASL agents. Thus, the presence 

of a goal node in an iASR diagram states that the agent is aware of the goal being in its 

mental state and is prepared to deliberate on whether and how to achieve it. For the agent 

to modify its behaviour in response to the changes to its mental state, it must synchronize 

its procedural and declarative components.  

 

Figure 4.55 is an overview of how the mental state and the process specification of a 

CASL agent can be synchronized. The process specification can be used to acquire goals 

and knowledge through the commit and the assume actions respectively. On the other 

hand, in order to modify the behaviour of the agent based on the changes to its mental 

state, one needs to use interrupts or guards.  

 
request,

inform, etc.

Procedural

Declarative

commit,
assume

guard,
interrupt

CASL 
Agent

 
Figure 4.55. Synchronizing procedural and declarative components of CASL agents. 
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5 The Combined i*/CASL Methodology 
 

In this chapter we describe our requirements engineering methodology that combines the 

i* modeling framework [Yu, 1995] with the Cognitive Agents Specification Language 

(CASL) [Shapiro and Lespérance, 2001]. The standard i* modelling framework with its 

Strategic Dependency and Strategic Rationale diagrams is used first for the early phase 

and some of the late phase of the requirements engineering process, while the Intentional 

Annotated SR (iASR) diagrams are used for the late phase of RE. The iASR models are 

then mapped into CASL and the CASL agent programming language is used for 

validation and verification of the iASR models.  

 

5.1 Introduction 
 

i* is an informal graphical framework very well suited for both early and late 

requirements analysis stages. It has powerful facilities for capturing the intentional and 

strategic aspects of the operational environment of the system-to-be as well as for 

describing the intentional aspects of the system-to-be itself. The network of inter-actor 

dependencies produced by the i* approach is a tool for analyzing various (possibly 

alternative) responsibility assignments in the system. i* supports reasoning  about 

functional and non-functional dependencies among actors as well as the analysis of goal 

and softgoal decompositions aimed at finding the best alternative for achieving these 

goals and softgoals.  We think that CASL naturally complements i* since it is amenable 

to formal analysis and supports reasoning about the goals and knowledge of the agents. It 

provides agent-oriented verification and simulation environments that support the 

intentional notions of i*, thus allowing us to incorporate these notions further in the 

software engineering process. 
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While a certain portion of the i* modeling framework has been formally represented in 

the modeling language Telos [Mylopoulos et al., 1990], many aspects of i* models still 

do not have precise semantics (e.g., a task decomposition). In the previous chapter, we 

presented an approach that aims at disambiguating Strategic Rationale diagrams of i* and 

increasing the detail level of the diagrams to the point that they can be straightforwardly 

mapped into the corresponding CASL models. These models can then be formally 

verified using the CASLve tool [Shapiro et al., 2002] in order to discover inconsistencies 

within the requirements. The formal analysis of software requirements greatly increases 

the chances that errors and inconsistencies in the requirements for software systems are 

found and fixed, thus avoiding the need for costly software modifications that result from 

these errors propagating into the design and implementation of the system. 

 

The assumption that our requirements engineering methodology makes is that modeling 

and analysis cannot be performed adequately in isolation from the organizational and 

social context in which a new system will have to operate. Our proposal generally 

follows the i* methodology for requirements engineering [Yu, 1995] and the i*-

ConGolog methodology [Wang, 2001], but includes several important enhancements. 

There are two types of enhancements that we make to the standard i* approach. The 

modeling improvements include, among other things, the use of self-dependencies, 

capability nodes, the System agent, and, most importantly, the iASR diagrams and their 

mapping into CASL models. This RE methodology can be integrated quite easily into the 

Tropos agent-oriented development methodology [Castro et al., 2002]. Not unlike the 

Tropos methodology, we are advocating the use of RE notions throughout the 

development process. The emphasis of the methodology is on the phase of the 

requirements engineering process that takes place before the formulation of the initial 

requirements. Our goal here is to understand the “whys” of the requirements [Yu and 

Mylopoulos, 1994]. We analyze why the system is needed, how the interests of the 

stakeholders can be addressed, how the system would meet its organizational goals, what 

the alternatives for the system are and how they affect the stakeholders [Yu, 1997]. Since 
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stakeholder goals are the origin of requirements for the system-to-be, we see 

requirements-driven software engineering as well as goal-based Requirements 

Engineering as extremely promising approaches. We use the i* notation to capture the 

intentions of stakeholders, the responsibilities of the system towards these stakeholders, 

and some aspects of the architecture of the system. CASL is used for the formal analysis 

of the system. 

 

To illustrate the methodology we will use some generic examples as well as examples 

from a system for scheduling meetings within an organization. It is a variation of the 

system described in [Yu, 1995]. For each meeting request the system will try to find a 

date from the preferred date range that satisfies all of the intended participants. Once such 

date is found, the meeting is confirmed and an appropriate room for it is booked. The 

system is presented in detail in Chapter 6 of this thesis. Below we present an overview of 

the methodology. 

 

5.1.1 Methodology Overview 
 

Let us briefly survey the main elements of our methodology. We provide the details in 

the rest of the chapter. 

 

1. Early Requirements (Section 5.2). The analysis of the organizational environment for 

the system-to-be is performed with the help of the i* notation. Stakeholders and their 

goals are identified (Sections 5.2.1, 5.2.2) together with the intentional dependencies that 

exist in the organization (Section 5.2.3). SD diagrams are used to help in collecting, 

representing and analyzing this information. SR diagrams may also be used during the 

early phase of RE, providing more details about individual stakeholders and their 

relationships. The importance of non-functional requirements is stressed in Section 5.2.4. 

New modeling elements, capability nodes, are proposed for use in both SD and SR 
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models (Section 5.2.3). Additional organizational details can be added with the help of 

the Serves and Trusts relationships, which are discussed in Section 5.2.5.  

 

2. Late Requirements with SD Models (Section 5.3). The system-to-be is introduced into 

SD models through one or more actors (Section 5.3.1). The intentional dependencies are 

adjusted. The possible system-environment boundaries are analyzed. The use of the new 

special System agent is proposed in Section 5.3.2. 

 

3. Architectural Analysis (Section 5.4). Organizational architectural style is selected as in 

[Fuxman et al., 2001a] and analyzed using the NFR framework [Chung et al., 2000]. The 

system architecture is then analyzed. Agent may be decomposed into sub-agents to 

reduce the load, improve the communication patterns, etc. Architectural patterns may also 

be used as suggested in [Castro et al., 2002]. The agent-oriented system architecture may 

be modified based on the feedback from the SR-level analysis. 

 

4. Late Requirements Using SR Models (Section 5.5). Agents’ processes are analyzed. SR 

diagrams are used to model the rationale for and motivation of individual agents. 

Alternative process configurations are identified and analyzed based on their 

contributions to softgoals. Intentional Annotated SR (iASR) diagrams are then produced 

(Section 5.5.2). Annotations are added to the SR diagrams to provide more details and 

precision and goal decompositions are modified (Section 5.5.6) for easy mapping into 

CASL specifications. Goal dependencies are not abstracted out (Section 5.5.3), but 

converted into the corresponding interactions between agents, while goals are deidealized 

and softgoals are suppressed (Section 5.5.4). Agent interactions are then detailed (Section 

5.5.5). The use of capability nodes is described in Section 5.5.7. 

 

5. Requirements Verification Using CASL (Section 5.6). iASR diagrams are mapped into 

CASL (Section 5.6.1) and analyzed using CASLve (Section 5.6.2) and possibly other 

tools. Since the methodology supports requirements traceability quite well (Section 
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5.6.3), problems found during the formal analysis of the CASL specifications can be used 

to appropriately modify the SD and SR models. 

 

 

5.2 Early Requirements: Understanding the Organizational 
Setting 
 

The first step in coming up with a correct, unambiguous, and precise requirements 

document is to analyze the environment in which the system-to-be is intended to be 

situated. The phase of the methodology during which these activities are performed is 

called the early requirements phase.  

 

In most software projects, the goal is to create a system that improves the processes in the 

organization in some way or another. In order to create a system that achieves this 

improvement and meets the expectations of its users, we need to understand the 

environment of the proposed system, the existing processes, and the goals of the players 

in the organization. Therefore, the first step is to analyze the relationships among the 

stakeholders in the organizational environment as it exists before the introduction of the 

system-to-be. The way we approach the problem of analyzing the environment of the 

system as well as the system in its environment is through modeling. Modeling is the 

process of constructing abstract descriptions, possibly formal, that are amenable to 

interpretation. Modeling has many benefits. It facilitates in requirements elicitation by 

guiding it and helping the requirements engineer look at the domain systematically. 

Models can also be a measure of progress since usually the more complete the model is, 

the more complete the elicitation is. Moreover, inconsistencies in the model are indicative 

of conflicting or infeasible requirements, disagreements among stakeholders, or 

confusion over terminology. Models are an invaluable tool for checking the 

understanding of the environment/system by the requirements engineer. Formal models 

can be tested to determine whether they have the desired properties and consequences 
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and whether they are consistent; they can also be animated to help in validation of the 

requirements. In this phase of the requirements engineering process, we use the i*’s 

Strategic Dependency models to model the intentional aspects of the organization. 

 

The early phase of requirements engineering deals with enterprise modeling. Here, we 

model the organization in which the development takes place and/or in which the system 

will operate. Enterprise modeling and analysis deals with understanding an organization’s 

structure, “the business rules that affect its operation, the goals, tasks and responsibilities 

of its constituent members, and the data that it needs, generates, and manipulates” 

[Nuseibeh and Easterbrook, 2000].  

 

5.2.1 Identifying Stakeholders 
 

We first identify the stakeholders in the environment of the system-to-be. There are many 

definitions of the term stakeholder in the literature. Nuseibeh and Easterbrook [Nuseibeh 

and Easterbrook, 2000] define stakeholders as “individuals or organizations who stand to 

gain or loose from the success or failure of the system”, while one of the definitions 

presented in [Kotonya and Sommerville, 1998] states that “system stakeholders are 

people or organizations who will be affected by the system and who have a direct or 

indirect influence on the system requirements”. 

 

In general, the stakeholders are customers who order the system, developers who design 

the system, and users who interact with the system to achieve their goals. The 

stakeholders are modeled as actors in the i* framework. The actors could be entities (i.e., 

people, software agents) or roles (e.g., “meeting participant”). The distinctions among an 

agent, a role, and a position are discussed in Section 2.1.1.  

 

The identification of stakeholders is an informal process, which is usually assumed to be 

fairly straightforward and most requirements engineering methods (e.g., KAOS 



 156 

[Dardenne et al., 1993]) do not support the stakeholder identification activities per se. 

However, in many cases coming up with a set of stakeholders is not a trivial task. [Sharp 

et al., 1999] attempt to devise a domain-independent, effective, and pragmatic approach 

to discovering the relevant stakeholders of a specific system. This problem is out of the 

scope of this thesis, so we assume that an appropriate technique for discovering 

stakeholders is used at this stage of the methodology. 

 

In our meeting scheduler system, we identify the Meeting Initiator (MI), which is a role 

within an organization. This means that many individual agents can play that role and 

schedule meetings. The Meeting Initiator is the actor that is most interested in the 

meetings taking place and thus will initiate the process of arranging a meeting. The 

second stakeholder is the Meeting Participant (MP), a role played by agents that are 

requested to participate in meetings by the Meeting Initiator. The third stakeholder is an 

agent called the Meeting Room Booking System (MRBS). This represents a software 

system that already exists in the organization and whose aim is to track the availability of 

meeting rooms. Figure 5.1 shows the above stakeholders using the i* notation: 

 

 
Figure 5.1. The stakeholders of the Meeting Scheduler System. 

 

The MRBS agent in the above figure is an example of a legacy software system that we 

model as a stakeholder in the organizational model. Depending on the application, it may 

be useful to model legacy systems, people, and even hardware devices as stakeholders. 

Generally, a person or an entity can be an actor in an i* Strategic Dependency model if it 
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can be assigned responsibility for goals/subgoals of other actors in the environment of the 

system-to-be or the system-to-be itself, or depends on these actors. 

 

5.2.2 Discovering Stakeholder Goals 
 

At this stage, we model the existing processes in the organization since analyzing the way 

the current system/organization works is crucial in determining the requirements for the 

system-to-be. Upon identifying the stakeholders in the system we can analyze each 

stakeholder in terms of its goals. Whether the actors participating in the system are self-

interested or altruistic, they all have their objectives and strive to achieve these 

objectives. Identifying the stakeholders’ goals is therefore an important step towards 

understanding the system rationale. Eliciting goals focuses the RE engineer on the needs 

of the stakeholders, rather than on the possible solutions satisfying these needs. Once we 

have identified the stakeholders, we can start analyzing what each stakeholder brings to 

the organization and what it expects from the other actors in the organization. This is 

described in terms of the delegated goals/tasks/resources — the goals the actor wants 

others in the organization to achieve for it, the tasks it wants performed, and the resources 

it wants furnished.  

 

In order to help the modeler gradually document the goals of the stakeholders we propose 

the use of the following notation (Figure 5.2): 

 

 

Figure 5.2. An actor, whose goals are not yet delegated to other actors. 

 

Here, we have a stakeholder called Actor1 with three goals: Goal1, Goal2, and Goal3. 

These goals have been identified by the modeler, but have not yet been made part of any 
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intentional dependency. Upon finding the right actor to delegate a stakeholder goal to, the 

modeler will draw an arrow from the goal node to another actor, thus completing the 

dependency (note that here we are modeling the existing system, so finding the actor to 

delegate a stakeholder goal to amounts to discovering the existing business processes 

within the organization). This minor addition to the i* notation is useful in some of the 

modeling activities. It can be used during the early requirements phase while discovering 

the goals of stakeholders. We can also use the same notation later when the system-to-be 

is introduced into the models. At that point, the dependencies in the organization are 

changed to include the actors of the system-to-be. The notation of Figure 5.2 will help by 

showing the goals of the actors graphically. Figure 5.3 shows the goals of Meeting 

Initiator. It needs to schedule a meeting and also book a conference room for that 

meeting. 

 

 
Figure 5.3. The Meeting Initiator agent with two of its goals. 

 

5.2.3 Discovering Intentional Dependencies among Actors 
 

In i*, intentional dependencies are extremely important. When an actor cannot achieve 

one of its goals or cannot achieve it as efficiently as some other actor in the organization, 

it can choose to delegate the achievement of the goal to another actor capable of 

achieving it.  While this may be advantageous to the delegating actor, the actor becomes 

vulnerable if the delegated actor fails to achieve this goal.  

 

Dependencies represent such patterns of social relationships in the system. They act as 

the “glue” that binds the system together.  Without dependencies, the system does not 
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exist as a whole. The absence of inter-actor dependencies in the system/organization 

indicates that the actors are capable of achieving their goals, performing their tasks, and 

providing the needed resources on their own, without any help from others. This means 

that there is no cooperation, communication, coordination, etc. among the individuals. 

But these notions are fundamental for human organizations. In the domain of human 

organizations (and modern human society in general), no individual has all the 

capabilities and resources to satisfy his needs, so he is forced to cooperate with others by 

delegating some of his goals to other actors in the society while taking on responsibilities 

to assist others with the achievement of their own goals. Thus, the dependencies (both 

incoming and outgoing) are what makes an individual/organization/etc. part of the 

society. Modeling inter-actor dependencies is therefore of foremost importance to a 

requirements engineer. 

 

The i* approach allows us to analyze the goals of the actors and their strategic 

dependencies, thus capturing the intentional aspects of the system-to-be and its 

organizational environment. i* has four types of dependencies among actors: a goal 

dependency, where a depender delegates the achievement of a certain goal to a dependee, 

a task dependency, where the execution of the task is delegated to a dependee, a resource 

dependency, which indicates that the dependee is expected to provide a resource for the 

depender, and a softgoal dependency, where the dependee achieves a goal that is 

expressed qualitatively. As mentioned above, by depending on other actors an actor gains 

the opportunity to achieve some of its goals that it cannot achieve otherwise, or to 

achieve them goals more efficiently. At the same time the depender becomes vulnerable 

if the dependee is unable/unwilling to provide the dependum (achieve the requested goal, 

provide the resource, or perform the task).  

 

At this stage, the modeler analyzes the organization (the environment for the system-to-

be) and determines what dependencies exist among the stakeholders. The Strategic 

Dependency model of the organization is updated accordingly. To discover the 
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intentional dependencies in an organization we analyze how the goals of the actors in the 

organization are achieved through delegation to other actors. As already mentioned, the 

network of intentional dependencies that exists in an organization represents the existing 

business processes in that organization. 

 

The figure below (Figure 5.4) is a modified version of Figure 5.2 where one of the goals 

of Actor1 is delegated to Actor2. This diagram shows that the modeler has determined 

that Actor1 depends on Actor2 for the fulfillment of the goal dependency Goal1, while 

the dependencies involving the other two goals of Agent1 have not yet been modeled in 

the diagram. 

 

 
Figure 5.4. An actor with one goal delegated to another actor. 

 

Self-dependencies are a useful addition to the i* notation, one which we think will help 

modelers analyze intentional dependencies among the actors in the environment and later 

reorganize them after the system-to-be is introduced. Self-dependencies indicate that a 

stakeholder needs to achieve a certain goal, get a certain resource, or perform a certain 

task, and that currently it is the stakeholder itself who is responsible for achieving the 

goal, furnishing the resource, or performing the task. Figure 5.5 shows a possible model 

of the environment of a meeting scheduling system. Meeting initiators need intended 

meeting participants to attend meetings. Also, the initiators need to schedule their 

meetings and book the conference rooms themselves.  

 

Another addition to SD diagrams that we would like to propose is the use of capability 

nodes (see Section 4.5 for a thorough discussion). Capabilities are meant to indicate that 
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the agent can always achieve the goal or successfully execute the task specified within 

the capability node, provided that certain context conditions hold. This is quite similar to 

Design by Contract [Meyer, 1997] in the sense that if the depender makes sure that the 

corresponding context condition holds, the dependee in turn guarantees to provide the 

dependum. Thus, capabilities provide higher level of assurance to the depender than 

regular goals or tasks. Capability nodes at the SD level are used primarily for specifying 

the capabilities of the agents that are part of the environment of the system-to-be. These 

could be humans, hardware devices, or legacy software systems. During the late 

requirements stage one of the tasks of the modeler is to identify the actors of the system-

to-be and determine what their responsibilities are going to be. In contrast to this, the 

actors that are part of the environment of the future system already have certain 

behaviour built into them. This behaviour is most easily identified for hardware devices 

and software systems. To model the capabilities of the environment-based agents it is 

useful to use task or goal capability nodes (see Figure 5.6). 

 

 
Figure 5.5. The model of the environment for the meeting scheduler system. 

 

Figure 5.6 shows the actor Actor1, which has the capability to achieve Goal_1 and the 

capability to perform Task_1. We use capabilities to describe the services of the 

environment agents when we are sure that these services can always be delivered 

provided certain specified context conditions hold. A good example of a capability is a 

method that is part of the interface of some software component. Provided that certain 

preconditions hold at the time this method is invoked, it is guaranteed (assuming the 
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supplier of the component verified it properly) to deliver the expected result. 

Alternatively, capabilities can be used with the agents of the system-to-be to specify the 

goals/tasks that those agents must always be capable of achieving/executing. 

 

 
Figure 5.6. The use of capability nodes in SD diagrams. 

 

While a lot of the information in the early requirements phase can be modeled and 

analyzed using just the SD diagrams, to get the complete understanding of the 

organization modelers might need to use the Strategic Rationale diagrams for more 

detailed look at the environment of the system-to-be. The SR models help in analyzing 

individual actors, their rationale and their intentions, and can reveal previously 

unidentified dependencies among the stakeholders. This information can be used to 

update the corresponding SD diagrams. 

 

5.2.4 Analyzing Non-Functional Dependencies 
 

An important aspect of requirements engineering is the analysis of non-functional 

requirements (NFRs). These are sometimes called quality requirements. i* supports 

reasoning about non-functional requirements through the use of softgoals. There is no 

clear-cut satisfaction condition for a softgoal. Softgoals are related to the notion of 

satisficing [Simon, 1981]. Unlike regular goals, for softgoals one needs to find solutions 

that are “good enough”, where softgoals are satisficed to a sufficient degree. High-level 

non-functional requirements are abundant in organizations and quite frequently the 

success of systems depends on the satisficing of their non-functional requirements. While 

there are frameworks that deal exclusively with NFRs and allow their systematic 
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treatment (e.g., the NFR-Framework [Chung et al., 2000]), i*’s support for the modeling 

of NFRs and their effect on systems and organizations is quite strong. During the early 

requirements engineering phase the modeler identifies the stakeholder goals that can be 

either regular goals, which lead to functional requirements, or softgoals, which lead to 

non-functional requirements.  

 

 

Figure 5.7. Modeling Non-Functional Dependencies. 

 

Figure 5.7 shows an example of a softgoal dependency among the actors in the 

environment of the system-to-be. Here, the Meeting Participant actor wants the meeting, 

which is being scheduled by the Meeting Initiator agent, to be convenient in terms of time 

and place. Convenience is clearly a goal that can be achieved to various degrees. If one 

has many softgoals with the same name (e.g., Accuracy) related to different processes, it 

might be convenient to indicate which goal/task/resource the softgoal is related to (e.g., 

Accuracy(RoomBooked)). 

 

At this stage, the objective of the modeler is to identify the softgoal dependencies among 

the actors in the environment. These dependencies will remain in the model with the 

introduction of the system-to-be. Softgoals, whose achievement is assigned to the system 

later in the process, will naturally become non-functional requirements. 

 

Generally, softgoals guide the modeler in the selection of different system configurations 

or design/process alternatives. Softgoals will be either abstracted out at some point in the 
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requirements engineering process having helped in such selection, or will be 

operationalized into some set of regular goals (whose satisfaction is easy to monitor for) 

and/or tasks, whose achievement/execution approximates the softgoal. i* supports 

reasoning about non-functional requirements during the early and late requirements 

phases through the use of softgoal dependencies in Strategic Dependency diagrams. 

Strategic Rationale diagrams provide facilities to show positive or negative contributions 

of various alternative configurations to the softgoals. 

 

5.2.5 More Organizational Details: The Trusts and Serves Relationships 
 

While most effort at the early requirements stage in our methodology is concentrated on 

modeling stakeholders, their intentions, and the intentional dependencies in the 

organization using the i* notation, modeling other organizational details could be useful 

as well. There are many organizational and social aspects in an organization that may 

influence the design, architectural, deployment, etc. choices for the system-to-be. A lot of 

these aspects (e.g., security, efficiency, etc.) will give rise to non-functional requirements, 

which we will talk about in the next section. Taking these aspects into consideration 

during the design of the new system helps in building a system that matches the 

organization as closely as possible and satisfies the needs of the stakeholders in the best 

possible way. Some properties of organizations can be captured (albeit in a simplified 

form) by models. In the previous chapter, we have introduced the Trusts (Section 4.4.4) 

and Serves (Section 4.3.7.3) relationships. The use of these relationships was described in 

conjunction with CASL models, where they can be used to address concerns such as 

security. On the other hand, we believe that the Serves and Trusts relationships can come 

into play earlier in the requirements engineering process, during early requirements 

phase. The Serves relationship can be used to approximate the managerial structure of an 

organization, while the Trusts relationship can be used to coarsely model some of the 

privacy and information security policies of an organization. The Serves and Trusts 

relationships are directed relations that could be represented as directed graphs. The 
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Serves relationship specifies, for each actor, which other actors it is willing to help in the 

achievement of their goals. Similarly, the Trusts relationship specifies, for each actor, 

which actors in the organization it believes. While in the early requirements phase, the 

Trusts and Serves relationships are intended as a rough approximation of the state of 

affairs in the organization, much more detailed versions of these relationships could be 

introduced later. The requirements engineer can start modeling by stating, for example, 

that one particular actor named Actor1 generally trusts Actor2, or that Actor1 is generally 

helpful to Actor3. The relationships can be refined when more details are needed: Actor1 

trusts Actor2’s information if it related to some specific topic, and Actor1 is helpful to 

Actor3 in achieving a certain set of goals. We do not insist on any particular modeling 

notation to represent these relationships. For example, the figure below shows a graph 

with three actors with arrows representing the Trusts or Serves relationships among them. 

We can see that Actor1 is helpful to Actor2 and Actor2 and Actor3 are mutually helpful 

to each other.  

 

 
Figure 5.8. A possible graphical representation for the Trusts or Serves relationships. 

 

This simple graphical representation for the Serves relationship applies only in the case of 

actors being generally helpful to other actors.  Representing more detailed relationships 

among actors as described above requires more complex diagrams or multiple diagrams. 

For example, one can have as many directed graphs as there are stakeholder or agent 

goals. On the other hand, one can label the arrows in the graph with particular goal(s). 

The same applies to the Trusts relationship: its general form can be easily represented by 

a directed graph, while more detailed versions will require more complex notations. We 

acknowledge that more work needs to be done to come up with a simple graphical 

notation for representing the Serves and Trusts relationships, but this is outside of the 

Actor2 Actor3 Actor1 
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scope of this thesis. As we demonstrated in Sections 4.3.7.3 and 4.4.4, these 

relationships, however detailed, can be easily mapped into CASL code to allow for more 

detailed analysis of the CASL model of the system-to-be. 

 

While modeling the Trusts/Serves relationships is optional, we feel that doing this early 

on may allow the modeler to understand the organization better. The level of detail of the 

models of these relationships can be adjusted to the modeler’s needs: they can be very 

high-level during the early requirements phase and get more and more detailed as the RE 

process moves closer to requirements validation. 

 

 

5.3 Late Requirements Using SD Diagrams 
 

While in the early requirements phase we concentrated on modeling the existing 

system/organization, in the late requirements phase of the software engineering process 

we essentially model the required future system. Nuseibeh and Easterbrook [Nuseibeh 

and Easterbrook, 2000] note that the distinction between modeling an existing system, 

and modeling a future system is an important one, and is often blurred by the use of the 

same modeling technique for both. They also remind us that early structured analysis 

methods suggested that one should start by modeling how the work is currently carried 

out (the current physical system), analyze this to determine the essential functionality (the 

current logical system), and finally build a model of how the new system shall operate 

(the new logical system). While all three models are rarely built, we stress the importance 

of distinguishing the model of the current state of the organization built in the early 

requirements phase from the model of the future state of the organization, which is built 

in the late requirements phase and incorporates the new system. 

 

The output of late requirements analysis is the requirements specification, which 

describes all the functional and non-functional requirements of the desired system [Castro 
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et al., 2002]. In this phase of the requirements engineering process, the system-to-be is 

introduced into our models as one or more actors that help in the achievement of 

stakeholder goals.  

 

5.3.1 Introducing the System-To-Be 
 

At this point in the requirements engineering process, there is a model of the organization 

or the environment of the system-to-be, which is agreed-upon by the stakeholders. As we 

mentioned before, there must be a perceived need for improvement to the current state of 

affairs in the organization as well as some room for such change or improvement. The 

improvement will come from the introduction of the new system into the organization. 

During this phase, we continue to use i*’s Strategic Dependency models. 

 

The system-to-be can be introduced as either one actor or a collection of actors. This may 

depend, among other things, on the level of understanding that the modeler has about the 

new system: the structure of the system may or may not be already apparent to the 

requirements engineer. Thus, the system is one or more actors who contribute to the 

fulfillment of stakeholder goals [Castro et al., 2002]. In later analysis, the system-to-be 

may be reorganized into a new set of actors.  

 

 

Figure 5.9a. System environment with three actors. 
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We use an example to illustrate how intentional dependencies in the environment can 

change with the introduction of the system into an SD model. Figure 5.9a shows a model 

for a system environment consisting of three actors, Env Actor1 through Env Actor3. 

There are four goal dependencies among the agents as well as one softgoal dependency. 

 

Figure 5.9b shows what might happen to the model after the actor representing the 

system has been added to it. The reconfiguration of the intentional dependencies that 

existed in the environment is the main activity at this stage. Some of the dependencies 

among the stakeholders may disappear since these actors are now depending on the 

system-to-be for the achievement of their goals, while other dependencies between the 

pairs of stakeholders will remain intact. Moreover, the system-to-be can also depend on 

the actors in the environment.  

 

Env 
Actor 1

Env 
Actor 2

Env 
Actor 3

Goal 3

Goal 2

Goal 1

Goal 4

Softgoal 1

system

 
Figure 5.9b. A system is introduced into the environment. 

 

It is important to note that the boundary between the environment and the system is 

floating during this phase of the RE process. This is one of the key ideas of the i* 

approach since it allows the modeler to explore all the possible configurations of the 

combined system consisting of the environment and the system-to-be to find the one 

which satisfies stakeholder goals in the best possible way.  

 

While analyzing the system and its environment, we must take into consideration the 

point of view of the environment and the stakeholders as well as the point of view of the 
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system. Putting too much functionality into the new system may make the agents in the 

environment extremely vulnerable should the system fail to achieve their expectations. 

On the other hand, expecting too much from the environment may be unrealistic [Yu, 

1997]. The solution is to look at the opportunities that the system-to-be offers for the 

stakeholders as well as the vulnerabilities that the stakeholders will expose themselves to 

if they start depending on the new system, and try to find the configuration that utilizes 

the most opportunities while mitigating against the vulnerabilities. Such analysis may 

shift the boundary of the system and the environment and, in the words of [Yu, 1997], 

“redistribute the pattern of intentionality”. When the redesigned network of inter-agent 

dependencies is agreed upon, it will assign certain responsibilities to the agents of the 

system-to-be and to the actors in the environment. The former will become the 

requirements for the new system, while the latter will become the assumptions about the 

environment. 

 

At the later stages of the requirements engineering process, Strategic Rationale diagrams 

are used to model the reasoning that the actors go through in achieving their goals as well 

as the goals delegated to them by other actors. The goals are decomposed using means-

ends or task decompositions, or AND/OR goal refinements. As more details of the agent 

processes are introduced, new inter-agent dependencies may appear. The network of 

intentional dependencies may change due to the new understanding of the system-to-be 

gained through the detailed SR analysis. Therefore coming up with the right network of 

intentional dependencies in the system is an iterative process. 

 

5.3.2 The System Agent 
 

It is customary for the analyst using the i* framework to first introduce the system as a 

single agent and then refine it into a collection agents. This way, the stakeholders are first 

modeled as being dependent on a single system agent as illustrated by Figure 5.9b. Once 

more system sub-agents are introduced, the intentional dependencies from the 
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stakeholders to the system are adjusted to utilize these sub-agents. Figure 5.10a below 

illustrates this. 
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Figure 5.10a. The system is refined into several sub-agents. 

 

This approach usually works, but frequently it is quite unnatural for a stakeholder to 

depend on a system sub-agent. The reason is that the stakeholder depends on the system 

as a whole and is not (or does not want to be) aware of the exact system architecture. For 

example, the user of an automated meeting scheduling system depending on it for the 

scheduling of the meetings and the booking of the appropriate conference rooms does not 

know that the booking of the rooms might be the responsibility of a special system sub-

agent. This user depends on the system as a whole, not on its component, and it is the 

system that in turn depends on its component for the booking of the rooms. Thus, having 

a stakeholder depend on a sub-agent of the system-to-be may not be the correct modeling 

of the situation.  

 

We propose the use of a special agent called System. This agent represents the system as 

a whole and can be used, among other things, to remedy the situation described above. In 

such situations, it may be more natural to make the stakeholder depend on the System 

agent and then let the System agent analyze the goal and delegate the subgoals/subtasks to 

the system sub-agents. To illustrate this use of the System agent, we show the 

modification of the example in Figure 5.10a below. Here, instead of depending directly 
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on the sub-agents of the system, environment actors depend on the System agent. This 

agent in turn delegates the goals to its sub-agents. 
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Figure 5.10b. Using the System agent. 

 

Similarly, the System agent can be employed when stakeholders depend on the system for 

the achievement of goals that are very complex or too high-level to be assigned to an 

individual sub-agent of the system-to-be. These goals can be assigned to the System agent 

and decomposed into the low-level goals/tasks using the usual goal/task decompositions 

of the Strategic Rationale diagrams. Once these goals and tasks are simple enough, they 

can be assigned to the individual sub-agents of the system-to-be. In a sense, this is quite 

similar to the goal decomposition and assignment process employed by KAOS [Dardenne 

et al., 1993]: the System agent provides a place to decompose complex system goals 

before assigning the simpler subgoals to the agents of the system-to-be (or of the 

environment). The difference from the KAOS framework is that any goal, not just leaf-

level ones, can be assigned to agents. The System agent can be just an analysis tool and 

may be removed from the system in subsequent phases of the software development 

process. This allows the designer to simplify the SR/iASR models of the behaviour of the 

agents of the system-to-be by offloading the goal/task decompositions to the System 

agent. The modeler can still perform the necessary goal analysis and preserve 

requirements traceability while the SR-level models for the system agents and the 

subsequent implementation will become simpler. If the System agent is still present at 
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runtime, it can act as a dispatcher/broker/manager and incorporate the intelligence to 

guide the achievement of the goals that the system is responsible for by decomposing 

those goals and creating a dynamic agent network of system and non-system agents for 

achieving these goals at runtime. This approach avoids the hardcoding of the 

decompositions of these complex goals into the model since such hardcoding may lead to 

inflexible systems.  

 

The System agent can also be assigned the goals that do not come from the immediate 

stakeholders of the system, but rather from laws (including physical laws), regulations, 

business rules, etc. The analyst may choose not to include stakeholders such as “the 

government” into their models. In this case, these goals will become the goals of the 

System agent since they are the responsibility of the system as a whole. The System agent 

can also be used when the system needs special control over the achievement of the 

stakeholder goals (e.g., adaptable and customizable systems). 

 

Analysts can also use the Organization agent, which is quite similar to System and 

represents the organization for which the system-to-be is being developed. Organization 

can, for example, have the goals of the owner/management of the company, the 

government (for the state-owned organizations), etc. This agent can be depended upon for 

the achievement of high-level organizational goals such as “be profitable” and “efficient 

management”. By in turn depending on actors that are part of the organization, this agent 

can enforce these high-level organizational goals. One of the reasons for using the special 

Organization agent in i* models is the fact that business goals are quite often extremely 

complex and require cooperation of all of the members of an organization. One can 

delegate these goals to Organization, decompose them within this agent using SR/iASR 

models, and then delegate the subgoals to the appropriate members of the organization. 

Also, a lot of business and organizational goals are meant to be achieved by the 

organization as a whole. Thus, depending on the special Organization agent for the 
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achievement of these high-level goals may be a better way of modeling certain aspects of 

the domain. 

 

 

5.4 Architectural Analysis 
 

In the area of architectural analysis we mostly follow the Tropos approach. It allows us to 

analyze the architecture of the system in several ways. Firstly, we can select the 

architectural style [Kolp and Mylopoulos, 2001] that best match the organization being 

investigated. This analysis is done from the point of view of organizational theory. 

Secondly, we can analyze the architecture from the usual software engineering 

standpoint. 

 

5.4.1 Organizational Architecture 
 

Architectural analysis performed in the usual software development process focuses on 

modules, subsystems, communication protocols and other technical details of the system. 

It does not normally take into consideration the business processes in the organization 

and non-functional requirements. Fuxman et al. [Fuxman et al., 2001a] defined a number 

of organizational architectural styles to remedy the situation — flat structure, pyramid, 

joint venture, structure-in-5, etc. These architectural styles are intended to guide the 

design of the system architecture for cooperative, dynamic, and distributed applications, 

and are naturally applicable to multiagent systems. The styles come not from the 

literature on software engineering, but from organization theory, the theory of the firm, 

etc.  

 

The selection of the most appropriate organizational architectural style is done as follows. 

The relative importance of software quality attributes such as security, adaptability, 

modularity, etc. is identified for the desired software architecture. These qualities are 
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used as criteria for the selection of the organizational architecture. The architectural 

styles mentioned above were evaluated [Fuxman et al., 2001a] with respect to the 

following nine software quality attributes: security, adaptability, coordinability, 

cooperativity, availability, integrity, modularity, aggregability. The selection of the 

appropriate architecture is made through an analysis done with the help of the NFR 

framework [Chung et al., 2000] (some of the quality attributes are decomposed further to 

allow for more detailed evaluations).  

 

5.4.2 The System Architecture 
 

While the appropriate organizational style allows the designer to select the high-level 

architecture that best suits the needs of the organization, there are still a lot of details that 

need to be worked out. A thoroughly selected organizational architectural style is just the 

first step in coming up with the complete software architecture for the system-to-be.  

 

It is well known in the software engineering practice that large unstructured systems are 

hard to develop, deploy, and maintain. They are usually hard to scale up, inefficient, and 

expensive. Good software architectures are instrumental in developing flexible, scalable, 

and easily maintainable software systems. In our approach, the modelers are expected to 

use common software engineering principles in coming up with the software architecture 

for the system. In agent-oriented software engineering, architectural analysis is used to 

determine which agents are going to be developed as part of the system, what 

responsibilities are going to be assigned to these agents, and what interdependencies will 

exist among them. During this phase, the high-level architecture of the system is explored 

and requirements for all the system’s sub-agents are specified. The papers on the Tropos 

methodology (e.g., [Castro et al., 2002]) suggest using lower-level patterns such as 

broker, matchmaker, monitor, etc. within the framework set by the enterprise-level 

patterns such as joint venture. 
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We do not anticipate that modelers will devise the system architecture right away using 

SD models. One of the reasons for this is that the modeling of the details of agent 

processes and inter-agent interactions is done using the Strategic Rationale diagrams, 

which focus on finer aspects of the system. The details revealed during the SR-level 

analysis very often influence the high-level system architecture. Therefore, the number 

and configuration of system agents cannot be fixed at the end of the SD modeling phase. 

It is expected that new agent configurations, which are better architecturally, will emerge 

as more details about agent interactions and agent responsibilities are identified. During 

this early analysis or, more likely, during the SR-level analysis, it may become clear that 

some agents should be replaced with subsystems of agents to be able to handle their 

responsibilities better. The analysis of agent processes performed with the help of 

SR/iASR diagrams may reveal other problems, whose solutions require architectural 

changes. Thus, in our approach, the development of multiagent system architectures is an 

iterative process. We start off with Strategic Dependency models for the environment and 

the system with its environment. We then explore using SR diagrams the reasoning each 

agent goes through in order to achieve its goals and fulfill its responsibilities. We do not 

abandon SD diagrams that were developed earlier. Rather, we update them using the 

information obtained from analyzing the detailed agent interactions. 

 

 

5.5 Late Requirements Using SR Diagrams 
 

Strategic Dependency diagrams allow the designer to model intentional dependencies 

among the agents to see how the agents of the environment and system agents cooperate 

in achieving their goals. These diagrams provide a high-level, architectural view of 

systems and their environments. This view is external to the agents. Strategic Rationale 

diagrams, on the other hand, allow the modeler to analyze goals, plans, and inter-agent 

dependencies from the point of view of each actor. These diagrams are used to specify 

the reasoning each agent goes through in order to achieve its goals and help other agents 
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depending on it in achieving their goals. The intentional elements such as goals, 

softgoals, tasks, and resources appear both as dependencies external to the agents and as 

modeling elements inside the agents. Strategic Rationale diagrams help in exploring the 

motivations of the agents and rationale behind their decisions. 

 

In our approach, the SR-level analysis is done in two phases. We use the standard i* 

Strategic Rationale diagrams first. The next step is to provide more details by adding the 

necessary annotations to the SR diagrams as well as adjusting these diagrams for an easy 

mapping into CASL models according to the rules specified in Chapter 4, thus producing 

iASR diagrams.  

 

5.5.1 Building Strategic Rationale Diagrams 
 

The way we use the standard Strategic Rationale diagrams is no different from the usual 

i* process (e.g., [Yu, 1995]). Therefore, we will not get into details about how these 

diagrams are used. Having said that, we must note that in our methodology the standard 

SR diagrams are the first of two SR-level types of diagrams that the modeler is supposed 

to produce, along with the iASR diagrams. Therefore, SR diagrams are intended as first 

approximations of the agent process models. 

 

 As usual, to model the reasoning each agent (or the designer for that agent) goes through 

while attempting to achieve its goals and the goals that have been delegated to it by other 

agents, the modeler has means-ends relationships and task decompositions available to 

him. Means-ends analysis is mainly used to specify alternative means of achieving goals, 

while task decompositions are used to decompose complex tasks into more manageable 

ones. In the standard SR diagrams, task decompositions may include goals as well. Figure 

5.11 presents a small SR diagram. 
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The task/goal decomposition stops when all the leaf tasks are sufficiently simple to be 

easily implemented. During the goal decomposition process, the designer will specify 

various means of achieving agent goals. Some alternatives for achieving a certain goal 

will involve delegating the goal or some of its subgoals to other agents in the system or 

the environment, while others will not involve obtaining any outside help.  

 

 
Figure 5.11. An SR diagram showing softgoals and softgoal contributions. 

 

AND/OR decompositions [Giunchiglia et al., 2003] can be helpful in decomposing goals 

into more manageable subgoals. These decompositions define the parent goals in terms of 

conjunctions or disjunctions of other (presumably simpler) goals. While modelers can use 

AND/OR decompositions early in their models, we do not directly support them in iASR 

diagrams. A mapping from AND/OR goal decompositions to the iASR diagrams is 

proposed in Section 4.3.2. 

 

Figure 5.12 presents a small AND/OR goal decomposition. The top level goal is Email 

Somebody. To achieve it one needs to achieve the subgoals Select Recipient, Prepare 

Content, and Send. Since these are related through AND-decomposition, they all need to 

be achieved for their parent goal, Email Somebody, to be achieved. Alternatives in the 
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way goals are achieved are introduced through OR-decompositions. For example, one 

can either type in the email address of the recipient, or select the address from an address 

book. 

 

 
Figure 5.12. An example AND/OR goal decomposition. 

 

Using Softgoals 

 

SR diagrams provide ways to show how various process alternatives contribute 

(positively or negatively) to the satisficing of the softgoals that the agents have. 

Certainly, requirements engineers should not ignore non-functional requirements and 

must strive to select the alternatives that contribute positively to the agents’ softgoals. 

Thus, softgoals together with their contribution links document the selection of 

alternatives. In our approach, it is in producing standard SR diagrams that the modeler 

analyzes non-functional requirements and evaluates process alternatives with respect to 

their contribution to the softgoals.  

 

In Figure 5.11, we have an SR diagram for the Meeting Initiator agent with the 

alternative ways to achieve the goal MeetingScheduled being analyzed. There are two 

alternative ways to schedule a meeting: to schedule it manually or to use a meeting 

scheduler. Two softgoals are identified: Quick and LowEffort with the appropriate 

contribution links going from the alternatives to these softgoals. 

 



 179 

5.5.2 Building iASR Diagrams: Adding Annotations 
 

Intentional Annotated SR (iASR) diagrams are designed to add precision to the standard 

SR diagrams by providing link annotations, composition annotations, and applicability 

conditions, as well as to streamline the diagrams for an easy mapping into CASL models. 

The standard i* SR diagrams can be quite ambiguous. For instance, SR diagrams do not 

provide any information on whether the subtasks in task decompositions are supposed to 

be executed sequentially or concurrently and whether all the subtasks are to be executed 

unconditionally or only under certain circumstances. Similar questions apply to means-

ends links linking several means to achieve a certain goal with that goal. There is no way 

to tell whether all these means are applicable at all times or not. 

 

While it could be argued that the level of detail provided by the regular SR models is 

enough to analyze the intentional aspects of agents’ behaviour, we feel that more detailed 

specifications of agent processes help modelers understand the requirements better. 

Besides, quite often the sequencing of the subgoals in a goal decomposition is a property 

of the environment of the system (e.g., one must go to the airport, then go to the gate, and 

then finally board the plane). Also, adding annotations to SR models brings them to the 

level of detail required for successfully mapping these models into CASL. 

 

There are three annotation types available to the modeler. Firstly, there are composition 

annotations that are mostly used with task/goal decompositions and specify whether the 

subtasks/subgoals are to be performed sequentially (“;”), concurrently (“||”), with 

prioritized concurrency (“>>”), or are alternatives (“|”). The default composition 

annotation is sequence. Secondly, there are link annotations that are attached to 

decomposition and means-ends links to specify under which conditions and how the 

subtasks/subgoals (for decomposition links) and means (for means-ends links) are to be 

executed by the agent. There are six link annotations (see Section 4.1.3 for details): while 

loop, for loop, pick, if, interrupt, and guard. The default is no link annotation — this 
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means that the subgoals/subtasks are executed unconditionally. The third type of 

annotations is the applicability condition (see Section 4.3.3). These annotations 

accompany means-ends links and specify under what conditions each means to achieve a 

certain goal can be attempted. They are used to filter out the ways to achieve goals that 

are not feasible/efficient/etc. All of these annotations can be added gradually: at some 

point in time, it may be the case that the details of the agent processes in one part of the 

diagram have been fully specified, while more analysis is required in other parts of the 

model. 

 

5.5.3 Building iASR Diagrams: Keeping Goal Dependencies 
 

Quite a few of the agents’ goals can be operationalized, i.e., replaced with 

tasks/procedures that achieve them. This is a standard practice since most software 

development processes and programming languages do not support goals. Therefore, 

goals are abstracted out before the late RE phase is over. Similarly, softgoals are 

frequently metricized [Davis, 1993] for easy evaluation. For example, suppose an agent 

has the goal “communicate message A to agent B”. An operationalization of this goal 

will most likely involve choosing a communication protocol, the format of the messages, 

etc. The problem with this approach is that the details of the operationalization of the 

goals as well as the underlying assumptions are frozen into the requirements of the 

system-to-be. This replacement of goals with procedures (agent plans) that achieve them 

compromises the evolvability of the system and makes it more fragile [Castro et al., 

2002]. 

 

In contrast, one of the key ideas of the i* process is to leave many goals and goal 

dependencies around. This is a new feature of i* compared to the other notations. Goals 

in i* diagrams indicate that it is up to the agent (or the designer for the agent) to select the 

best way to achieve them. It is important to document these as goals and keep them 

around during the software engineering process since they indicate the places in the 
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system where evolution is most likely to happen. Goal nodes could be viewed as 

specifying alternatives in the way the system functions. It is conceivable that new ways to 

achieve goals may become available at some point in the life of the system. Thus, clearly 

documenting (and possibly implementing) agent goals as such will make the system more 

flexible. Whether the process alternatives are chosen at design-time by the designer or at 

runtime by the agents themselves (if the implementation is agent-oriented) is dictated 

mostly by the development platform chosen and therefore is irrelevant for the RE 

process. The position that we take in this thesis is similar to the position of the i* 

modeling framework and the Tropos methodology: the implementation platform should 

not influence the methods used in RE. It is quite the opposite: the intentional concepts 

from Requirements Engineering should be pushed farther in the software development 

process. This will result in more flexible systems, which meet their requirements better. 

In addition, this thesis proposes the use self-acquired goals (see Section 4.3.8) that 

modelers can employ to allow the agents to reason about various ways of achieving their 

goals, which do not come from inter-agent dependencies, but from the designer of the 

agent. Thanks to the CASL’s support for agent goals, we can go further than before in 

avoiding early operationalization of agent goals. The designer now has the tools to 

formally verify the models containing intentional elements such as agent goals and 

knowledge. 

 

Self-acquired goals and the support of CASL for reasoning about these goals provide the 

analyst with an interesting new ability — the SR-level goal decompositions can now 

become a runtime tool, as opposed to being just a design-time facility available to 

modelers. SR goal decompositions are used to decompose high-level goals into simpler 

goals and/or tasks. In some cases, the intermediate goals are only used to discover the 

lower-level goals and tasks and can be abstracted out before goal decompositions are 

translated to some formal notation for verification and/or animation. Using self-acquired 

goals one can map the whole goal decomposition tree or a part of it (it could either be a 

standard SR goal decomposition or an AND/OR decomposition) into CASL (see Figure 
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4.32). In this way, the agents in the corresponding CASL model will be able to follow the 

reasoning that the analyst did while creating the goal decomposition. Their mental states 

will be appropriately updated. This makes the agents more aware of their processes and 

could allow them to make important decisions, which previously had to be made at 

design-time by the modeler, at runtime. Since the agents are able to retrace the goal 

decompositions at runtime, they will make the choices based on the current context, 

which can make them more adaptable to the changing environment. 

 

5.5.4 Building iASR Diagrams: Deidealizing Goals and Suppressing 
Softgoals 
 

Below we will identify several important steps that one has to go through while 

developing iASR diagrams for the system-to-be. These steps  are similar to the ones 

proposed in [Wang, 2001] and are intended to help the modeler in simplifying Strategic 

Rationale diagrams and adding details to the agent processes. The steps that we outline in 

this section are intended to be done before the diagrams are converted into iASR form.  

 

5.5.4.1 Suppressing Softgoals 

 

Our approach does not provide tools for formal analysis of softgoals. Therefore, softgoals 

and softgoal dependencies are only used to help in the evaluation of process alternatives 

and software architectures. They must be abstracted out from SR diagrams before 

annotations are introduced. The softgoal nodes will be dropped from the diagrams along 

with the accompanying contribution links. Also, alternative ways of achieving agent 

goals — the ones that were found to contribute less to the softgoals than the best 

alternative — can be removed (see Figures 5.11 and 5.13a). Alternatively, some softgoals 

may be metricized (i.e., turned into regular goals) so as to have some quantitative 

approximation of these softgoals in the model for further analysis. An analysis tool could 

provide support for these types of simplifications. 
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We use Figures 5.13a and 5.13b to illustrate some of the ideas presented in several 

preceding sections. The figures show two possible diagrams for the Meeting Scheduler’s 

task OrganizeMeeting after all the softgoals (see Figure 5.11) have been removed. The 

first diagram (Figure 5.13a) illustrates the operationalization of goals. Here, the least 

promising alternative for achieving OrganizeMeeting has been removed together with 

the goal MeetingScheduled. This decision is now built in the diagram. Suppose that the 

underlying assumption was that the number of meeting participants was going to be quite 

large, so scheduling meetings manually would be slow and would require high effort 

from the meeting organizer (see the softgoal contributions in Fugure 5.11). This 

assumption is now also frozen into the model. On the other hand, one can keep the goal 

in the model to indicate that there are alternative ways of achieving that goal (Figure 

5.13b). This has all the benefits described in Section 5.5.3. The applicability condition 

documents that if the number of meeting participants is up to 3, it makes sense to 

schedule meetings manually, otherwise it should be better to let the Meeting Scheduler 

schedule meetings. 

 

 
Figure 5.13a. OrganizeMeeting with 
the second alternative removed. 

Figure 5.13b. OrganizeMeeting with the 
goal dependency and the two alternatives. 

 

5.5.4.2 Deidealizing Goals 

 

Very frequently, initial goals are too ideal. They are not achievable by the system and 

need to be deidealized [van Lamsweerde et al., 1995] to become achievable. One 
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possibility is to weaken goals that cannot always be achieved. For example, suppose that 

the Meeting Scheduler agent has the goal ArrangeMeeting. This goal may be too ideal 

since the intended meeting participants may not have any common available dates for the 

meeting, making the scheduling of the meeting impossible. Therefore, the goal must be 

weakened to account for that possibility. It is important to think about the achievability of 

agent goals early on since the reformulation of a goal will most likely lead to changes in 

the means of achieving it. Of course, the achievability of goals is most easily verified if 

one has formal definitions of these goals available. The formal analysis of agent goals 

using CASL models later in the process may uncover more unachievable goals compared 

to the informal analysis done at this stage of the methodology. Nevertheless, thinking 

about the achievability of goals throughout the RE activities is very helpful since the 

necessary changes may be introduced much earlier. 

 

5.5.5 Building iASR Diagrams: Adding Agent Interaction Details 
 

In i*, intentional dependencies are extremely important. These dependencies become 

agent interactions in an agent-oriented setting. Speech act-based communication in a 

multiagent system is quite different from remote method invocation-style communication 

among software components. For example, in order for an agent to use the services of 

other agents, these services must be requested (usually with the “request” performative). 

The requested agents may acknowledge the request and, if they are helpful, perform the 

requested service. While attempting to supply the dependum, the dependee may request 

additional information, thus making the interactions more complex. Once the service is 

performed, the requesting agent will either be notified of that fact or will have to monitor 

for the successful rendering of the service. 

 

i* usually abstracts over modeling detailed agent interactions. Since specifying detailed 

interactions among cooperating agents in a multiagent system is essential and since our 

goal is to animate and verify i* models using the CASL agent programming language, we 
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require much more detailed specification of agent interactions than the usual i* process 

provides. Section 4.3.7 provides all the details on how to deal with dependency-based 

goals in iASR diagrams. It shows how agents can delegate goals and tasks to other agents 

and also notes that a resource dependency must be converted to either a goal or a task one 

depending on the level of freedom the dependee has in providing the required resource 

for the depender.  

 

For instance, when providing details for inter-agent communication that takes place when 

one agent is requesting the services of another, the modeler needs to update the iASR 

diagram for the depending agent with the tasks that request these services for the 

depender. On the other hand, the iASR diagrams for the dependees will be updated with 

the goal nodes with appropriate interrupt annotations to model the acquisition of goals. 

Figure 4.41 illustrates this. 

 

Since CASL supports reasoning about knowledge, analysts can model information 

exchanges in their iASR diagrams and these interactions can be formally analyzed. 

Information dependencies are discussed in Section 4.4.3. 

 

Careful analysis of inter-agent dependencies may reveal that new sub-dependencies are 

needed. For example, a dependee may need to request some additional information or 

clarification from the depender. Also, some complex interaction protocols may be needed 

to replace certain dependencies. For instance, finding the best price for a product may 

require the buyer (the depender) and sellers (the dependees) to use the Contract Net 

protocol [Smith and Davis, 1981], which involves more interactions than a simple 

request. Additional notations can be used to carefully specify agent interaction. Designers 

may wish to use protocol diagrams, which are part of Agent UML (AUML) [Odell et al., 

2000] to specify all the details of the interactions (this may be more appropriate for the 

later phases of the software development process).   
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We note that some communication exchanges do not have to be modeled (e.g., one agent 

asking again for some information it did not receive the first time). This could be handled 

at the implementation level. CASL models are quite idealistic in that many of the usual 

communication-related problems such as missed messages, etc. are not dealt with. What 

we are interested in is high-level message exchanges. Since the dependencies are not 

mapped into CASL per se, the only way to establish the dependencies is for dependers to 

send requests to dependees and for dependees to monitor for these requests. These details 

must be provided on iASR diagrams. 

 

5.5.6 Building iASR Diagrams: iASR-style Goal Decompositions 
 

As described in Section 4.3.2, Intentional Annotated SR diagrams differ from SR 

diagrams, besides having various annotations, in the use of goal nodes and means-ends 

links. Since goal nodes are intended to be utilized as means of exploring alternatives in 

models, they are used only with means-ends links, which specify alternative ways of 

achieving these goals (thus, they are available with the alternative composition annotation 

only). Moreover, means-ends links are used only with goal nodes and these goal nodes 

must be accompanied by the interrupt link annotations. Additionally, the means for 

achieving goals can only be task/capability nodes, which streamlines the mapping of 

iASR diagrams into CASL models. We discussed why this is required in Section 4.3.2. 

This means that SR diagrams where some of the means for achieving goals are goals 

themselves must be modified to comply with the above rule by utilizing self-acquired 

goals (see Figures 4.19 and 4.32). 

 

5.5.7 Using Capability Nodes in iASR diagrams 
 

Capability nodes (Section 4.5) are a new modeling concept introduced into the i* 

modeling framework in this thesis. Modelers can use task and goal capability nodes in 

iASR diagrams to indicate that agents have epistemically feasible plans that guarantee the 
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successful achievement of the corresponding goals or the execution of the corresponding 

tasks provided that their context conditions hold when they are invoked and there is no 

outside interference while they are executing. Capabilities can be a part of the interface of 

an agent — that is, they can be used as means of achieving the goals or performing the 

tasks at the requests of other agents. On the other hand, capabilities can be used internally 

by an agent itself. We expect that capabilities will be used by the agents, among other 

things, as means of fulfilling critical dependencies as well as for the internal processes 

where failure cannot be tolerated.  

 

There are two forms of capability nodes: the first one shows only the goal that the 

capability achieves or the task that it performs, while the more detailed view of 

capabilities shows the details of how the goals are achieved or the tasks are performed. 

Abbreviated capability nodes can be used in both SD (see Section 5.2.3) and SR-level 

diagrams, while the detailed view is only allowed in the SR-level diagrams (see Figure 

4.47). 

 

 

5.6 Requirements Verification Using CASL 
 

5.6.1 Mapping iASR Diagrams into CASL 
 

Once all the necessary details have been introduced into an iASR diagram, it can be 

mapped into the corresponding CASL model. This model provides the formal semantics 

for the otherwise informal i* model, thus making iASR diagrams amenable to formal 

analysis.  

 

CASL is a much closer match for the i* models that specify multiagent systems and their 

environments than ConGolog, which was used in conjunction with i* in [Wang, 2001]. 

The key here is the support of CASL for reasoning about agents’ mental states, goals and 
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knowledge. This, among other things, allows for much more thorough analysis of inter-

agent communication. Modelers can also use CASL to reason about epistemic feasibility 

of agent plans as well as about trust and privacy issues. The process of adding details to 

the SR diagrams and their subsequent mapping into CASL could be considered 

exploratory prototyping. 

 

The mapping process will map every element (with the exception of dependencies) of 

iASR diagrams into CASL as described in Chapter 4. Specifically, leaf-level tasks will be 

mapped into CASL procedures or primitive actions, and task decompositions will be 

mapped into procedures taking into consideration all the annotations used with these 

decompositions. Goals will be formally defined by CASL formulae and associated with 

CASL procedures encoding the ways the goals can be achieved. Capabilities are 

associated with epistemically feasible procedures; their context conditions are formally 

defined. The agents are mapped into CASL procedures that describe their behaviour. 

Dependencies are not mapped into CASL per se. The dependencies at CASL level are 

established by the agent procedures that request services from other agents as well as by 

agents monitoring for such requests. Data is passed around mostly through procedure 

parameters. Additional auxiliary CASL code may need to be added to the model to 

describe the initial situation, initial knowledge of agents, some properties of the 

environment, etc.  

 

5.6.2 Verifying the System with CASLve 
 

CASL is a formal specification language and coupled with the appropriate tools provides 

powerful facilities for the formal analysis of CASL models. CASLve [Shapiro et al., 

2002] is a verification environment for CASL based on the PVS theorem prover [Owre et 

al., 1996]. CASLve defines an encoding of CASL programs in the input language of 

PVS. The verification environment also provides a library of proof methods for proving 

various types of results.  One can use CASLve to prove properties such as liveness, 
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safety, and termination. In general, many interesting properties of multiagent systems 

specified in CASL can be analyzed using CASLve. If expected properties of the system 

are not entailed by the CASL model, it means that the model is incorrect and needs to be 

fixed. The source of an error found during verification can usually be traced to a portion 

of the CASL code for the system and/or to some part of its iASR diagram. After the 

necessary changes have been made, the verification can be repeated, thus making the 

process iterative. As outlined in the next section, we believe that our approach has a high 

level of requirements traceability support. Therefore, it is quite easy to change the CASL 

code for the system in attempt to fix an error and then synchronize the code and the 

corresponding iASR diagram. Changing the iASR diagram first and then mapping it to 

CASL to get the updated version of the CASL model is also possible. In both cases, the 

changes are easily localized so that the complete remapping from iASR to CASL or from 

CASL back to iASR is not necessary. A model editing tool could support this 

synchronization. 

 

5.6.3 Supporting Requirements Traceability 
 

The requirements engineering process is aimed at identifying the needs of stakeholders, 

coming up with system requirements that refine these needs, resolving conflicts among 

requirements, and specifying these requirements in an easily understandable form that is 

the basis of the system design and implementation [Castro et al., 2003]. Therefore, it is 

important to keep track of which stakeholder goals give rise to which requirements and 

what the origins of all the requirements in the system are. In addition, as Ramesh and 

Jarke [Ramesh and Jarke, 2001] note, it is very important to keep track of bi-directional 

relationships between requirements and the development process artefacts in order to 

facilitate the maintenance and verification of the system. 

 

Castro et al. [Castro et al., 2003] state that a requirement is traceable if one can discover 

its origin, why it exists, what other requirements relate to it, and how that requirement 
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relates to systems designs, implementations and user documentation. Consequently, 

requirements traceability refers to the ability to follow the lifecycle of a requirement in 

both forward and backward directions — i.e., from its origins, through its specification 

and development, to its subsequent deployment and use, and through periods of ongoing 

refinement and iteration [Gotel and Finkelstein, 1994]. Since our work mainly deals with 

requirements engineering phase of the software development process and does not go 

beyond high-level design, our concern is the traceability in the early requirements, the 

late requirements, and the high-level design phases of software development process. In 

particular, we would like to show that our approach supports tracing a requirement from 

its origin as a stakeholder goal through various i*-provided analysis steps (i.e., strategic 

dependencies, softgoal analysis, and goal decompositions) to the corresponding CASL 

code and back. 

 

i* allows the requirements engineer to capture the goals of stakeholders — the origins of 

system requirements. These goals are achieved through the network of inter-agent 

dependencies and/or goal and task decompositions. The achievement of a stakeholder 

goal may or may not involve a delegation of the goal or some of its subgoals to the actor 

that is a part of the system-to-be. In any case, following goal/task decomposition links 

and inter-agent dependencies allows us to see how high-level stakeholder goals are being 

achieved by the system-to-be and its environment. If a change is introduced to some 

nodes in the model, the affected nodes are easily identified — they are the modified 

nodes’ successors in the graph of goal/task decompositions. The successors may also 

include the nodes related to the modified ones through inter-agent dependencies. On the 

other hand, by examining decomposition and dependency links going up the goal/task 

decomposition graph from a certain goal or task node, we can easily see why the task has 

to be performed or the goal has to be achieved (as well as all the conditions under which 

this particular iASR diagram node becomes active). Therefore, it is easy to trace 

requirements back and forth within annotated i* diagrams. 
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The next step of the method, after the iASR diagrams have been developed, is to map 

them into the corresponding CASL models. The modeler is required to define a mapping 

m from a completed iASR model into CASL code as outlined in Chapter 4. This allows 

for formal analysis of the i* model. The mapping m is itself a very important source of 

traceability information as it bridges between the i* and CASL models. It maps every 

element of an iASR diagram into CASL. Every agent/position/role, every goal and task 

node, every annotation and applicability condition, and every goal and task 

decomposition is mapped, thus giving the ability to trace requirements from iASR models 

to CASL code. Intentional dependencies are mapped into the corresponding agent 

interactions defined using performatives. Tracing from the CASL code back to the 

corresponding iASR models is quite easy as well, since we expect that most of the CASL 

code is produced by mapping elements of the iASR diagrams, and this is documented by 

the mapping m, which is defined by the modeler. If the modeler is using Trusts/Serves 

relationships in the models (Section 5.2.5), then the directed graphs or other, more 

complex models used to represent these relationships, could be easily mapped into the 

associated CASL fluents (see Sections 4.3.7.3 and 4.4.4). There could be some auxiliary 

CASL code to help with the animation of the CASL model or formal analysis of the 

requirements. This CASL code is part of the needed CASL infrastructure and is not 

directly related to the elements of iASR diagrams. It cannot, therefore be traced back to 

requirements. It is imperative, however, that this code be appropriately documented for 

ease of use and modifiability. 

 

 

5.8 Automating the Mapping into CASL 
 

Given the mapping rules presented in Chapter 4, the mapping between iASR diagrams 

and the procedural components of the corresponding CASL agents must be very close. 

The code for CASL procedures that iASR goals, capabilities, and non-leaf-level tasks 

map into is completely determined by these tasks’ decompositions in iASR diagrams and 
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by the composition and link annotations used in these decompositions. The flow of 

control in the procedural component of a CASL specification is based on the link and 

composition annotations used by the modeler in the corresponding iASR models (see the 

mapping of the model in Figure 4.14). Therefore, most of the code for the procedural 

component of a CASL agent can be produced directly from the agent’s iASR diagram.  

 

A modeling tool can be used to facilitate the mapping of iASR diagrams into CASL 

specifications. As discussed above, most of the mapping is quite routine and can be 

automated. In this thesis, we allow leaf-level task nodes to be mapped into either 

primitive actions or CASL procedures. In this way, the modeler can decide to reduce the 

size of iASR diagrams by not decomposing agent processes all the way to primitive 

actions. On the other hand, forcing the modeler to fully decompose agent tasks (i.e., by 

requiring that leaf-level tasks be mapped only into primitive actions with the same name 

and parameters) will help a modeling tool map iASR diagrams into CASL by 

automatically constructing CASL procedures from primitive actions and composition and 

link annotations.  

 

The following changes to the mapping process can be made to allow for more automated 

mapping of iASR diagrams into CASL: 

 

• Goals must be mapped into defined fluents with the same name. 

• Achievement procedures for goals must be labeled GoalNameProc, where 

GoalName is the label for the goal. The same applies to capabilities. 

• Conditions in annotations must have descriptive names and must be mapped into 

defined fluents with the same name. 

• Goal and task parameters must be fully specified in iASR diagrams. 

 

The modeler will have to define the fluents that goals/annotation conditions are mapped 

into as well as the context conditions and the allowable process specifications for agent 
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capabilities. Also, action preconditions and successor state axioms for fluents must be 

defined by the modeler. In addition, specifications for individual CASL agents must be 

combined together to produce the specification for the whole system – concurrent 

composition is mostly used for this. Then, CASL specifications can be constructed from 

the corresponding iASR diagrams. 
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6 The Meeting Scheduling Process Case 
Study 
 

In this chapter, we examine the approach proposed in the thesis through the use of a case 

study. We apply our methodology to the process of scheduling meetings in an 

organization. This is a simple case study that, nevertheless, allows us to demonstrate most 

of the features of our approach. The meeting scheduling scenario was previously 

explored and modeled using i* [Yu, 1995] and Wang’s i*-ConGolog approach [Wang, 

2001].  

 

6.1 Introduction 
 

In the case study discussed in this chapter we model the process of scheduling meetings 

in some organization. In the context of the i* modeling framework the process was first 

analyzed in [Yu, 1997].  The initial requirements for the process were stated as “For each 

meeting request, to determine a meeting date and location so that most of the intended 

participants will be able to effectively participate” [Yu, 1997]. We will modify the 

scenario in several ways as well as make certain assumptions about the process and the 

stakeholders involved in it in order to make our models more manageable and to better 

illustrate our methodology. 

 

In our view of the meeting scheduling process, for every meeting we have a single person 

initiating the meeting scheduling process. We take the length of the meetings to be the 

whole day. We do this to simplify our model and note that this model can be easily 

extended to handle multiple meetings per day. The meeting can be successfully scheduled 

if for all the intended participants there is a date that fits their schedule. We also assume 
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that in the environment of the system-to-be there is a legacy software system called the 

Meeting Room Booking System that handles the booking of meeting rooms. 

 

In the scenario that we study in this chapter, the possibility of introducing an automated 

meeting scheduling system is explored and compared (at a high level) to the current 

manual meeting scheduling process. The automated meeting scheduling system is then 

explored in great detail using iASR diagrams. Finally, the iASR model of the system is 

formalized by mapping it into CASL using the mapping process proposed in this thesis. 

 

 

6.2 Early Requirements Analysis 
 

The first step in the requirements engineering methodology presented in Chapter 5 is to 

analyze the environment of the system-to-be, the stakeholders, and the current processes. 

This analysis helps in determining the needs of the stakeholders and the relationships 

among them, which is crucial in understanding why the new system is needed and how it 

can improve the current situation. 

 

6.2.1 Identifying Stakeholders 
 

We first identify stakeholders in the current meeting scheduling system. In the words of 

Nuseibeh and Easterbrook [Nuseibeh and Easterbrook, 2000], stakeholders are 

“individuals or organizations who stand to gain or loose from the success or failure of the 

system”. In the meeting scheduling scenario, the process of stakeholder identification is 

quite easy. However, there may be cases where this step of the methodology is not trivial. 

Using the i* terminology we call stakeholders actors. The following actors are 

participating in the process of scheduling meetings: 
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• the Meeting Initiator (MI), who initiates the scheduling of a meeting; 

• the Meeting Participant (MP), an actor who is requested to participate in 

meetings; 

• the Meeting Room Booking System (MRBS), a legacy software system that is used 

to reserve meeting rooms. 

 

These are the actors that are part of the meeting scheduling process. However, we can 

identify another actor — we will call it Disruptor — that arranges meetings with meeting 

participants (thus changing their schedules) outside of the process modeled here. The 

reason we need this actor is that not all meetings are managed by the organization’s 

meeting scheduling process. For example, while we assume that everybody within the 

organization is using the meeting scheduling process, arranging meetings with people that 

are not part of the organization takes place outside of the current scheduling process.   

 

MRBS
Meeting 
Initiator

Agent Role Position

Legend: Actors

Meeting 
Participant Disruptor

 
Figure 6.1. The stakeholders in the meeting scheduling process. 

 

Most of the stakeholders shown above can be classified as roles in i*. Naturally, the roles 

of Meeting Initiator, Meeting Participant, and Disruptor can be played by many different 

agents. However, since the MRBS represents a concrete legacy system, we consider it an 

agent in the i* sense. 
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6.2.2 Identifying Stakeholder Goals and Intentional Dependencies 
 

We can describe the current meeting scheduling process in the organization in terms of 

the newly identified stakeholders and their relationships. This will help in identifying the 

goals and the needs of the stakeholders, and their rationale for being part of the meeting 

scheduling process. We can describe the current process as follows. The MI schedules 

meetings by contacting each Meeting Participant and getting the list of its available dates. 

It then chooses a date that is convenient for all meeting participants (including the 

Meeting Initiator) and attempts to book the meeting on that date. The Meeting Initiator 

then uses the MRBS to book a room for the meeting. At the same time, the Disruptor can 

also arrange meetings with Meeting Participants outside of this meeting scheduling 

process. We can now start modeling the meeting scheduling process using Strategic 

Dependency (SD) models. The first step in modeling the current processes in an 

organization is to identify the intentions/goals of the stakeholders and to discover the 

intentional dependencies that exist among these stakeholders.  

 

Let us look at the Meeting Initiator actor. It is the driving force behind the meeting 

scheduling process, so the intentional dependencies that help in achieving the Meeting 

Initiator’s goals make up the core of the process. The Meeting Initiator needs to schedule 

a meeting with meeting participants, to book a room for the meeting, and it also needs the 

participants’ presence at the meeting. Figure 6.2 below shows these goals using the 

notation proposed in Section 5.2.2: 

 

 
Figure 6.2. Meeting Initiator with three unassigned goals. 
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The above figure presents the Meeting Initiator actor with three (yet unassigned) goals. 

For now we will not concern ourselves with the goal parameters. By looking at the 

current process in the organization, we can determine how the goals of Meeting Initiator 

are presently handled, whether they become part of some intentional dependencies or are 

achieved by the actor itself. The booking of the meeting rooms is handled by the MRBS 

software system, so we can add the goal dependency RoomBooked to our SD diagram that 

models the scheduling process (see Figure 6.3). Note that we also add a goal capability 

node RoomBookedCap to the MRBS agent. The MRBS is a good actor to model with 

capabilities since it is a legacy software system and always provides the expected results 

when it is used properly and not being interfered with. AtMeeting represents the Meeting 

Initiator’s goal of having the intended participants present at the meeting. This goal is 

delegated to the Meeting Participant through a goal dependency. As for the goal 

MeetingScheduled, it is presently handled by the Meeting Initiator itself. We can, 

therefore, add a goal self-dependency MeetingScheduled to the model. We note here 

that RoomBooked, AtMeeting and MeetingScheduled are goal dependencies (as opposed 

task dependencies). This means that the depender does not prescribe a specific course of 

action to the dependee, but instead gives the dependee the freedom to choose the right 

means for the achievement of the goal. 

 

Meeting 
Scheduled

Room 
Booked

At Meeting Meeting 
Participant

MRBS
Meeting 
Initiator

CAP

RoomBooked 
Cap

 
Figure 6.3. Delegating the Meeting Initiator’s goals 

 

Figure 6.3 shows the core intentional dependencies for the Meeting Initiator, which are 

exercised during meeting setup. By looking at the current meeting scheduling process we 

can add details to the above diagram by further analyzing the goals and needs of the 
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stakeholders and their relationships. First, we consider the Meeting Initiator actor again. 

In order to be able to schedule meetings it needs the list of available dates from each of 

the intended participants. We can model this relationship using an i* resource 

dependency. The subject of this dependency is the information resource 

AvailableDates. Also, the MI needs to know which room was booked for the meeting 

by the MRBS agent, so it depends on the MRBS for that information, thus giving rise to 

another resource dependency with the dependum being the information about the room 

number of the booked room. The MP, on the other hand, needs to know whether and 

when the meeting is scheduled. This is another information resource dependency that we 

add to the model (see Figure 6.4). We also add the Disruptor actor to the SD model of the 

meeting scheduling process. Not unlike the Meeting Initiator, it depends on the Meeting 

Participant for attending meetings. We model this with the goal dependency AtMeeting. 

 

 
Figure 6.4. Adding details to SD model. 

 

6.2.3 Modeling Additional Organizational Details 
 

Section 5.2.5 proposed to model additional organizational details using the Serves and 

Trusts relationships. The Serves and Trusts relationships could be represented as directed 

graphs. The Serves relationship specifies, for each actor, which other actors it is willing 
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to help in the achievement of their goals. Similarly, the Trusts relationship specifies, for 

each actor, which actors in the organization it believes. We will now sketch how the 

relationships can be modeled in case of the meeting scheduling process.  

 

Most of the actors in our SD model of the process are roles, which can be played by 

many different agents. The Serves relationship can be used to effectively limit the agents 

that can play the role of the Meeting Initiator. Suppose that one of the constraints that 

exist in the organization is that only managers or team leaders are allowed to schedule 

meetings and book meeting rooms. One way to model that constraint with the Serves 

relationship is to declare that the MRBS agent representing the room booking system is 

only available to a restricted set of agents (managers and team leaders). If the directed 

labelled graph notation is used (see Figure 5.8), then we can use Figure 6.5 below to 

specify that only the agents playing the role of a Manager or a Team Lead can use the 

MRBS system to book meeting rooms: 

 

 
Figure 6.5. Using the Serves relationship. 

 

We can similarly use the Serves relationship to define the actors that can request 

information about available dates from the Meeting Participants. Note that we are not 

proposing any particular notation for the Serves and Trusts relationships. 
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6.2.4 Modeling Non-Functional Dependencies 
 

Modeling non-functional requirements during requirements analysis is very important. 

Non-functional requirements are sometimes called quality requirements and address such 

concerns as efficiency, ease of use, security, quality, etc. In the i* terminology, non-

functional requirements are called softgoals. There is no clear-cut satisfaction condition 

for a softgoal, instead softgoals are satisficed [Simon, 1981] — achieved to an acceptable 

degree. In our approach, softgoals are used as selection criteria for choosing the best 

alternatives among multiple process configurations. In i*, softgoals can be the subjects of 

intentional dependencies where the depending actor delegates the satisficing of a softgoal 

to a dependee actor. 

 

 
Figure 6.6. Modeling softgoal dependencies. 

 

In our meeting scheduling process model, we can identify a number of different softgoal 

dependencies. In this chapter, we will model a few of them. For example, the Meeting 

Initiator has a couple of non-functional requirements related to the process of scheduling 

meetings. The first non-functional requirement is the convenience of the scheduling 

process. It is modeled by the softgoal Convenience. Also, the Meeting Initiator wants the 

scheduling process not to be very time consuming. This is modeled by the softgoal 

Speed. Since in the current meeting scheduling process the MI is responsible for 
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scheduling meetings, we model the softgoal dependencies Speed and Convenience as 

self-dependencies involving the Meeting Initiator. Figure 6.6 shows the core 

dependencies of the meeting scheduling process with the newly introduced softgoal 

dependencies. 

 

6.3 Late Requirements with SD Diagrams 
 

In this section, the new automated meeting scheduling system is introduced into an 

organization. As this system is introduced, the existing processes in the organization will 

change. This will result in the reconfiguration of intentional dependencies in the model.  

 

6.3.1 Introducing the System-To-Be 
 

After exploring the organization, the processes within this organization, the stakeholders 

and their needs, we have a good understanding of the environment where the new 

automated meeting scheduling system will be introduced. Thus, the next step in the 

analysis of the meeting scheduling process is to bring the system-to-be into its 

organizational environment and analyze how the combined system (comprised of the 

environment and the system-to-be) is going to change. The system is represented by one 

agent (concrete actor) called the Meeting Scheduler (MS). It may be the case that the 

system is decomposed into several sub-agents at a later stage of the requirements 

engineering process.  

 

With the introduction of the Meeting Scheduler agent, the network of intentional 

dependencies in the system changes significantly (see Figure 6.7). The Meeting Initiator 

now depends on the Meeting Scheduler for scheduling meetings. The initiator also needs 

to know whether the meeting is scheduled, when it is scheduled, and which room it is 

going to be held in. Since the Meeting Scheduler is scheduling meetings, it must have this 

information. Therefore, there is an information resource dependency MeetingInfo going 
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from the Meeting Initiator to the Meeting Scheduler. It is now the responsibility of the 

Meeting Scheduler agent to book meeting rooms, so it depends on the MRBS for the 

achievement of the goal RoomBooked. The scheduler is now the depender of the 

information resource dependency Room#, which is, as previously, fulfilled by the MRBS.  
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Figure 6.7. Introducing the system-to-be. 

 

The figure above also shows that there are significant changes in the Meeting 

Participant’s dependencies. Since the Meeting Scheduler agent is responsible for 

scheduling meetings, the dependencies MeetingInfo, AtMeeting, and AvailableDates 

now involve the Meeting Participant and the Meeting Scheduler. The only unchanged 

intentional dependency in the model is the goal dependency AtMeeting from the 

Disruptor to the MP. The dependency remains the same since the Disruptor actor is not 

using the organization’s meeting scheduling process and therefore is not affected by any 

changes in this process. 

 

6.3.2 Introducing the System Agent 
 

The System agent was introduced in Section 5.3.2 as a tool that can be used, among other 

things, to collect the goals that come not from the stakeholders in the organization, but 



 204 

from regulations, laws, etc. In order to demonstrate the use of the System agent in our 

case study we will assume that in the organization that we are modeling there exists a 

regulation requiring that no meetings be scheduled on weekends. This regulation could 

come from a company policy or a labour regulation. The exact source of this regulation is 

not important. What is important is the fact that it comes from the outside of the meeting 

scheduling process that we are modeling.  

 

 
Figure 6.8. The System agent in introduced into the model. 

 

We can capture requirements coming from this kind of regulations by assigning them to 

the System agent. The System agent represents the combined system as a whole and its 

goals are thought of as the goals the whole system must strive to achieve. The modeler 

can then look at the goals of the System agent, and decompose them if necessary, up to 

the point where the subgoals can be handled by single agents, and then assign these 

subgoals to the selected agents, thus distributing the responsibilities for the achievement 

of its goals throughout the system. By assigning the goal NoMeetingsOnWeekends to the 

System agent we declare that the new automated meeting scheduling system as well as its 

environment must make sure that no meetings are scheduled on weekends. The next step 
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is to analyze this goal and see whether it needs to be decomposed into simpler subgoals to 

be assigned to the actors in our model. In our methodology, Strategic Rationale (SR) and 

Intentional Annotated Strategic Rationale (iASR) diagrams are used to handle goal and 

task refinement. Thus, in order to refine the goals of the System agent one needs to use 

SR/iASR diagrams. However, in our case the goal NoMeetingsOnWeekends can easily be 

assigned to the Meeting Scheduler agent since that agent is responsible for scheduling 

meetings and it can make sure that no meetings are scheduled on weekends. This 

assignment of responsibility for the system goal is modeled by the goal dependency 

NoMeetingsOnWeekends from the System agent to the Meeting Scheduler (see Figure 

6.8). 

 

6.3.3 The System’s Architecture 
 

In this chapter, we will not discuss the architectural analysis of the system since the 

meeting scheduling system we are modeling is quite simple and is of the right size to be 

modeled by just one agent, the Meeting Scheduler. The need to split the system up into 

several sub-agents could arise if there was a requirement, for example, to schedule 

meetings for hundreds of people. In this case, the system could be split into a variable 

number of agents handling communication with meeting participants (e.g., one agent per 

100 participants) as well as the agent responsible for communicating with the initiator 

and selecting potential meeting dates. This would improve the system’s scalability.  

 

 

6.4 Late Requirements with SR Diagrams 
 

Once we have identified the intentional dependencies among the actors in the 

environment of the system-to-be and the system-to-be itself, we can look “inside” the 

environment actors and the system agents and model their internal processes. This step of 

the methodology gives the modeler a great insight into the way the actors behave, the 
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choices they face, their intentions, etc. New, more fine-grained intentional dependencies 

are frequently discovered during SR/iASR analysis. In this section, we will use the SR 

notation to model the internals of the actors that are part of the meeting scheduling 

process. These are the initial high-level SR diagrams that will be refined later and turned 

into iASR diagrams for mapping into CASL. 

 

6.4.1 Modeling the Meeting Initiator: Using Softgoals for Alternative 
Selection 
 

One very important investigation that designers can do using SR/iASR models is the 

analysis of various alternatives using their contributions to softgoals. In Section 6.2.4, we 

modeled several non-functional requirements (NFRs), Convenience and Speed, that exist 

in the meeting scheduling system. These NFRs are modeled as softgoal self-dependencies 

of the Meeting Initiator. We do not require that all the choices in terms of alternative 

process configurations be made at the requirements analysis stage. In fact, we suggest 

quite the opposite — keeping goals and alternative means of achieving them around until 

(and during) the design phase of the software development process. However, in order to 

concentrate on the modeling of the automated meeting scheduler and to keep the model 

simple, we will immediately use the softgoal analysis to select the best alternative and 

remove other alternatives.  

 

The way that alternative process configurations are related to softgoals (NFRs) is through 

softgoal contributions. The analyst identifies the elements of the model that affect 

(positively or negatively) the softgoals of the actors and models these influences using 

softgoal contribution links. Figure 6.9 is the SR diagram for the Meeting Initiator with 

two alternative ways of scheduling meetings. One way to do it is to use the old manual 

scheduling process. The other way is to use the new Meeting Scheduler agent, which is 

under development.  
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Figure 6.9. Modeling the softgoal contributions. 

 

The two non-functional requirements identified for the Meeting Initiator are used to rank 

these two alternatives. The task UseMeetingScheduler naturally represents the 

alternative that uses the new MS agent to schedule meetings.  Since all the work to 

schedule meetings is offloaded to an automated scheduling system, it contributes 

positively to the softgoal Convenience. Therefore, we add a positive softgoal 

contribution from UseMeetingScheduler to Convenience. Also, the automated system 

is going to be faster than the current manual process, so we add another positive 

contribution from UseMeetingScheduler to the softgoal Speed. On the other hand, the 

analysis of the manual meeting scheduling process with respect to the two non-functional 

requirements shows that the manual process contributes negatively to both NFRs. This is 

modeled by the negative softgoal contributions from the task ScheduleManually. To 

concentrate on modeling the system using the automated scheduler we assume that at this 

point a decision is made to abandon the manual scheduling process in favour of using the 

Meeting Scheduler agent. 

 



 208 

One of the requirements on the iASR models before one can map them into the 

corresponding CASL specifications is the absence of softgoals, softgoal dependencies, 

and softgoal contribution links. Softgoals can be used as above to select the best 

alternative and then be abstracted out. Alternatively, softgoals can be approximated with 

hard goals. In any case, they must be removed before the mapping to CASL is done. 

 

Let us look at the SR model for the Meeting Initiator actor after the removal of the 

softgoals and softgoal contributions (see the Figure 6.10). The model presents a high-

level view of the internal process for the actor using goals, tasks, resources, and 

intentional dependencies.  

 

 
Figure 6.10. The SR diagram for Meeting Initiator. 

 

The top-level node in the diagram is the task MIBehaviour, which models the overall 

behaviour of the actor. While the SR diagram notation does not require this, we always 

have a task as the top node in every actor’s SR diagram in order to simplify the 

conversion of SR diagrams into iASR diagrams. The task MIBehaviour has one subgoal, 
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MeetingSetup. This is the main goal of the Meeting Initiator. The goal has one means of 

achieving it. In order to achieve the goal MeetingSetup, the MI must execute the task 

SetupMeeting, which is in turn decomposed into a subgoal and a subtask. Setting up 

meetings involves scheduling them (including the booking of meeting rooms). This is 

modeled by the goal MeetingScheduled. As per the discussion in the previous section, 

the scheduling of meetings is done by delegating it to the Meeting Scheduler. Thus, the 

only means to achieve the goal MeetingScheduled is to request help from the automated 

scheduler. At this stage, we model this as the task UseMeetingScheduler. The details of 

the request will be provided in iASR models. After delegating the scheduling of a 

meeting to the Meeting Scheduler, the initiator must know the outcome of the scheduling 

process: whether the meeting was scheduled, when it was scheduled, and in what room it 

is going to be held. The Meeting Initiator must get this information from the Meeting 

Scheduler. This is modeled by the task GetMeetingInfo. This task requests the needed 

information from the Meeting Scheduler agent. Thus, there is a resource dependency 

from the MI to the MS with the dependum MeetingInfo. 

 

6.4.2 Developing an SR Model for the MRBS 
 

As mentioned before, the Meeting Room Booking System is a legacy software system 

that is used in the current manual meeting scheduling process. This system is deemed 

adequate for the new automated scheduling system, so it is going to be used in 

conjunction with the Meeting Scheduler agent. Therefore, it is represented as an actor in 

our diagrams and we need to model its behaviour, dependencies, etc. Since it is a legacy 

system, it is useful to model the services that the MRBS provides as capabilities. The 

purpose of the MRBS system is to manage the booking of meeting rooms and we have all 

the confidence that if the system is used properly and not interfered with, it can 

successfully book rooms. Therefore, a goal capability RoomBookedCap can be used to 

represent the service of the agent as illustrated in the SD diagrams in the previous 

sections (e.g., Figure 6.8). At this stage of the requirements engineering process, our goal 
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is to model the processes inside the MRBS agent. While modeling legacy systems, 

hardware devices, etc. one needs to concentrate on the incoming and outgoing intentional 

dependencies/interactions and on approximating the internal system processes.  
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Figure 6.11. Modeling the MRBS agent. 

 

Figure 6.11 is a high-level SR model of the MRBS system. There are two incoming 

dependencies from the Meeting Scheduler (the MS is the only actor now using the 

services of the booking system), the goal dependency RoomBooked and the resource 

dependency Room#. The top-level task of the MRBS agent is MRBSBehaviour, which 

models the overall behaviour of the agent. It is decomposed into two goals: RoomBooked 

and RoomNumberKnown. These goals represent the services that the MRBS agent provides: 

it can book rooms and notify its user whether it was successful and which room was 

booked for a meeting. The means of achieving the goal RoomBooked is a goal capability 

with the name RoomBookedCap, while the task InformIfKnown is a means to achieve the 

goal RoomNumberKnown. 
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6.4.3 Developing an SR Model for the Meeting Participant 
 

We assume that the Meeting Participant is a role played by the personal agents of the 

employees in the organization. They are participating in the meeting scheduling process 

on behalf of their owners. It can be seen from Figure 6.8 that the Meeting Participant 

actor depends on/is depended upon by the Meeting Scheduler, and by the actor called the 

Disruptor, which represents the outside forces that make the members of the organization 

block their calendars with external meetings. Let us analyze the Meeting Participant actor 

more closely. We start by developing a high-level SR diagram for it (see Figure 6.12). 

The top-level task representing the overall behaviour of the actor is called 

ParticipantBehaviour. It is decomposed into subgoals and subtasks that take care of 

incoming and outgoing dependencies of the actor. These dependencies are the same as in 

the SD diagram in Figure 6.8. The first subgoal the task is decomposed into is called 

MSInformedOfAvailableDates. This goal exists because of the incoming resource 

dependency AvailableDates. Here, the MS needs to know which dates on the schedule 

of this Meeting Participant are still available for meetings. Unlike goal and task 

dependencies, which specify the degree of freedom the dependee has in providing their 

dependums, resource dependencies do not specify that information. Therefore, in dealing 

with resource dependencies, one needs to determine whether the process of providing a 

particular resource is better modeled with goals or tasks. In fact, in our approach, all 

resource dependencies are eventually replaced with goal or task ones. In case of the 

resource dependency AvailableDates, we are inclined to treat it as a goal from the point 

of view of the Meeting Participant — there may be many possible ways of letting the MS 

know about available dates. For example, participants can inform the scheduler directly 

or they can upload their available dates to some secure shared storage. Therefore, the 

dependency AvailableDates is connected to the goal node 

MSInformedOfAvailableDates. This goal has one means of achieving it. It is the task 

InformMS, which represents the process of sending the list of available dates directly to 

the scheduler. Later, other means could be identified and added to the model. 
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The second subgoal in the task decomposition of ParticipantBehaviour is the goal 

AtMeeting (see Figure 6.12). Two actors depend on the MP for the achievement of this 

goal — the Meeting Scheduler and the Disruptor. To achieve this goal the participant 

must attend the meeting, so the means of achieving the goal in the model below is the 

task AttendMeeting. 
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Figure 6.12. The SR model for the Meeting Participant. 

 

The MP needs to know the details (date, room, etc.) of the meetings that it is supposed to 

participate in after they have been scheduled. This is modeled by the resource 

dependency MeetingInfo in the SD diagram in Figure 6.8 with the MS being the 

dependee and the MP being the depender. In the SR model above, we must identify the 

origin of this dependency inside the participant. This origin is the task GetMeetingInfo.  

It specifies how to get the information about the meeting. GetMeetingInfo can be 

replaced by a goal (e.g., MeetingInfoKnown), for which several achievement alternatives 

(e.g., asking the scheduler or looking up the info on a message board) can be identified. 

We will stay with the task GetMeetingInfo to simplify the model.  
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6.4.4 Developing an SR Model for the Disruptor 
 

As mentioned before, the Disruptor actor represents the agents outside of the organization 

that want to arrange meetings with members of the organization. This actor creates 

obstacles for the meeting scheduling process by making the meeting participants occupy 

their schedules, thus reducing the number of available dates and making it more difficult 

to schedule meetings among the members of the organization.  

 

 
Figure 6.13. The SR model for the Disruptor. 

 

The initial SR model for the actor is very simple. It has just one objective, the objective 

of requesting the Meeting Participant to attend a meeting with the Disruptor. In the 

diagram above (Figure 6.13), it is modeled by the goal ParticipationRequested. The 

goal is achieved by the task RequestMP, which requests that the Meeting Participant 

attend the meeting with the Disruptor, thus establishing the goal dependency AtMeeting. 

 

6.4.5 Modeling the Meeting Scheduler 
 

The Meeting Scheduler agent is the centerpiece of the new automated meeting scheduling 

system. This agent is involved in many dependencies and interacts with most of the 

actors in the system. Let us look inside this agent (see Figure 6.14). The top-level task 

that models the overall behaviour of the agent is called MSBehaviour.  It is decomposed 

into a subgoal and a subtask. They represent the activities that the MS does in order to 
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provide the dependums for two of its incoming dependencies. These dependencies come 

from the Meeting Initiator, which triggers the meeting scheduling process. The 

dependency MeetingScheduled ends inside the MS at the goal node 

MeetingScheduled. The way the MS agent fulfills the resource dependency 

MeetingInfo is by executing the task SendMeetingInfoToMI.  
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Figure 6.14. The initial SR diagram for the Meeting Scheduler. 
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The goal MeetingScheduled has one means of achieving it, the task 

ScheduleMeetingAndBookRoom. This task represents the main activity of the scheduler. 

It must schedule the meeting with all the participants as well as book a room for the 

meeting. We use task decomposition links to decompose the task into a number of 

subtasks and a subgoal. First, in order to be able to schedule a meeting the MS needs to 

know the identities of the meeting participants and the dates suggested by the Meeting 

Initiator. For this information the MS agent depends on the Meeting Initiator. The tasks 

GetParticipants and GetSuggestedDates model the activities needed to request that 

information from the initiator. These tasks are the origins of the two new resource 

dependencies, Participants and SuggestedDates. A deeper look at the meeting 

scheduling process inside the MS agent made the analyst realize the need for these two 

dependencies (they were not modeled in the initial SD diagram in Figure 6.8). The 

corresponding modifications to the SR diagram for the Meeting Initiator are discussed in 

the next section. 

 

After receiving the list of the intended meeting participants from the Meeting Initiator, 

the MS needs to get available dates from all these participants in order to find a mutually 

unoccupied time slot for the meeting. This is represented by the goal 

AvailableDatesKnown, which is a subgoal of the task ScheduleMeetingAndBookRoom. 

Only one means for achieving this goal is modeled for now, the task AskParticipants. 

It may be the case that in the future the scheduler could get access to securely stored 

schedules of all the participants and get the information on available dates from there. So, 

we model AvailableDatesKnown as a goal and keep it as such through the rest of the RE 

process in attempt to make the system more flexible/adaptable later on. The task 

AskParticipants represents the activity of requesting the information on available dates 

from participants. It is, therefore, the origin of the information resource dependency 

AvailableDates.  
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After available dates are known, the task is to find a common date that is free for all of 

the participants and is one of the dates suggested by the initiator. The task 

FindAgreeableDate, also a subtask of ScheduleMeetingAndBookRoom, models this 

activity. Upon finding an agreeable date the Meeting Scheduler requests a meeting on 

that date and books a meeting room. This is modeled by the task BookAvailableDate, 

which is decomposed into subtasks RequestMeetingParticipation and BookRoom. By 

requesting participation from meeting participants the MS delegates the achievement of 

the goal AtMeeting to the MPs. Thus, the task RequestMeetingParticipation is the 

origin of the goal dependency AtMeeting. The booking of a meeting room is modeled by 

the task BookRoom, which is the origin of the goal dependency RoomBooked that goes 

from the scheduler to the MRBS. The MS also needs to know which room the MRBS 

books for the meeting, so the next subtask in the task decomposition of BookRoom is 

GetRoom#. It again requests this information from the MRBS, thus giving rise to the 

resource dependency Room#. Once all of the details of the scheduled meeting are known, 

the MS provides this information to the participants.  

 

Let us take a look at the System agent with its goal dependency NoMeetingsOnWeekends. 

As it was decided in Section 6.3.2, the best way to achieve this goal is to delegate it to the 

Meeting Scheduler agent since it is responsible for scheduling meetings and therefore can 

be made to avoid scheduling them on weekends. In the SR model of the MS agent 

(Figure 6.14), the goal dependency NoMeetingsOnWeekends ends at the task 

GetRidOfWeekendDates, which throws away the dates suggested by the initiator that fall 

on weekends. This ensures that no meeting is going to be scheduled on one of those 

dates. 

 

6.5 Toward iASR Diagrams 
 

In this section, we look at how the some of the more complex SR diagrams developed 

above are refined and how the details are filled in to set the stage for their conversion into 
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iASR diagrams. This involves adding parameters to goal and task nodes, adding details to 

interactions, replacing resource dependencies with goal/task ones, as well as refining 

goal/task decompositions. The simpler SR models are directly turned into iASR diagrams 

in Section 6.6.  

 

6.5.1 Refining the Meeting Initiator Model 
 

Our goal is to gradually refine the SR model for the Meeting Initiator so that it becomes 

detailed enough to be easily mapped into a formal CASL specification. Process details 

are added to the model at this stage. Some changes resulting from a more thorough 

analysis of the MI process are also introduced into the goal/task decompositions. The 

second version of the SR diagram for the MI in Figure 6.15, therefore, brings it closer to 

the iASR model. 

 

When thinking about agent process specification, it is helpful to identify the 

context/subject of the goals/tasks/resources in SR models. This subject can be expressed 

with parameters. Adding parameters to goals and tasks is a way to increase the precision 

of the model. This precision is necessary for the formal analysis of the model using 

CASL. For example, instead of having a goal MeetingSetup (as in Figure 6.10), we add 

the parameter mid to the goal label and it becomes MeetingSetup(mid). mid stands for 

“meeting ID”, a unique identifier for a meeting. It allows the modeler to distinguish 

instances of the process that refer to different meetings. Parameters are also a way to pass 

information around. Therefore, the introduction of parameters for goals and tasks makes 

the analyst think about what data is needed for successfully executing a task or for 

achieving a goal. In the model below (Figure 6.15), once the goal MeetingSetup(mid) is 

identified, all the nodes that appear further down in the decomposition tree are passed this 

parameter to indicate that they refer to the same meeting. 
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Figure 6.15. The second version of the SR model for the Meeting Initiator. 

 

Some changes to the goal/task decompositions inside the MI actor were also made in new 

the SR model above. The new information resource dependencies that were discovered 

during the initial SR-level analysis of the Meeting Scheduler (Section 6.4.5) are included 

in the diagram above. Since the MS needs the information on the meeting participants as 

well as the list of suggested meeting dates from the initiator, the goal MeetingScheduled 

is now decomposed differently (see Figure 6.15). The means to achieve the goal is the 

task LetMSScheduleMeeting, which includes the subtask 

ProvideDatesAndParticipants. Two subtasks of ProvideDatesAndParticipants, 
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InformDates and InformParticipants, are used to inform the MS about the dates and 

participants respectively.  

 

The task GetMeetingInfo from the first version of the SR diagram for the MI actor (it 

was a subtask of SetupMeeting, see Figure 6.10) is replaced with the goal 

InitiatorInformed. This change in the diagram is done in order to improve the 

flexibility of the process specification. The task GetMeetingInfo was to ask the Meeting 

Scheduler for the information on scheduled meetings. Since we anticipate that there will 

potentially be other means of getting this information (e.g., from a message board or 

through an announcement), it is better to replace the task with the goal 

InitiatorInformed because the goal models the intention of the initiator to acquire the 

information and the task that is asking the MS agent for this information is just a means 

of doing so.  

 

Another addition to the model is the introduction of the task nodes that model the 

requests/informs that the MI performs. As discussed in Section 5.5.5, agent interactions 

are very important in multiagent systems. They are the primary means of goal/task 

delegation and information exchange in these systems. High-level agent interactions are 

also well supported by CASL. In order to be easily mapped into a formal CASL model, 

agent interactions must be specified in detail in iASR diagrams. One needs, for example, 

to specify the tasks that request a service or information, the tasks that provide the 

information, etc. When appropriate, we use suitable communicative actions of CASL to 

label the tasks that delegate goals and tasks to other actors or provide information to other 

actors. In particular, in the model in Figure 6.15, LetMSScheduleMeeting has a subtask 

labelled request(ms,MeetingScheduled(mid,mi)). This task delegates the 

achievement of the goal MeetingScheduled to the Meeting Scheduler. 

request(fromAgt,toAgt,someGoal) is a primitive action in CASL that results in the 

agent toAgt acquiring someGoal. Similarly, the means of achieving the goal 

InitiatorInformed is the task request(ms,InitiatorInformed(mi,mid)). Notice 
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that for achievement goals in CASL one needs to request that Eventually(φ). Since all 

of our goals in the case study are achievement goals, we leave out Eventually in the 

goal/task labels. Also, the fromAgt parameter (the requesting actor) is known from the 

context, so we do not specify it in the diagrams. Not all of the requests can be replaced 

with simple communicative actions. For example, the tasks InformDates and 

InformParticipants that inform the Meeting Scheduler of the meeting participants and 

preferred meeting dates are more complex and each simply cannot be replaced by an 

inform. We will eventually map them into CASL procedures. 

 

As discussed in Section 4.3.7.2, all resource dependencies in iASR diagrams are replaced 

with either goal or task ones depending on the degree of freedom that the depender gives 

the dependee. In the first version of the SR model for the initiator we had three 

information resource dependencies. First, the MI depended on the scheduler for 

MeetingInfo (see Figure 6.10). This dependency has been replaced with a goal 

dependency InitiatorInformed reflecting the freedom that the MS agent has in 

choosing the means to provide this information. On the other hand, the two resource 

dependencies from the MS to the initiator that were identified in the initial SR model for 

the scheduler in Figure 6.14 are replaced with task dependencies InformDates and 

InformParticipants. This means that the scheduler does not give the initiator the 

freedom to choose how to communicate the required information; specific tasks must be 

instead executed. 

 

6.5.2 Refining the SR Model for the Meeting Scheduler 
 

In this section, we discuss the second version of the SR model for the Meeting Scheduler 

agent. First, as we have done in the previous section, we add parameters to the goal/task 

labels that specify the subject of goals/tasks. Since the activities of the meeting scheduler 

have to do with the scheduling of meetings, most goals and tasks in the diagram in Figure 

6.16 now have the parameter mid, which represents the unique ID of the meeting. This 
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indicates that the goals are achieved and the tasks are performed in the context of a 

particular meeting. The task BookAvailableDate and its subtasks have an additional 

parameter called date. The task represents the activities that the MS agent must go 

through to organize a meeting on a date that is available for all the participants. This 

additional parameter specifies that date.  

 

After more detailed analysis of the meeting scheduling process, the decomposition of the 

task BookAvailableDate is modified to account for the possibility that meeting 

participants may not adopt the goal of attending a meeting on an available date if that 

date has since been allocated/occupied due to some external meeting request (through the 

Disruptor actor) while the meeting was being scheduled by the MS. Our first attempt to 

deal with this problem is to add a subtask to BookAvailableDate called 

GetConfirmation(mid,date), which will request confirmation from all the participants 

that they are in fact intending to attend the meeting. This task becomes the origin of the 

new dependency AttendanceConfirmed(mid,date) where the MS depends on the 

participants for confirmation of attendance (see Figure 6.16). A more complex solution is 

introduced in the iASR diagram for the Meeting Scheduler in Section 6.6.5. 

 

In the SR model in Figure 6.16, we also replaced all resource dependencies with goal/task 

ones depending on the level of freedom that the depender gives the dependee in fulfilling 

the dependency. Figure 6.14, the first version of the SR diagram for the MS agent, 

featured six resource dependencies. Let us review these dependencies. Once it got a 

meeting request, the MS depended on the initiator for the information on the meeting 

participants as well as on the suggested meeting dates. These were initially modeled as 

resource dependencies. As already discussed in Section 6.5.1, the two dependencies are 

then replaced with task dependencies InformParticipants and InformDates. These are 

complex tasks that communicate the list of intended meeting participants and the list of 

suggested meeting dates to the MS. Because of this complexity, the MS is not willing to 

give the initiator the freedom to provide the information as it sees fit, but rather the MS 
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agent instructs the Meeting Initiator to perform the tasks that provide the necessary 

information to it. 
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Figure 6.16. The second version of the SR diagram for the Meeting Scheduler. 

 



 223 

The resource dependency MeetingInfo from the initiator to the scheduler in Figure 6.14 

is now replaced with the goal dependency InitiatorInformed. Here, the Meeting 

Initiator depends on the scheduler to be informed of the outcome of the meeting 

scheduling process. The MS is free to choose a means to achieve this goal. The 

parameter, mi, is the name of a particular meeting initiator. The rest of the resource 

dependencies from Figure 6.14 are replaced with corresponding goal dependencies: 

AvailableDates, MeetingInfo, and Room# are replaced by AvailableDatesKnown, 

MeetingInfoKnown, and RoomKnown respectively.  

 

The initial version of the Meeting Scheduler’s SR diagram (Figure 6.14) already provides 

a lot of details about interactions among actors. For example, it has tasks that represent 

requests for information or services from other actors and tasks that provide information 

to other actors. In order to increase the precision of the diagram, in the second version of 

the SR model for the Meeting Scheduler these tasks are labelled (where appropriate) with 

the corresponding CASL communicative actions. For example, requests to the MRBS 

agent for booking a meeting room on an available date and for information on which 

room is booked are modeled by two request actions that are subtasks of 

BookAvailableDate. Also, the requests that the Meeting Initiator execute the procedures 

InformParticipants and InformDates are modeled by the tasks labelled by 

request(mi,DoAL(InformParticipants(mid))) and request(mi, 

DoAL(InformDates(mid)) (the parameter corresponding to the requesting agent, ms, is 

omitted for brevity). Here, DoAL (see Section 4.3.7.1) is an abbreviation that means that 

the task must be executed by the requested agent but that other concurrent activities are 

allowed. In our approach, this is a standard way to request an execution of a specific 

procedure. Thus, requests with DoAL are used to establish task dependencies among 

actors. 

 

However, there are a lot of tasks that request or provide services that are still too complex 

to label with individual CASL communicative actions. For example, the task 
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AskParticipants is used to model the request for information on available dates from 

all the participants. It, therefore, must send requests to all the participants. This complex 

request cannot be replaced with a single request action. Similarly, the tasks 

RequestAllParticipants (modeling requests for meeting participation), 

GetConfirmation (that models requests for confirmation of meeting attendance), 

SendMeetingInfoToMPs (informing all the participants of the meeting details), and 

InformWhenKnown (that informs the initiator about the meeting details once they are 

known) are also too complex to express with a single communicative action and remain 

as they are until the next version (iASR) of the diagram.  They will be easier to specify at 

that stage, where iteration and other control structures will be available. 

 

 

6.6 Developing iASR Models 
 

In this section, we look at how the SR diagrams developed in the previous sections are 

refined to get the corresponding iASR diagrams for all of the actors in the combined 

system. The process of evolving existing SR diagrams into iASR ones involves adding 

annotations and goal/task parameters, specifying interactions in details, deidealizing 

goals, replacing resource dependencies with goal/task ones, adding self-acquired goals, 

etc. Some of these activities (i.e., adding parameters, replacing resource dependencies, 

and providing details on agent interactions) have already been done for the more complex 

diagrams in the previous section.  

 

Note that quite a few annotations (e.g., the sequencing of tasks) in the iASR diagrams 

presented below come from the environment, so while a lot of the activities at this stage 

of the methodology could be attributed to high-level design, considerable amount of work 

done during the creation of iASR diagrams is spent on creating a more detailed model of 

the environment and the requirements for the system-to-be. 
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6.6.1 Developing the iASR Model for the Meeting Initiator 
 

In this section, we show how the SR model for the Meeting Initiator is turned into an 

iASR model (see Figure 6.17). Here, we add composition and link annotations as well as 

handle self-acquired goals in detail. We will now go over the changes to the model. 

 

We start by observing that the MI actor must be capable of initiating many meetings. This 

was noted during the development of the second version of the SR diagram for the actor 

and the mid parameter, which uniquely identifies the meeting, was added to all the goals 

and tasks in the model. The goal MeetingSetup is the main goal of the MI and represents 

the need to schedule a specific meeting. In order for the MI to be able to acquire instances 

of that goal repeatedly we add an interrupt link annotation to the goal node 

MeetingSetup (see Figure 6.17). The interrupt label reads 

whenever(Goal(MeetingSetup(mid),sD). It will fire whenever the MI has an 

unachieved goal that MeetingSetup(mid) for some binding of the parameter mid in its 

mental state. We omit some parameters in the annotations for brevity (e.g., the parameter 

that indicates which agent has the goal). The cancellation condition sD stands for 

SystemDone, which remains false as long as the system is running, thus making the 

interrupt fire a potentially unlimited number of times during a run of the system. Since in 

our approach we only handle achievement goals of the form 

Eventually(Goal(agt,φ)), we omit Eventually in the annotations. 

 

In the analysis of the meeting scheduling process, it was determined that the initiator’s 

goal MeetingScheduled is not always achievable. There may be situations when, for 

example, the intended meeting participants do not have any common available dates. 

Therefore, MeetingScheduled is an example of a goal that is too ideal. The modeler 

must then decide on how to relax this goal to make it always achievable or change the 

process model so that it can handle failure to achieve the goal. Formal goal definitions 

can substantially help in determining whether a goal is achievable and in relaxing a goal 
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to make it achievable — this is called goal deidealization. However, at this point in the 

methodology, formal goal definitions are not always available, so the analyst can just re-

label the goal node to show that is not always achievable. Here, we rename the goal node 

MeetingScheduled with MeetingScheduledIfPossible.  

 

In the previous SR model of Figure 6.15, the task SetupMeeting was decomposed into 

two subgoals, MeetingScheduled and InitiatorInformed. These are examples of self-

acquired goals that do not come from inter-agent dependencies, but are used to enhance 

the models. Models with self-acquired goals must be modified to show the goal 

acquisition explicitly (see Section 4.3.8 for details). The acquisition of the goal is done by 

the execution of the commit action, whose effect is the addition of the goal to the mental 

state of the agent. It is followed by a goal node annotated with the guard link annotation 

labelled by the goal. This allows the agent to recognize the presence of the goal in its 

mental state and modify its behaviour accordingly. Thus, the goal node 

MeetingScheduledIfPossible is preceded by the task commit( 

MeetingScheduledIfPossible(mid)) that acquires the goal for the agent. The goal 

node now has a guard link annotation guard( 
Goal(MeetingScheduledIfPossible(mid))). 

 

A similar transformation applies to the goal InitiatorInformed. The corresponding 

goal node now has a guard link annotation and is preceded by the appropriate commit 

task. Note that the commit tasks must precede the goal nodes since they have to be 

executed before the process blocks while waiting for the guard condition to become true. 

Since the default composition annotation is sequence, it is enough to order the tasks/goals 

in the correct sequential order left to right. Note that the means for achieving the goal 

InitiatorInformed is a request action that asks the Meeting Scheduler to achieve the 

goal PartricipantInformed(mi,mid). We make this change to the model since it was 

determined that the information the initiator requires is the same information that the 
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meeting participants need. Thus, we can simplify the model for the MS and provide the 

information uniformly for all the interested parties (see Section 6.6.5). 
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Figure 6.17. The iASR diagram for the Meeting Initiator. 

 

The task LetMSScheduleMeeting is the means for achieving the goal 

MeetingScheduled. It is decomposed into two subtasks that request the meeting to be 
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scheduled by the MS and provide the information on the intended participants and the 

suggested meeting dates. The second subtask is ProvideDatesAndParticipants. It is 

decomposed into two subtasks that provide the MS agent with the suggested dates and 

intended participants. These subtasks, InformDates and InformParticipants are 

executed in parallel (note the concurrency link annotation). These tasks are executed 

when the MI agent acquires the goals to execute them. This is done with the appropriate 

guard annotations, guard(Goal(DoAL(InformDates(mid)))) and guard(Goal(DoAL( 

InformParticipants(mid)))), that block the execution until the goals are in the MI’s 

mental state. Guard annotations are used instead of interrupts, since the procedures must 

be executed just once for each meeting. 

 

6.6.2 Developing the iASR Model for the MRBS 
 

In this section, we develop a detailed iASR model that represents the legacy MRBS 

system. We add parameters to tasks/goals, show the internals of the RoomBookedCap goal 

capability, and add link and composition annotations.  

 

In order to label the tasks that communicate with other actors with the appropriate CASL 

communication actions and provide the necessary link annotations that describe 

conditions under which the task are to be executed and the goals are to be achieved, one 

needs to incorporate certain elements of the formal domain model such as predicate and 

functional fluents that model domain properties. Therefore, the formalization of the i* 

process model in our approach, in fact, starts before the iASR model is mapped into the 

corresponding CASL specification. It starts during the development of iASR diagrams: 

the modeler needs to develop the formal model (or at least some parts of it) while 

introducing annotations, specifying interactions, etc. 

 

There are two high-level services that the MRBS agent is capable of providing. Both of 

them are means of supporting intentional dependencies coming from the Meeting 
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Scheduler agent. The first dependency makes the MRBS agent acquire the goal 

RoomBooked(mid,d), see Figure 6.18. Here, the second argument denotes the date on 

which the scheduler wants the room booked for the meeting mid. This goal is a subgoal 

of the task MRBSBehaviour that models the behaviour of this agent. In the SR diagram of 

Figure 6.11 we also had a resource dependency Room# where the MS agent depended on 

the MRBS for the information on whether a room was booked for a particular meeting 

and which room it was. This dependency is now replaced with a task dependency labelled 

ConfirmRoom(ms,mid,d), see Figure 6.18. The task ConfirmRoom is executed whenever 

requested by the MS agent. 
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Figure 6.18. The iASR model for the MRBS agent. 

 

The main goal and task are executed in parallel and each is accompanied by the 

appropriate interrupt link annotation that fires when the associated goal becomes part of 
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the mental state of the agent. For the task dependency the goal that is acquired is 

DoAL(ConfirmRoom(ms,mid,d)). It is adopted as a result of a request to the MRBS to 

execute the specified task. The cancellation condition for both interrupts is SystemDone, 

which means that the interrupts will be firing until the system is terminated.  

 

The only means for achieving the goal RoomBooked is the goal capability with the name 

RoomBookedCap. Unlike Figure 6.11, where the capability was shown in its abbreviated 

form, here it is presented in full detail. The top-level task of the capability is 

RoomBookedProc(mid,d), which books a meeting room on the day d for a meeting with 

the meeting ID mid. It is decomposed into a task and a goal. The task is the commit action 

that acquires the goal RoomBooked for the requested parameter bindings (see Section 

4.5.1 for a discussion of capabilities and how they are modeled). The commit action must 

be executed only if the required goal is not already in the mental state of the agent, 

therefore the task is used with a conditional link annotation. This is done so that a goal 

capability can be used anywhere a task can be used in an iASR diagram. The way it is 

used in the model for the MRBS, the commit action is not going to be executed since the 

goal is acquired through an intentional dependency. The subgoal RoomBooked is used 

with the guard annotation that unblocks when the agent has the goal RoomBooked in its 

mental state. The means of achieving the goal is the task BookRoomProc(mid,d). This 

task is further decomposed into two tasks: PickRoom(mid,d), which is executed if there 

is an available room to schedule the meeting mid on the date d, and the task 

setDoneBooking(mid), which sets the flag DoneBooking(mid) to true after the MRBS 

attempts to book a room for the meeting mid. PickRoom has one subtask, 

bookRoom(mid,d,r), which is used with a pick annotation (π) that non-deterministically 

selects a room r that is available on the day d (AvailableRoom(r,d) must hold). 

 

The task ConfirmRoom has one subtask. When the MRBS tries booking a room for the 

meeting mid (note that the guard condition is DoneBooking(mid)), the task 

SendConfirmation is executed. It first informs the MS agent whether a room was 
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booked for the meeting mid on the date d. This is true if the fluent RoomBooked(mid,d) 

holds. The CASL communicative action informWhether is used to send this information 

to the scheduler. The second subtask is executed conditionally. If the MRBS knows 

which room was booked for the meeting, it will send this information to the MS. 

 

We note here that while the goal of the capability is called RoomBooked and the capability 

itself is called RoomBookedCap, the goal RoomBooked has, in fact, been deidealized. Since 

the supply of meeting rooms is limited, the MRBS cannot guarantee a successful booking 

at all times if it wants to maintain a consistent booking schedule. Therefore, if it cannot 

book a room, it will reply accordingly during the execution of the task ConfirmRoom. 

 

6.6.3 Developing the iASR Model for the Meeting Participant 
 

In this section, we provide the iASR model for the Meeting Participant actor. The 

diagram was reworked to reflect the presence of a new dependency where the scheduler 

needs a confirmation of meeting attendance from the participant; see Figure 6.19. The 

earlier SR diagram was in Figure 6.12. 

 

The task ParticipantBehaviour is decomposed into a subtask and two subgoals 

corresponding to the main services provided by the participant. We added a concurrency 

annotation to this decomposition to show that the goals are to be achieved concurrently 

and with equal priority. The first task is InformAvailableDates. It is acquired from the 

MS through a task dependency. The task node is accompanied by the interrupt annotation 

that monitors for requests to execute the task InformAvailableDates and has a 

cancellation condition SystemDone. The task informs the scheduler about participants’ 

availability. It first sends the availability of the participant for all the dates to the MS and 

then tells the scheduler that the participant has finished sending the requested 

information. 

 



 232 

The first subgoal of ParticipantBehaviour is the goal AtMeeting. Participants are 

requested to participate in meetings by the MS agent as well as by the Disruptor actor. 

Note that in Figure 6.12 the only means of achieving the goal AtMeeting was the task 

AttendMeeting. Since we are mainly interested in the scheduling of meetings, we 

decided not to model the actual meeting attendance. We assume that once the participant 

has the goal AtMeeting(mid,date) for a particular meeting on a particular date, it will 

honour this commitment and attend the meeting. Thus, we could have omitted it from the 

diagram. However, we kept it there to illustrate that the goal dependency AtMeeting still 

exists. In order to respect the mapping rules for goal nodes, which require the presence of 

an achievement procedure, we added an empty procedure (no_op) as a means of 

achieving this goal. 

 

The second subgoal of ParticipantBehaviour is the goal 

InformedIfAttending(ms,mid,date), which is acquired from the MS and represents 

the need of the Meeting Scheduler to know whether the participant has, in fact, adopted 

the goal of attending the meeting mid on the date date. The means of achieving this goal 

is the task InformAttendingAndKnowIfScheduled. This task is responsible for 

informing the scheduler whether the participant intends to attend the meeting and also for 

finding out the details of the meeting from the MS. The task is decomposed into two 

subtasks. The first one is a communicative action informWhether that is used to inform 

the MS agent about the truth value of the expression 

Goal(AtMeeting(self,mid,date)), which means that the goal AtMeeting for a 

particular meeting ID and date is in the mental state of the agent. The second subtask is 

called KnowWhenScheduled. It is executed only if the participant is going to attend the 

meeting — note the if link annotation with the condition being the presence of the goal 

AtMeeting in the mental state of the agent. The self-acquired goal 

ParticipantInformed(self,mid) models the need of the participant for the meeting 

details.  As a self-acquired goal, it is accompanied by the corresponding commit action. 
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The means of achieving the goal is to delegate it to the Meeting Scheduler agent through 

an appropriate request communication. 

 

 
Figure 6.19. The iASR model for the Meeting Participant. 

 

6.6.4 Developing the iASR Model for the Disruptor 
 

In this section, we develop the iASR diagram for the Disruptor actor, see Figure 6.20. Its 

process specification is very simple and the Disruptor’s iASR diagram does not differ 

much from the SR one in Figure 6.13. Here, we add goal/task parameters, annotations, as 

well as provide details of the Disruptor’s communication with the Meeting Participant.  
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Figure 6.20. The iASR model for the Disruptor. 

 

The top-level task, DisruptorBehaviour, has one subgoal — 

ParticipationRequested(ptcp,mid,date), which models the need of the Disruptor to 

invite the participant ptcp to the meeting mid on the date date. The goal node is 

accompanied by the interrupt link annotation that fires whenever there is a goal 

ParticipationRequested in the mental state of the Disruptor for some binding of the 

parameters. The means to achieve the goal is the task that delegates the goal AtMeeting 

to the Meeting Participant. Here, we label the task with the CASL communicative action 

requestEnc, an encrypted request, as introduced in [Shapiro and Lespérance, 2001]. We 

cannot use an ordinary request because in the formalization for the communicative 

actions of CASL all agents are aware of all actions; see [Shapiro et al., 1998]. For 

simplicity, the communicative actions that we use in this case study are not encrypted, 

which means that all agents are aware of all the requests and know all the information 

that is being transmitted. However, in order to model the actions of the Disruptor 

correctly, i.e., the MS must be unaware of the fact that previously available dates have 

been booked by the Disruptor, we use requestEnc for an encrypted request. Only the 

sender and the receiver of the encrypted requests know the content of the message. We 

use this communicative action to make sure that only the meeting participant who is 

invited to attend a meeting by the Disruptor knows about it.  
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6.6.5 Developing the iASR Model for the Meeting Scheduler 
 

This section presents the iASR diagram for the Meeting Scheduler. In this version of the 

model, we modify the process to make it more robust. This includes the use of a locking 

mechanism to avoid attempting to schedule several meetings on the same date and the 

handling of failures to find a meeting date and to book a meeting room. 

 

Note that compared to the SR model in Figure 6.16 we are much less idealistic in 

specifying the iASR model for the Meeting Scheduler. In Figure 6.16, once an agreeable 

date was found, the meeting participants were requested to meet on that date and a 

meeting room was booked for that date. In the iASR diagram in Figure 6.21, on the other 

hand, we modify the model of the process to handle several types of possible failures. 

The kinds of failures that the new process is able to handle are the absence of common 

agreeable dates, the absence of available meeting rooms, and the participants refusing to 

commit to attending meetings. Also, we model the effects of the Disruptor actor more 

carefully. The Disruptor makes the meeting participants occupy their free time slots with 

meetings, thus reducing the number of such slots available for meetings organized by the 

Meeting Scheduler. Because of encrypted requests from the Disruptor (see Section 6.6.4), 

the MS is not aware of the changes to the participants’ availability due to the actions of 

the Disruptor. It may be the case that after the participant had informed the MS about its 

availability on a particular date, the date became occupied by a meeting booked by the 

Disruptor. The scheduler may try to schedule a meeting on that date since it is unaware of 

the change. Since we assume that the participants’ meeting slots are allocated on a first 

come, first serve basis, the participant with the date already occupied by the Disruptor’s 

meeting will be unable to accept a new meeting on that same date. This is why the MS 

must ask for meeting confirmation after requesting meeting participation from 

participants. The MPs that had the date occupied by the Disruptor will reply negatively, 

thus making the date unavailable for the meeting. In this case, the scheduler will have to 

cancel the meeting on that date and try another common agreeable date. Similarly, if all 
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the participants accepted the meeting date, but no meeting room can be found by the 

MRBS on that date, the meeting must also be cancelled and another date must be tried. 

 

The Meeting Scheduler could be scheduling multiple meetings involving some of the 

same participants concurrently. In order not to attempt to schedule two meetings on the 

same date for the same participant, we use a simple locking mechanism. When the MS 

tries to schedule some meeting on a particular date, it is locked for all the participants of 

that meeting so that the scheduler does not attempt to schedule another meeting on that 

date for the same participants. 

 

Let us take a look at the iASR diagram for the Meeting Scheduler (see Figure 6.21). The 

top-level task is still MSBehaviour, which represents the overall process executed by the 

MS. It is decomposed into two subgoals that model the major services that the agent 

provides. Both subgoals’ nodes are accompanied by the usual interrupt annotations that 

fire when the goals are in the mental state of the scheduler. The cancellation condition for 

both interrupts is SystemDone. The two goals are to be achieved in parallel. 

 

The first subgoal is MeetingScheduledIfPossible. This is a change from the previous 

diagram for the MS, which had the goal MeetingScheduled (see Figure 6.16). Here, we 

deidealized the goal MeetingScheduled after realizing that it cannot always be achieved. 

The means that achieve the new goal will attempt to schedule meetings, but it is also 

acceptable if they fail due to the absence of common time slots in participants’ schedules 

or due to the absence of meeting rooms on the day of the meeting. The formal definition 

of this deidealized goal is presented during the mapping of the iASR model into CASL. 

The means of achieving the goal MeetingScheduledIfPossible is the task 

TryToScheduleMeetingsAndBookRoom. This task models the bulk of the Meeting 

Scheduler’s process. Let us now look at how the task is decomposed. First, the MS needs 

to get the dates that the initiator is willing to meet on as well as the list of the meeting 

participants. To get that information, the MS asks the MI to execute the tasks 
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informDates and informParticipants respectively. Thus, we have two task nodes 

labelled with request communicative actions that request the execution of these specific 

tasks (note the use of DoAL inside the requests). 

 

Then the task GetRidOfWeekendDates(mid) is executed. This task is present in the 

decomposition since the MS is responsible for making sure that no meeting is scheduled 

on a weekend date. The reason for this is the goal dependency NoMeetingsOnWeekends 

from the System agent. In order not to schedule a particular meeting on a weekend, the 

scheduler can remove weekend dates from the list of suggested dates for a meeting. Thus, 

the task GetRidOfWeekendDates is decomposed into the task 

removeWeekendDate(mid,d), which is accompanied by a for loop link annotation that 

iterates through the list of suggested dates and picks the ones that fall on weekends.  

 

Next, the agent acquires the goal AvailableDatesKnown(mid), which models the need 

of the MS to know the dates on which the intended meeting participants are available. A 

self-acquired goal is used here for flexibility. The commit action for the goal is executed 

once the MS knows all the participants of the meeting mid. The acquisition of the goal 

makes the condition of the guard annotation that accompanies the goal node 

AvailableDatesKnown true. The model specifies one means for the achievement of the 

goal. In order to know about the availability of the meeting participants, the MS asks 

each of the participants (note the for loop annotation) to execute the task 

InformAvailableDates that informs the scheduler about the availability of every date 

according to the participant’s schedule. Thus, the request is the origin of the task 

dependency InformAvailableDates.  

 

The next step in the meeting scheduling process is to determine the agreeable dates for 

the meeting. These are the dates on which all of the meeting participants and the meeting 

initiator are available. It is determined that the computation of available dates can be 

easily done declaratively through the use of the defined fluent 
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AgreeableDate(mid,d,s), which holds if in the situation s the date d is available for all 

the participants and the initiator of the meeting mid (according to the MS’s information). 

The formal definition of this fluent is presented in Section 6.7.5. Therefore, there is no 

explicit task for this step. 

 

The next subtask in the task decomposition of TryToScheduleMeetingAndBookRoom is 

the task TryAgreeableDates, which is executed as soon as the MS has been informed 

about the availability of all the meeting participants (note the guard link annotation). This 

task is further decomposed into two subtasks. The first one, TryDates(mid,d), is 

executed in a for loop iterating through all of the agreeable dates, while the second one, 

ProcessFailure(mid), is executed when the meeting mid has not been scheduled after 

going through all of the agreeable dates. Here, the task is used with the conditional 

annotation if(¬SuccessfullyScheduled(mid)).  SuccessfullyScheduled(mid) is a 

defined predicate fluent that holds if a meeting was successfully scheduled on some date 

and a room was booked for the meeting on that date (the situation argument is omitted 

here; see the definition of the fluent in Section 6.7.5).  

 

The task TryDates has one subtask, TryOneDate, used with the conditional annotation 

if(¬SuccessfullyScheduled(mid)). This annotation prevents the scheduler from 

trying more agreeable dates for the meeting mid when the meeting has already been 

successfully scheduled. In that case, the fluent SuccessfullyScheduled(mid) holds and 

the task TryOneDate is not executed. The reason we need the two tasks, TryDates and 

TryOneDate, is that we only allow one link annotation per task/goal node. Therefore, if 

one wants a task to be executed in a loop and under a certain condition, one needs to use 

two task nodes, one being a supertask and another being a subtask, to be accompanied by 

a for loop and a conditional annotations respectively. 
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Figure 6.21. The iASR model for the Meeting Scheduler. 
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The task TryOneDate is decomposed as follows (see Figure 6.21). The first subtask locks 

the date d for the Meeting Initiator, while the second one, which is executed in a for loop 

iterating through the meeting participants and is labelled lockDate(p,d), locks the date 

d for the participant p (see above for the discussion). Once the date is locked for all the 

participants, they are contacted by the Meeting Scheduler. This is represented by the task 

ContactParticipant(mid,d), which is also executed for each of the participants of the 

meeting mid. It has two subtasks. The first requests that the participant p acquire the goal 

AtMeeting(p,mid,d), thus agreeing to attend the meeting mid on the date d. This is a 

simple request, so we label the task node with the appropriate request communicative 

action. The second subtask of ContactParticipant queries the participant as to whether 

he/she has in fact adopted the goal. This task is also labelled with the request action that 

makes each participant acquire the goal InformedIfAttending(ms,mid,d). 

 

Once the participants have been asked to send their meeting participation confirmations, 

the Meeting Scheduler can process their replies. To make sure that the scheduler has all 

the replies, the task ProcessReplies(mid,d) is only executed once its guard condition, 

which states that for all the participants of the meeting mid the MS knows whether they 

have adopted the goal to be at that meeting, is true. The task ProcessReplies has two 

subtasks, CancelMeetingForDate(mid,d) and ReserveRoomForDate(mid,d), that are 

used to handle the situation where some participants declined the meeting and where all 

participants accepted the meeting respectively. The fluents SomeoneDeclined(mid,d) 

and AllAccepted(mid,d) are used in the conditional annotations that accompany the 

tasks. They are defined in Section 6.7.5. When some participant declines to meet on some 

date d, the Meeting Scheduler unlocks the date d for all the meeting participants and then 

cancels its requests to meet on that date (see the decomposition of 

CancelMeetingForDate in Figure 6.21).  

 

If all meeting participants agree to meet on some date, the MS attempts to book a room 

for that meeting. This is modeled by the task node ReserveRoomForDate. The task is 
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decomposed into three subtasks. The first one asks the MRBS agent to book a room for 

the meeting (we use the request action to make the MRBS adopt the goal 

RoomBooked(mid,d)), the second subtask requests confirmation from the MRBS of the 

room booking. Here, the scheduler asks the legacy system to execute the task 

ConfirmRoom, a procedure which sends information to the MS on whether the room was 

booked as well as the number of the booked room. The third subtask of 

ReserveRoomForDate, the task ProcessReply, is executed when the MS has the 

information on whether the room was booked (the guard link annotation with the 

condition KWhether(ms,RoomBooked(mid,d)) is used). ProcessReply has two subtasks 

for handling the positive and negative replies about the room booking. If a room is 

booked, then the task setDoneScheduling(mid) is executed. If the MS is executing this 

task, it means that the meeting mid has been successfully scheduled on some date. This 

task is responsible for setting the flag DoneScheduling(mid) to true. The fluent 

DoneScheduling(mid), when true, denotes that the scheduling process has been 

completed for the meeting mid (with either positive or negative result).  

 

On the other hand, if the MRBS has been unsuccessful in booking a room, the scheduler 

executes the task FailedToBookRoom(mid,d) which unlocks the date d for all the 

participants (note the for loop annotation) and the initiator of the meeting mid and cancels 

its requests to meet on the date d since no room is available on that date. The fluent 

SuccessfullyScheduled(mid) remains false and the MS must either try another date or 

give up scheduling this meeting if there are no more agreeable dates left. This fluent 

(defined in Section 6.7.5) holds if the meeting is scheduled successfully and there is a 

room booked for it. 

 

Now that we have explored the process of trying to schedule a meeting on a particular 

date, we show what happens if the meeting is not scheduled by the time the scheduler 

runs out of agreeable dates for the meeting mid. This is modeled by the task 

ProcessFailure(mid), which is a subtask of TryAvailableDates and is executed on 
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condition that the fluent SuccessfullyScheduled(mid) is false. If 

setDoneScheduling(mid) is executed in this place of the process, it means that the 

Meeting Scheduler has tried all agreeable dates and failed to schedule the meeting mid. 

Here, the fluent DoneScheduling(mid) must be set to true since the scheduling process 

is complete. This concludes the description of the process for achieving the goal 

MeetingScheduledIfPossible. 

 

The second top-level goal of the MS, besides the goal MeetingScheduledIfPossible, is 

the goal ParticipantInformed(ptcp,mid), which is acquired through intentional 

dependencies from the Meeting Initiator and the Meeting Participant. Here, the MS needs 

to inform the interested parties of the result of the meeting scheduling process. Thus, the 

means of achieving the goal is the task InformParticipants. It has one subtask called 

SendStatusAndRoom(ptcp,mid). The scheduler informs the meeting participants 

whether the meeting was successfully scheduled and what room was booked for the 

meeting. However, we want this information sent only when the outcome of the process 

is known. So, the task SendStatusAndRoom is executed only when the MS has completed 

the scheduling process — it is accompanied by the annotation guard( 

DoneScheduling(mid)). When the MS successfully completes the scheduling of a 

meeting or when there is no chance of meeting being scheduled (no agreeable dates or all 

such dates have been tried), the fluent DoneScheduling(mid) is set to true. Only then 

can the MS inform the participants about the result of the scheduling. The task 

SendStatusAndRoom is decomposed into two subtasks. The first one informs participants 

about whether the meeting was scheduled (we use the CASL communicative action 

informWhether here). The truth value of the fluent SuccessfullyScheduled(mid) is 

sent to the participants (including the meeting initiator). The second subtask of 

SendStatusAndRoom informs the requesting participant which room was booked for the 

meeting. The task is executed on condition that the room is booked — it is accompanied 

by the annotation if(KRef(ms,RoomBooked(mid,d))), which holds if the MS knows 

that a room was booked for the meeting mid on the date d. 
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6.7 Mapping iASR Diagrams into CASL 
 

In this section, we show how the iASR diagrams developed in the previous sections are 

mapped into the corresponding formal CASL specification. First, we look at the basic 

domain model specified in CASL. Then we show how the iASR diagram for the Meeting 

Initiator (Figure 6.17) is mapped into CASL in detail. Most of the iASR diagrams for 

other agents are mapped in a similar fashion, so the mapping of these diagrams is 

presented in Appendix A. The rest of the section concentrates on showing the mapping of 

the MRBS’ goal capability and on discussing the aspects of the formal CASL model for 

the system that involve new issues such as the definitions of goals, conditions, etc. 

 

6.7.1 Specifying the Basic Domain Model 
 

Here, we specify the foundation of the formal model for the meeting scheduler domain. 

We present the predicates used to model dates, participants, etc., some primitive and 

defined fluents that model certain aspects of the domain, formal definitions of agent 

goals, as well as the primitive actions executed by the agents in the system together with 

their preconditions and effects. 

 

6.7.1.1 Modeling Meeting Dates 

 

First, we describe the predicates that represent some of the most basic entities in the 

model — the meeting dates. They do not change their value and therefore are modeled as 

non-fluents.  

 

• IsDate(d) specifies that d is a date. This means that it can potentially be used for 

scheduling meetings. 

• Weekend(d) specifies that d is a weekend date. In the current meeting scheduling 

process, the MS cannot schedule meetings on such dates. 
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6.7.1.2 Meeting Participants and Suggested Meeting Dates 

 

The next two predicate fluents represent meeting participants and meeting dates 

suggested by the initiator for each meeting.  

 

• Ptcp(mid,p,s) specifies that the agent p is an intended participant of the meeting 

mid in situation s. 

• SuggestedDate(mid,d,s) specifies that d is one of the suggested meeting dates 

for the meeting mid in situation s. 

 

In the current model, we assume that these fluents are set by the appropriate initial state 

axioms. The fluent Ptcp(mid,p,s) does not change throughout the execution of the 

system. Note that it must nonetheless be made a fluent because its extension is not known 

by the MS initially: 

 

Ptcp(mid,p,do(a,s)) ≡ Ptcp(mid,p,s) 

 

The predicate fluent SuggestedDate(mid,d,s) can only be changed by the primitive 

action removeWeekendDate(agt,mid,d), which is used to remove the MI-suggested 

meeting dates that fall on weekends: 

 

SuggestedDate(mid,d,do(a,s)) ≡ SuggestedDate(mid,d,s) 

∧  ∃agt[a≠removeWeekendDate(agt,mid,d)] 

 

These predicates are extensively used in the meeting scheduling process for selecting 

meeting participants and meeting dates.  

 



 245 

The task removeWeekendDate(agt,mid,d) can be executed only if the date d is one of 

the suggested meeting dates for the meeting mid and it is also a weekend date. It can only 

be executed by the Meeting Scheduler: 

 

Poss(removeWeekendDate(agt,mid,d),s) ≡  

SuggestedDate(mid,d,s) ∧ Weekend(d) ∧ agt = MS 

 

Note that in all the primitive actions in our model the first argument is the agent 

performing the action. We indicate that using the following axiom (we omit these axioms 

for other primitive actions): 

 

Agent(removeWeekendDate(agt,mid,d)) = agt 

 

6.7.1.3 Flags for Managing the Scheduling Process 

 

The following predicate fluents are used as flags in the meeting scheduling process. Their 

values are changed manually by the MS agent.  

 

• DoneScheduling(mid,s). When it holds, DoneScheduling indicates that the 

scheduling process for the meeting mid has been completed by the Meeting 

Scheduler in situation s. 

• Locked(ptcp,d,s) indicates whether the date d is locked for the participant ptcp 

in situation s. If the value of this fluent is true for some date and some agent, it 

means that the scheduler is currently trying to schedule a meeting that requires the 

agent’s participation on the specified date and no scheduling of another meeting 

should be attempted on that date until it is unlocked. 

 

Let us now look at the primitive actions executed by the MS agent that change the values 

of the above fluents. First, we look at the action setDoneScheduling(agt,mid), which 
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is used by the MS agent to set the fluent DoneScheduling(mid,s) to true. Below are the 

precondition axiom for the action as well as the successor state axiom for the fluent. The 

action setDoneScheduling can only be executed by the MS: 

 

Poss(setDoneScheduling(agt,mid),s) ≡ agt = MS 

 

The predicate fluent DoneScheduling(mid,s) is only affected by the action 

setDoneScheduling. The axiom below says that DoneScheduling(mid) is true after 

executing some action a in the situation s if the action is setDoneScheduling(agt,mid) 

or the fluent was true before the execution of the action:  

 

DoneScheduling(mid,do(a,s))≡  

∃agt[a=setDoneScheduling(agt,mid)] ∨ DoneScheduling(mid,s) 

 

The fluent Locked(ptcp,date,s) indicates whether a date is locked for a particular 

participant. There are two primitive actions executed by the MS agent that lock and 

unlock dates. Here are the precondition axioms for the actions: 

 

Poss(lockDate(agt,ptcp,date),s) ≡ ¬Locked(ptcp,date,s) ∧ agt = MS  

Poss(unlockDate(agt,ptcp,date),s) ≡ Locked(ptcp,date,s) ∧ agt = MS 

 

It is possible to lock a date for some participant if it is not already locked. Similarly, it is 

possible to unlock a date if it is locked. The successor state axiom for the fluent 

Locked(ptcp,date,s) shows that the fluent can only be changed by the above actions: 

 

Locked(ptcp,date,do(a,s)) ≡ ∃agt[a=lockDate(agt,ptcp,date)] ∨  

(Locked(ptcp,date,s) ∧  ∀agt[a≠unlockDate(agt,ptcp,date)]) 
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This successor state axioms states that for the fluent Locked for some participant ptcp 

and date date to be true after the execution of some action either the action was 

lockDate for ptcp and date or the fluent was already true for ptcp and date before the 

execution of the action and the action was not the unlockDate action for that participant 

and date. 

 

6.7.1.4 Managing Participants’ Schedules 

 

The key primitive fluent used to manage the schedules of meeting participants is 

AtMeeting(ptcp,mid,date,s). This fluent indicates that a meeting participant ptcp 

participates in the meeting mid on the date date. We are not modelling meeting 

attendance, so there are no actions that change this fluent’s value and the successor state 

axiom for this fluent states that it never changes. It must nonetheless be a fluent since its 

value is not known to all agents: 

 

AtMeeting(ptcp,mid,date,do(a,s)) ≡ AtMeeting(ptcp,mid,date,s) 

 

When scheduling meetings, the MS is interested in the participants’ commitment to 

attend meetings. The presence of a goal that AtMeeting(p,mid,d,s) in the mental state 

of the participant p indicates such commitment. The assumption is that once committed to 

attending a meeting, a participant will honour this commitment. As mentioned earlier, the 

actual meeting attendance is out of the scope of the meeting scheduling system and 

therefore is not modeled. See [Shapiro et al., 1998] on how to model this.  

 

In order to maintain consistency of the participants’ schedules we have the following 

axiom for the Meeting Participant: 

 
∀agt[Know(agt,∀p,mid1,mid2,date[AtMeeting(p,mid1,date,now) ∧ 

  AtMeeting(p,mid2,date,now) ⊃ mid1=mid2],S0)] 
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This axiom states that there could only be one meeting per participant per day in the 

initial situation. This axiom prevents participants from acquiring goals to participate in 

more than one meeting per day, thus maintaining the consistency of their schedules. 

Another axiom makes sure that no meeting can span more than one date: 

 
∀agt[Know(agt,∀p,mid,date1,date2[AtMeeting(p,mid,date1,now) ∧ 

AtMeeting(p,mid,date2,now) ⊃ date1=date2],S0)] 

 

Since there are no actions to change the fluent AtMeeting, the schedules retain these 

properties. We define the availability of a participant on a particular date as the absence 

of any meeting commitments: 

 
  AvailableDate(p,d,s) =

def  
  ¬∃mid[Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)] 

 

The above formula states that the date d is available for scheduling meetings for the 

participant p if there are no meetings that the participant is already committed to attend 

on date d. 

 

6.7.1.5 Booking Rooms 

 

In order to distinguish entities that are rooms from other entities, we introduce the 

predicate Rooms(r) that specifies that r is a meeting room. To model rooms being 

booked for meetings, we have the predicate fluent Room(mid,d,r,s), which holds if the 

room r is booked on the date d for the meeting mid.  

 

Rooms are booked by the MRBS agent using the action 

bookRoom(agt,mid,date,room), which is executed inside its goal capability 

RoomBookedCap. To insure consistency of booking rooms, the precondition of the action 
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bookRoom that books the room r for the meeting mid on the date d states that the room 

must not already be booked for another meeting on the same date: 

 
Poss(bookRoom(agt,mid,d,r),s) ≡  

¬∃mid2[Room(mid2,d,r,s)] ∧ agt = MRBS 

 

The primitive fluent Room can only be changed by the execution of the action bookRoom: 

 

Room(mid,d,r,do(a,s)) ≡ Room(mid,d,r,s) ∨ ∃agt(a=bookRoom(agt,mid,d,r)) 

 

The MRBS sets the predicate fluent DoneBooking(mid,s) to true once it is done booking 

a room for the meeting mid. It uses the action setDoneBooking(agt,mid) to do that. The 

action can only be executed by the MS. The successor state axiom for this fluent is 

presented below. It says that after executing some action a the fluent holds if it held in the 

previous situation or the action executed was the setDoneBooking action: 

 

DoneBooking(mid,do(a,s)) ≡  

DoneBooking(a,s) ∨ ∃agt(a=setDoneBooking(agt,mid)) 

 

In order to create an instance of the system, one needs to specify what dates are available 

for the scheduling of meetings using the predicate IsDate(d), which dates fall on 

weekends using Weekend(d), and what rooms are available for holding meetings using 

the predicate Rooms(r). For each meeting to be scheduled, its participants and the list of 

suggested dates for it must be specified using the fluents Ptcp(mid,p,S0) and 

SuggestedDate(mid,d,S0) respectively (note that the situation parameter refers to the 

initial situation). To make the instance more interesting, one can block certain dates in 

participants’ schedules using the fluents AtMeeting(p,mid,date,S0). 
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Note that the System agent is not being mapped into CASL since the Meeting Scheduler 

takes responsibility for making sure that no meetings are scheduled on weekends. 

 

6.7.2 Creating the CASL Model for the Meeting Initiator 
 

In this section, we map the iASR diagram for the Meeting Initiator (Figure 6.17) into the 

corresponding CASL model. At this point, the modeler needs to map the entities in the 

iASR diagram for the MI into the elements of the formal CASL model using the mapping 

rules presented in Chapter 4 of this thesis.  

 

We remind here that composition annotations are mapped into the corresponding CASL 

operators — we mostly use the default annotation that maps into the sequence operator 

and the concurrency annotation that maps into the concurrency with equal priority 

operator. Link annotations are mapped into the corresponding CASL programming 

constructs; the conditions featured in the link annotations are mapped into CASL 

formulae. Each goal node is mapped into a CASL formula and an achievement 

procedure. Task nodes are mapped into CASL procedures or primitive actions. The 

mapping of a task decomposition must take into account the composition and link 

annotations. 

 

Let us look at the mapping of the top-most task in the MI’s iASR diagram in Figure 6.17. 

Since the Meeting Initiator is a role, the CASL procedure that the task node is mapped 

into needs to have a parameter for the agent that is playing the role of the Meeting 

Initiator. We call this parameter mi. Also, as mentioned in the previous sections, only the 

most important parameters were added to the goal and task labels in the iASR diagrams. 

In the CASL code, on the other hand, we are not only concerned with specifying, for 

example, what meeting the task is used for scheduling (the mid parameter in iASR 

diagrams), but also with making sure that all the goals/tasks have all the necessary 

information passed to them through parameters. Here, we worry not only about the 



 251 

information needed for a particular task, but also about the information needed for the 

tasks/goals that this task is decomposed into. That is why the number of parameters in the 

CASL procedures/formulae may increase with respect to the corresponding iASR 

task/goal nodes (see, for example, the fluent MeetingSetup in the code for 

MeetingInitiatorBehaviour below). In our model, we assume that the names of the 

Meeting Scheduler and the MRBS agent are constants, so they do not have to be passed 

as procedure and action parameters. 

 

As can be seen from Figure 6.17, the task MeetingInitiatorBehaviour has one subgoal 

accompanied by the interrupt link annotation — MeetingSetup. In order to map this part 

of the iASR diagram into CASL, we need to provide the mapping for the goal 

MeetingSetup. Based on the mapping rules presented in Section 4.3.9.2, a goal node is 

mapped into a CASL formula and an achievement procedure. The goal node 

MeetingSetup is therefore mapped as follows: 

 

m(MeetingSetup(mid))=<MeetingSetup(mid,mi),AchieveMeetingSetup(mid,mi)>, 

 

where MeetingSetup(mid,mi,ms) is the formal definition of the goal (we omit the 

situation parameter here), a defined fluent, and AchieveMeetingSetup(mid,mi,ms) is 

the achievement procedure for the goal. Therefore, using the mapping function m (see 

Section 4.3.9.2), we can now show the code for the MeetingInitiatorBehaviour 

procedure, composed as required by the mapping rules: 

 

proc MeetingInitiatorBehaviour(mi) 

<mid: Goal(mi,Eventually(m(MeetingSetup(mid)).formula(mid,mi))) ∧  

Know(mi,¬m(MeetingSetup(mid)).formula(mid,mi)) → 

  m(MeetingSetup(mid)).achieve(mid,mi) 

 until SystemDone> 

endProc 
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We can then substitute expressions involving the mapping function m with the CASL 

formula MeetingSetup(mid,mi), which expresses the goal MeetingSetup formally, and 

with the achievement procedure for this goal, which is the procedure 

AchieveMeetingSetup(mid,mi): 

 

proc MeetingInitiatorBehaviour(mi) 

<mid: Goal(mi,Eventually(MeetingSetup(mid,mi))) ∧  

Know(mi,¬MeetingSetup(mid,mi)) → 

   AchieveMeetingSetup(mid,mi), 
  until SystemDone> 

endProc 

 

Therefore, as per the mapping rules for goal nodes presented in Section 4.3.9.2, the 

CASL code for the task involves an interrupt, which is triggered when for some binding 

of the meeting ID mid there is a goal MeetingSetup(mid,mi) that the initiator knows has 

not yet been achieved. When the MI has such a goal, the interrupt fires and the 

achievement procedure for the goal MeetingSetup is executed for the newly bound 

parameter mid. 

 

Let us now look at the procedure AchieveMeetingSetup. It encodes the way the goal 

MeetingSetup can be achieved. In the model in Figure 6.17, there is just one means for 

achieving that goal, the task SetupMeeting. So, the procedure AchieveMeetingSetup is 

quite simple: 

 

proc AchieveMeetingSetup(mid,mi) 

  m(SetupMeeting(mid))(mid,mi) 

endProc 
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Here, we use the mapping function m to map the task node labelled SetupMeeting(mid) 

into the corresponding CASL procedure and supply the meeting ID and initiator 

parameters to it. As mentioned in Section 4.2.1, iASR task nodes are either mapped into 

procedures or primitive actions. Non-leaf task nodes are always mapped into procedures 

since they must be further decomposed. We map the task node SetupMeeting into a 

CASL procedure with the same name. Substituting the actual procedure name for 

m(SetupMeeting(mid)) we get the following: 

 

proc AchieveMeetingSetup(mid,mi) 

  SetupMeeting(mid,mi) 
endProc 

 

Let us see what CASL formula the goal node MeetingSetup is mapped into. By 

comparing the decomposition of the task SetupMeeting with the decomposition of the 

task Means_1 in Figure 4.32 that shows a generic iASR diagram with AND-

decomposition of goals, one can see that the modeler AND-decomposed the goal 

MeetingSetup into the goals MeetingScheduledIfPossible and InitiatorInformed. 

So, formally the goal MeetingSetup is a conjunction of the two goals: 

 

MeetingSetup(mid,mi,s) =
def MeetingScheduledIfPossible(mid,mi,s) ∧ 

             InitiatorInformed(mid,mi,s) 

 

From here on, we will map iASR diagrams directly into CASL code, without going 

through intermediate steps as shown above. The mapping details are fully discussed in 

Chapter 4. All the task nodes will be mapped into CASL procedures/primitive actions 

with the same name (the number of parameters may increase as per the discussion 

above). 
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As can be seen in Figure 6.17, the task SetupMeeting is decomposed into two subtasks, 

ScheduleMeeting and GetMeetingInfo. Here is how the procedure SetupMeeting 

looks like in CASL (the two procedure calls in the above code are executed in sequence, 

note the “;” operator): 

 

proc SetupMeeting(mid,mi) 

  ScheduleMeeting(mid,mi); 

  GetMeetingInfo(mid,mi) 
endProc 

 

The CASL procedure corresponding to the task ScheduleMeeting is more complex since 

the task decomposition involves the self-acquired goal MeetingScheduledIfPossible. 

The goal is acquired using the commit action (see Figure 6.17). The achievement 

procedure for the goal is executed once the goal is in the mental state of the initiator. 

 

proc ScheduleMeeting(mid,mi) 

 commit(mi,Eventually(MeetingScheduledIfPossible(mid,mi))); 

 guard Goal(mi,Eventually(MeetingScheduledIfPossible(mid,mi))) do 

  AchieveMeetingScheduledIfPossible(mid,mi) 
 endGuard 

endProc 

 

The procedure for the task GetMeetingInfo is quite similar to the above procedure. 

Here, the initiator acquires the goal InitiatorInformed and then executes its 

achievement procedure: 
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proc GetMeetingInfo(mid,mi) 

 commit(mi,Eventually(InitiatorInformed(mid,mi))); 

 guard Goal(mi,Eventually(InitiatorInformed(mid,mi))) do 

  AchieveInitiatorInformed(mid,mi) 
 endGuard 

endProc 

 

The goal MeetingScheduledIfPossible has just one means that achieves it (see Figure 

6.17), so its achievement procedure is also simple (note that the name of the Meeting 

Scheduler, MS, is a constant): 

 

proc AchieveMeetingScheduledIfPossible(mid,mi) 

  LetMSScheduleMeeting(mid,mi,MS) 
endProc 

 

The goal InitiatorInformed has one means for achieving it as well — the Meeting 

Initiator asks the MS agent to schedule the meeting for it. Here, we use the 

communicative action request: 

 

proc AchieveInitiatorInformed(mid,mi) 

  request(mi,MS,Eventually(ParticipantInformed(mi,mid))) 

endProc 

 

Note that the MI requests that the MS adopt the goal ParticipantInformed as the 

information required by the initiator is the same as for any participant. The achievement 

of the latter goal will automatically achieve the former. The formal definitions of the 

goals ParticipantInformed and MeetingScheduledIfPossible will be presented in 

Section 6.7.5. 
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The task LetMSScheduleMeeting, which is the means for achieving the goal 

MeetingScheduledIfPossible, is decomposed into a task that requests the achievement 

of the goal and a task that informs the MS about suggested meeting dates and meeting 

participants: 

 

proc LetMSScheduleMeeting(mid,mi) 

 request(mi,MS,Eventually(MeetingScheduledIfPossible(mid,mi))); 

 ProvideDatesAndParticipants(mid,mi) 
endProc 

 

The task ProvideDatesAndParticipants is mapped into a procedure with the same 

name, which is responsible for monitoring for requests from the MS to execute the tasks 

InformParticipants(mid,mi,MS) and InformDates(mid,mi,MS) and for executing 

these tasks when such requests are received. Because of the presence of the concurrency 

annotation in Figure 6.17, the two tasks are executed in parallel: 

 

proc ProvideDatesAndParticipants(mid,mi) 

  guard Goal(mi,DoAL(mi,InformDates(mid,mi,MS))) do 

   InformDates(mid,mi,MS) 
  endGuard 

  || 
  guard Goal(mi,DoAL(mi,InformParticipants(mid,mi,MS))) do 

   InformParticipants(mid,mi,MS) 
  endGuard 

endProc 

 

The tasks InformDates and InformParticipants are leaf-level tasks in the iASR 

diagram in Figure 6.17. The modeler chose not to decompose them further. However, full 

details must be provided in the CASL model for the Meeting Initiator. The procedure that 
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the task InformDates is mapped into first sends to the MS the suggested meeting dates 

and then informs the scheduler that it now knows all the suggested dates for a particular 

meeting: 

 

proc InformDates(mi,mid,ms) 

 for d: SuggestedDate(mid,d) do 

  inform(mi,ms,SuggestedDate(mid,d)) 
 endFor; 

inform(mi,ms,∀d.SuggestedDates(mid,d) ⊃ 
Know(ms,SuggestedDate(mid,d))) 

endProc 

 

In the above procedure, the for loop iterates through all the suggested dates executing the 

inform action for each of them. After that, another inform action is executed telling the 

MS that for each suggested date the scheduler knows that it is a suggested date. Thus, if 

the MS does not know that some date is a SuggestedDate, then it is not.  

 

The procedure that the task InformParticipants maps into is very similar to 

InformDates and we will not discuss it: 

 

proc InformParticipants(mi,mid,ms) 

  for p: Ptcp(mid,d) do 

   inform(mi,ms,Ptcp(mid,d)) 
  endFor; 

  inform(mi,ms,∀d.Ptcp(mid,d) ⊃ Know(ms,Ptcp(mid,d))) 

endProc 
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This concludes the mapping process for the Meeting Initiator. Note that the agent is 

modeled as being very much aware of what it is doing: the agent’s goals and knowledge 

are set and updated appropriately and trigger the relevant behaviour. 

 

We also have to specify the goals and the knowledge that the agent has in the initial 

situation. Since the Meeting Initiator is the driving force behind the meeting scheduling 

process, it needs to initiate it by trying to achieve its goals. The top-level goal of the MI is 

the goal MeetingSetup(mid,mi,s). In order to indicate which meetings it will try to 

schedule, we will specify the initial goals of the Meeting Initiator as follows: 

 

Goal(mi,Eventually(MeetingSetup(MID_1,mi,now),now,then),S0) 

... 
Goal(mi,Eventually(MeetingSetup(MID_n,mi,now),now,then),S0) 

 

This says that in the initial situation, the initiator has the goals to schedule n meetings 

with meeting IDs of MID_1 to MID_n. The participants and suggested dates for these 

meetings must be specified using the fluents Ptcp and SuggestedDate. 

 

6.7.3 Creating the CASL Model for the MRBS 
 

In this section, we show how the mapping of a capability node into a CASL model differs 

from the mapping of other types of nodes. The rest of the model for the MRBS can be 

found in Appendix A.1. 

 

Based on the mapping rules for capabilities presented in Section 4.5.4, a goal capability is 

mapped into a CASL formula/fluent, a CASL procedure that acquires and achieves the 

goal of the capability, a specification of the processes that may occur in the environment 

without affecting the success of the capability, and a context condition for the capability 
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under which it is guaranteed to succeed. Let us see how the goal capability 

RoomBookedCap (see Figure 6.18) is mapped into CASL.  

 

Since the capability achieves the goal RoomBooked, it maps into is the defined fluent 

RoomBooked: 

 

m(RoomBookedCap).formula = RoomBooked(mid,date,s) 

 

The defined fluent RoomBooked(mid,d,s) tells whether a room has been booked for the 

meeting mid on the date d. It is a fluent that is defined in terms of the fluents Room and 

AvailableRoom. The goal RoomBooked that is delegated to the MRBS by the scheduler 

also maps into this fluent: 

  

RoomBooked(mid,date,s) =
def

∃r[Rooms(r) ∧ Room(mid,date,r,s)] ∨ 

∀r[Rooms(r) ⊃ ¬AvailableRoom(r,date,s)] 

 

This is the deidealized definition of the goal RoomBooked. This fluent holds if there a 

room was booked for the meeting mid on the date or if there is no available room on that 

date. AvailableRoom is defined as a room that is not booked: 

 
AvailableRoom(room,date,s) =

def
¬∃mid[Room(mid,date,room,s)] 

 

The specification for the allowable processes in the environment that guarantees that the 

capability succeeds in achieving its goal (booking a meeting room if there is one 

available while maintaining the consistency of the booking schedule) states that all the 

actions are allowed except for the action bookRoom. Effectively, the specification bans 

other agents from executing this action (note the non-deterministic iteration operator): 

 
RoomBookedCap.envProc = (π act[(act ≠ bookRoom)?; act])≤k 
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The context condition for the capability states that in order for the capability to be 

successful in booking rooms the MRBS must know initially about the availability of all 

rooms on all dates: 

 

RoomBookedCap.context = ∀r,d[(Rooms(r) ∧ IsDate(d)) ⊃ 
KWhether(MRBS,∃mid.Room(mid,d,r,now),S0)] 

 

The achievement procedure for the capability is the procedure RoomBookedProc. 

 

RoomBookedCap.achieve = RoomBookedProc 

 

At this point, we have the complete mapping of the goal capability RoomBookedCap. The 

complete CASL code is presented in Appendix A.1. In Section 4.5.4 we presented a 

constraint on the achievement procedures for goal capabilities. It states that in all 

situations satisfying the context condition every subjective execution of the achievement 

procedure of a capability by the agent in an environment in which processes specified by 

envProc may occur terminates with the goal being achieved. In case of RoomBookedCap, 

the constraint states that if the MRBS knows the status of all rooms initially and no other 

agent is booking rooms, then after the procedure RoomBookedProc(mid,d) is executed 

for some meeting ID, either a room is booked for the meeting mid on the date d or there is 

no available room on that date. Since the MRBS is personally maintaining the status of 

all the meeting rooms, it always has enough information to know whether a room is 

available or not and thus will be able to achieve the deidealized goal RoomBooked. 

 

When creating an instance of the system, one needs to make sure that the context 

condition of the RoomBookedCap capability holds.  Therefore, RoomBookedCap.context 

must hold in the initial situation. This means that the agent must know for every room 

and every date whether the room is occupied by some meeting on that date. For example, 
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one can specify that the MRBS knows that the room r1 is booked for the meeting mid1 

on the date d1: 

 

Know(MRBS,Room(mid1,d1,r1,now),S0) 

 

Also, the modeler can say that the MRBS knows that no meeting is taking place in the 

room r1 on the date d1: 

 

∀mid[Know(MRBS,¬Room(mid,d1,r1,now),S0)] 

 

6.7.4 Creating the CASL Model for the Meeting Participant 
 

In this section we discuss selected aspects of the formal CASL model for the Meeting 

Participant actor. The complete CASL specification for the MP is presented in Appendix 

A.2. Note that the goal node AtMeeting is not mapped into CASL as per discussion in 

Section 6.6.3. 

 

The Meeting Participant actor acquires some goals from intentional dependencies (see 

Figure 6.19). The formal definition of the goal AtMeeting was discussed in Section 6.7.1. 

Another dependency-acquired goal of the MP is InformedIfAttending(ms,mid,d). 

Here, the Meeting Scheduler wants to know whether the participant p is going to attend 

the meeting mid. This amounts to checking whether the goal AtMeeting(p,mid,d) is in 

the mental state of the participant p. Therefore, the goal InformedIfAttending maps 

into the following defined fluent with the same name: 

 

InformedIfAttending(p,ms,mid,d) =
def  

KWhether(ms,Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),now),s) 
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Let us now look at how the MP informs the scheduler about its available dates. As can be 

seen from Figure 6.19, the task InformAvailableDates first iterates through all the 

dates and reports their status to the MS. It then informs the MS that the participant is 

done by using the fluent DoneInforming(mid,p,s). This fluent is defined as follows: 

 

DoneInforming(mid,ptcp,s) =
def  

∀d[IsDate(d) ⊃ InformedAvailable(mid,ptcp,d,s)] 

 

DoneInforming is true for some meeting mid and participant ptcp if for all dates it is 

true that InformedAvailable(mid,ptcp,d,s). The fluent 

InformedAvailable(mid,ptcp,d,s) is true for a particular date d if after receiving a 

request from the MS to send available dates for scheduling the meeting mid, the 

participant ptcp has sent his/her availability status for the date d to the scheduler. The 

participant is finished informing the MS when it has sent the status of all the dates to the 

scheduler. The formal definition of InformedAvailable is as follows: 

 

InformedAvailable(mid,p,d,s) =
def    

∃s′,s″[S0 ≤ do(request(ms,p,DoAL(  

InformAvailableDates(mid,MS,p),now,then)),s′) ≤ 

do(informWhether(p,MS,Available(p,d,now)),s″) ≤ s] 

 

Here, we want to make sure that when scheduling the meeting mid, the MS has some 

recent availability information — the information sent by the participants after they 

received the request to execute the task InformAvailableDates for the meeting mid.  
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6.7.5 Creating the CASL Model for the Meeting Scheduler 
 

In this section, we list all the definitions for goals and conditions found in the iASR 

diagram for the Meeting Scheduler (Figure 6.21). The complete CASL specification for 

this agent is presented in Appendix A.4. 

 

After requesting the Meeting Initiator to provide the list of suggested meeting dates and 

the list of meeting participants for some meeting mid, the MS needs to make sure that it 

has that information before proceeding to scheduling the meeting. We have two guard 

link annotations with conditions KnowAllDates(mid) and KnowAllPtcp(mid) that make 

the program block until the all the suggested dates and participants (respectively) are 

known. These conditions are defined as follows: 

 

KnowAllDates(mid,s) =
def Know(MS,∀p[SuggestedDate(mid,p,now) ⊃  

Know(MS,SuggestedDate(mid,p,now),now)],s) 

KnowAllPtcp(mid,s) =
def Know(MS,∀p[Ptcp(mid,p,now) ⊃ 

Know(MS,Ptcp(mid,p,now),now)],s) 

 

The self-acquired goal AvailableDatesKnown is mapped into the defined fluent with the 

same name that holds when all the participants have informed the MS of their available 

dates since it requested that information during the scheduling of the meeting mid (see the 

definition of DoneInforming in Section 6.7.4): 

 
AvailableDatesKnown(mid,s) =

def  
∀p[Ptcp(mid,p,s) ⊃ DoneInforming(mid,p,s)] 

 

After all the participants, suggested dates, and available dates are known to the Meeting 

Scheduler for some meeting mid, it can start the meeting scheduling process. First, it 

must determine which dates are good for scheduling meetings. We call these agreeable 

dates. These dates must be on the list of suggested dates sent by the Initiator, they must 
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be known by the scheduler to be available (since the Disruptor can at any time request 

participants to attend meetings outside of the organization, this knowledge may not be 

entirely accurate), and they must not be locked for any participant of the meeting 

(meaning that the MS is not currently trying to schedule other meetings on those dates). 

Hence, the definition of the fluent AgreeableDate is as follows: 

 

AgreeableDate(mid,d,s) =
def  

SuggestedDate(mid,d,s) ∧  

∀p[Ptcp(mid,p,s) ⊃ LastInformedAvailable(p,d,s)] ∧  

∀p[Ptcp(mid,p,s) ⊃ ¬Locked(p,d,s)] 

 

As mentioned above, the presence of the Disruptor with its encrypted meeting requests 

may invalidate the information the MS has about the availability of the participants. 

Therefore, the scheduler cannot just check the truth value of the fluent 

Available(ptcp,date,s) for some participant and some date to make sure that 

participant is available on that date — it does not know the value of that fluent at the 

current time (in the situation s). Instead, it must refer to the time it got that information 

from the participant ptcp. So, we formally define the dates that the MS thinks (to the best 

of its knowledge) are available as the dates for which the MS was last informed that they 

were available and has not since been informed otherwise: 

 

LastInformedAvailable(p,d,s) =
def  

  ∃s′.S0 ≤ do(inform(p,MS,Available(p,d,now)),s′) ≤ s ∧ 

  ¬∃s″.s′ ≤ do(inform(p,MS,¬Available(p,d,now)),s″) ≤ s 

 

The next two definitions allow the Meeting Scheduler to determine whether all the 

intended meeting participants agreed to meet on the proposed date or whether some 

declined. It is the case that everybody accepted to meet on the date d if they have the 

corresponding AtMeeting goal in their mental state: 
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AllAccepted(mid,d,s) =
def   

∀p[Ptcp(mid,p,s)⊃ 
Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)] 

 

Someone declined to meet on the date d if there is an intended meeting participant 

without the goal in its mental state: 

 

SomeoneDeclined(mid,d,s) =
def  

∃p[Ptcp(mid,p,s) ∧ 
¬Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)] 

 

If everybody accepted to hold the meeting mid on the date d, the MS goes ahead and tries 

to book a room for the meeting on that date. It delegates the goal RoomBooked(mid,d) to 

the MRBS and requests confirmation of the booking. If a room is booked, this means that 

the MS has successfully scheduled the meeting mid:  

 

SuccessfullyScheduled(mid,s) =
def   

∃d[AgreeableDate(mid,d,s) ∧ AllAccepted(mid,d,s) ∧ 

RoomBooked(mid,d,s)] 

 

At this point, we can provide the formal definition of the goal ParticipantInformed. 

First, the MS must have gone through the scheduling process, so we require that the 

fluent DoneScheduling(mid) hold. After the scheduling process is complete, the 

participants (including the Meeting Initiator) need to know whether the meeting was 

scheduled (the truth value of the fluent SuccessfullyScheduled(mid)) and if the 

meeting was, in fact, scheduled successfully, which room was booked for it  (the value of 

the fluent Room): 
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ParticipantInformed(p,mid,s) =
def  

  DoneScheduling(mid,s) ∧ 

  (  
[Know(p,SuccessfullyScheduled(mid,now),s) ∧ 

KRef(p,Room(mid,date,r,now),s)] ∨  

Know(p,¬SuccessfullyScheduled(mid,now),s) 

) 

 

The last definition that we discuss in this section is that of the goal 

MeetingScheduledIfPossible. After it has been deidealized, there are four possibilities 

to achieve the goal. They are labeled 1 through 4 and are accompanied by comments in 

the formal definition below: 

 

MeetingScheduledIfPossible(mid,s) =
def  

{1. The meeting has been scheduled} 

 SuccessfullyScheduled(mid,s) ∨ 

{2. No agreeable dates} 

 ∀d[IsDate(d) ⊃ ¬AgreeableDate(mid,d,s)] ∨ 

{3. Some participants cannot attend on all potential dates} 

∀d[AgreeableDate(mid,d,s) ⊃ SomeoneDeclined(mid,d,s)] ∨ 

{4. No rooms available on all the dates that were accepted by the participants} 

∀d[SuggestedDate(mid,d,s) ⊃ [AllAccepted(mid,d,s) ⊃  

¬RoomBooked(mid,date,s)]] 

 

The first case is when the meeting is successfully scheduled, so the fluent 

SuccessfullyScheduled holds. The second case is when there are no agreeable dates. 

This means that there is no common slot among the participants to schedule the meeting. 

The third case is when there are agreeable dates, but when the MS tries to schedule the 

meeting on those dates, some participant always declines. This could be happening if the 
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participants’ schedules are filling with outside appointments through the Disruptor’s 

requests. The fourth possibility is that there are no rooms available for any of the dates 

that the participants are willing to meet on. 

 

6.7.6 Creating the CASL Model for the Disruptor 
 

In this section, we list the definition the goal ParticipationRequested found in the 

iASR diagram for the Disruptor (Figure 6.20). If sometime in the past the Disruptor 

requested that the participant part be at the meeting mid on the date date, then the goal 

ParticipationRequested(disruptor,part,mid,date) is achieved: 

 

ParticipationRequested(disruptor,part,mid,date,s) =
def  

∃s′[S0 ≤ do(requestEnc(disruptor,part,AtMeeting(part,mid,date)),s′) ≤ s] 

 

To create an instance of the system, the modeler needs to specify the initial goals of the 

Disruptor actor. An initial goal for the Disruptor can be specified as follows: 

 

   Goal(Disr1,Eventually( 

ParticipationRequested(Disr1,p1,mid1,d1,now),now,then),S0), 

 

which says that the Disruptor Disr1 wants the participant p1 to participate in the meeting 

mid1 on the date d1. The complete CASL specification for the Disruptor is presented in 

Appendix A.3. 

 

6.7.7 Formal Verification 
 

Formal verification of the CASL model for the meeting scheduling process is left for 

future work. After the iASR diagrams for all the actors in the system have been mapped 

into a formal CASL specification, a CASL verification tool can be used with great 
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benefits to the modeler. With such a tool, a specification can be checked to see if it 

satisfies certain requirements (e.g., “no meetings on weekends”), the achievability of 

goals can be confirmed, and formal goal deidealization and decomposition can also be 

verified. In addition, the epistemic feasibility of agent processes — whether agents have 

enough knowledge to successfully execute their plans — can be checked. One such tool, 

CASLve [Shapiro et al., 2002], has been used to verify a smaller version of the meeting 

scheduling system. Verifying systems of the size of the one presented in this chapter 

using theorem proving techniques is a large and complex job. Nevertheless, we expect 

that with further development the CASLve tool will be able to handle the verification of 

our system. The improvement of CASLve seems to be the best approach for obtaining a 

solid tool for verifying CASL specifications. Other avenues could be explored as well, 

for instance, simulation and model checking. However, most tools based on these 

techniques work with much less expressive languages than CASL. Therefore, CASL 

specifications must be simplified before these methods can be used on them. For 

example, mental states would have to be operationalized and an approach would have to 

be found to deal with incomplete information in CASL specifications. 

 

However, even without a verification environment capable of formal verification of an 

example of this size, we found that creating iASR diagrams for the system and their 

mapping into CASL is extremely beneficial for the modeler. Our methodology requires 

the analyst to look more systematically at the domain, take goal decompositions more 

seriously, think about the achievability of goals and the epistemic feasibility of agent 

processes. This results in better understanding of the system requirements and leads to 

higher quality system analysis and design. 
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6.8 Discussion 
 

In this chapter, we showed how our agent-oriented requirements engineering 

methodology is applied to the meeting scheduling case study. The meeting scheduling 

system discussed in this chapter has no account of time and a very simplistic treatment of 

meeting periods. This was done to simplify the model and both problems can be quite 

easily solved. The system can be modified to handle many meetings per day by, for 

example, replacing the predicate IsDate(d) with Period(date,hour) and modifying 

the rest of the model accordingly, which would give each meeting a one hour slot. 

Meetings could also be allowed to span several periods for further flexibility. However, 

in this approach, since the system does not have any account of the passage of time (there 

is no connection between the actual time and CASL situations), the execution of the 

system is separate from the real world, the dates and hours of the meetings. Thus, the 

system is not able to, for example, remind a participant that a meeting is starting soon. A 

more radical change in approach can be taken to address this. This approach is described 

in [Shapiro et al., 1998]. It allows one to associate a time with each situation (the fluent 

Time(s) is introduced), assign duration to actions, etc. Using this approach, one would 

be able to remind participants of upcoming meetings, and integrate an account of meeting 

attendance into the model.  

 

Traceability is a very important matter in software design. In Section 5.6.3 we discussed 

requirements traceability in our approach and concluded that it is well supported by our 

methodology. However, there is an issue that could be problematic for requirements 

traceability. This arises from the ability of analysts to model the achievement of agents’ 

goals declaratively, not procedurally. For example, the System agent’s goal 

NoMeetingsOnWeekends in Figure 6.21 is achieved by the Meeting Scheduler’s task 

GetRidOfWeekendDates. Here, for every meeting date that is suggested by the Meeting 

Initiator and that falls on a weekend, the MS executes the action removeWeekendDate, 

which removes the date from the list of suggested dates. This is a purely procedural way 
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of making sure that no meeting is scheduled on a weekend and we can easily show how 

the goal dependency NoMeetingsOnWeekends is supported by the MS. Another way of 

achieving this goal is to change the definition of the fluent AgreeableDate, which 

defines the dates that are suitable for scheduling meetings. One can change the definition 

presented in Section 6.7.5 in the following way: 

 

AgreeableDate(mid,d,s) =
def

 
SuggestedDate(mid,d,s) ∧ ¬Weekend(d) ∧ 

∀p[Ptcp(mid,p,s) ⊃ LastInformedAvailable(p,d,s)] ∧  

∀p[Ptcp(mid,p) ⊃ ¬Locked(p,d,s)] 

 

The new definition has an additional conjunct, ¬Weekend(d), which makes sure that no 

date that is a weekend date becomes an agreeable date. This is a declarative way of 

achieving the goal NoMeetingsOnWeekends. While this new approach may be more 

elegant than the procedural one, there is one problem: definitions like this are not easily 

represented in iASR models. Thus, unlike the procedural approach in Figure 6.21, we 

cannot show visually how the goal is achieved by the MS when using the new definition 

of AgreeableDate since there is no node in the iASR diagram where the elimination of 

weekend dates is done and therefore no place to connect the goal dependency link from 

the System agent. Also, in order to maintain requirements traceability, one needs to show 

that only the conjunct ¬Weekend(d) is present in the new definition of AgreeableDate 

because of the goal NoMeetingsOnWeekends. It is future work to determine whether and 

how declarative CASL facilities that achieve agents’ goals can be effectively used in our 

models while maintaining requirements traceability. 

 

We believe that the case study presented in this chapter shows the importance and 

benefits of formally modeling goal/task delegation and information exchange in a 

multiagent setting. Additionally, formal support for reasoning about goals can provide the 

analyst with a new modeling tool. For example, in the meeting scheduling case study we 
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decided not to maintain schedules for meeting participants explicitly. Instead, we relied 

on the presence of AtMeeting(p,mid,d,s) goals in their mental states as an indication 

of the participants’ intention to attend certain meetings on certain dates. With the axioms 

presented in Section 6.7.1.4 (and also assuming that agents do not drop their 

commitments), the consistency of participants’ schedules can be easily maintained since 

the meeting requests conflicting with already adopted AtMeeting goals are automatically 

rejected.  
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7 Conclusion 
 

In this thesis, we devised an agent-oriented requirements engineering approach with a 

formal component that supports reasoning about agents’ goals (and knowledge), thus 

allowing for rigorous formal analysis of the requirements expressed as objectives of the 

agents in multiagent systems. We introduced Intentional Annotated Strategic Rationale 

(iASR) diagrams, which build on top of ASR diagrams of [Wang, 2001]. Using the set of 

rules provided in this thesis (Chapter 4), iASR diagrams can be mapped into the 

corresponding CASL specifications for formal analysis and/or simulation. A notion of 

agent capability based on the epistemic feasibility [Lespérance, 2002] of agent plans is 

formally defined and a capability node is added to the i*-based diagrammatic notation. A 

methodology for requirements engineering using our approach is proposed (Chapter 5). A 

case study demonstrating the use of the methodology is also presented (Chapter 6). 

 

 

7.1 Contributions 
 

The main technical contributions of this thesis are listed below.  

 

1) This thesis introduces Intentional Annotated SR (iASR) diagrams (based on the 

Annotated SR diagrams of [Wang, 2001]), which support modeling agents’ goals and 

knowledge. The thesis also provides clear guidance on the use of goal nodes in iASR 

diagrams to simplify the mapping of these diagrams into CASL and describes ways of 

synchronizing the behaviour of agents with changes to their mental states.  

 

2) New annotations for iASR diagrams are introduced. These include the interrupt with 

a cancellation condition, which provides more flexibility than the original interrupt 
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annotation of [Wang, 2001], the guard annotation, and the applicability condition 

annotation to specify when a means for achieving a goal can be used. 

 

3) A set of mapping rules is proposed to map iASR diagrams into the corresponding 

CASL specifications while preserving requirements traceability and supporting the 

modeling of explicit goals and knowledge. The possibilities for an automated 

mapping are outlined (Section 5.8). 

 

4) In this thesis, we introduce self-acquired goals (Section 4.3.8) that can be added to the 

mental state of the agents in the absence of requests from other agents. We show that 

these goals can be used as a tool to add flexibility to multiagent systems 

specifications and make agents aware of what they are doing. Also, self-acquired 

goals can be used to formally reason about goal decompositions at runtime. 

 

5) The notion of an agent capability as an epistemically feasible agent plan is introduced 

(Section 4.5) together with capability nodes to be used in SD, SR, and iASR 

diagrams. The mapping of goal and task capabilities into CASL programs that are 

guaranteed to successfully execute under certain conditions is presented.  

 

6) A methodology for the combined use of i* and CASL is presented (Chapter 5). The 

methodology describes the steps of the requirements engineering process starting 

from the identification of stakeholders up to the formal verification of CASL 

specifications. We also propose some improvements to the i* modeling process 

including the use of self-dependencies and the System agent (Sections 5.2.3 and 5.3.2 

respectively). Self-dependencies help in modeling actors that depend on themselves 

for achieving their goals, etc., while the System agent is useful in modeling goals that 

the system-to-be as a whole is expected to achieve. 

 

 



 274 

7.2 Benefits 
 

The main advantage of the approach for the combined use of i* and CASL proposed in 

this thesis is that it allows for the formal analysis of agents’ goals and knowledge in the 

context of requirements engineering.  This has the following benefits: 

 

a) Goals are now represented as mental states. This is different from other 

approaches (e.g., KAOS and Tropos) where goals are treated as formulae that the 

whole system must satisfy. In our approach, goals are attributed to particular 

agents and become their motivations. Therefore, this approach is more agent-

oriented and allows for precise modeling of stakeholder goals. With our approach, 

one can create and formally analyze a model with stakeholders that have 

conflicting goals, a common case in requirements engineering. Modeling of agent 

negotiations is also possible with our approach. 

 

b) Goal delegation is an integral part of multiagent systems and the ability to 

represent and analyze intentional dependencies is one of the most important 

features of i*. Our approach allows for formal analysis of goal delegation.  

 

c) The ability to formally analyze agents’ knowledge allows us to model knowledge 

exchange among agents and represent incomplete knowledge in the system. 

Formal reasoning about agents’ goals and knowledge allows for rigorous analysis 

of complex inter-agent interactions. An example inter-agent protocol is analyzed 

(Section 4.4.6). 

 

d) Agent processes can now be checked for their executability and epistemic 

feasibility. Agent goals can be checked for achievability. 

 

e) Goals do not have to be abstracted out before the formal analysis is done. 



 275 

f) Formal modeling and analysis of issues such as trust and privacy is now possible. 

 

g) A formal CASL specification can be used both as a requirements analysis tool and 

as a formal high-level specification for a multiagent system. 

 

 

7.3 Future Work 
 

Here, we identify some of important areas for future work 

 

• In this thesis, we only handled achievement goals of the form 

Goal(agt,Eventually(φ)). In the future, we would like to add support for other 

types of goals, e.g., maintenance goals and “achieve and maintain” goals.  

 

• In Section 4.4.6 we sketched how an agent interaction protocol can be modeled in 

CASL. We would like to explore how such protocols could be visually modeled 

in i* and then mapped into CASL specifications. 

 

• We would like to investigate whether CASL could be used to formally analyze 

SD models. Since SD diagram cannot represent the details of agent processes, we 

expect that mainly the declarative facilities of CASL (including agent goals and 

knowledge) can be used at this stage of the requirements engineering process. 

 

• We would also like to explore how privacy, security, and trust could be modeled 

in the formal CASL framework. This would involve relaxing some restrictions on 

knowledge exchange and goal delegation (e.g., we can allow false information to 

be communicated by agents or make all communications encrypted). 
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• More work needs to be done in order to explore how agent capabilities can be 

guaranteed to always succeed and how to make them into pluggable modules.  

 

• Another area of future work is to see how advanced aspects of agent-based 

systems can be modeled in i* and formally analyzed in CASL. This includes, for 

instance, modeling the ability of smart deliberating agents to come up with 

(previously unidentified) plans for achieving their goals at runtime. 

 

• In Section 6.8 we discussed how a goal (NoMeetingsOnWeekends) can be 

achieved by using the declarative facilities of CASL. It remains to be investigated 

how this can be reflected in iASR diagrams and how requirements traceability can 

be preserved in this case. 
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Appendix A. The Complete CASL 
Specification for the Case Study 
 

A.1 The CASL Specification for the MRBS 
 

Refer to Figure 6.18 for the corresponding iASR diagram. 

 

proc MRBSBehaviour() 

 <mid,d: Goal(MRBS,Eventually(RoomBooked(mid,d))) ∧ 

   Know(MRBS,¬RoomBooked(mid,d)) → 

  RoomBookedProc(mid,d) 
 until SystemDone> 

 || 
 <mid,d: Goal(MRBS,DoAL(ConfirmRoom(MS,mid,d),now,then)) ∧ 

    Know(MRBS,¬∃s,s′(s≤s′≤now ∧ DoAL(ConfirmRoom(MS,mid,d),s,s′))) → 

  ConfirmRoom(MS,mid,d) 
 until SystemDone> 

endProc 

 

proc RoomBookedProc(mid,d) 

 if ¬Goal(MRBS,Eventually(RoomBooked(mid,d))) then 

  commit(MRBS,Eventually(RoomBooked(mid,d)))  

endIf; 

 guard Goal(MRBS,Eventually(RoomBooked(mid,d))) do 

  BookRoomProc(mid,d) 
 endGuard 

endProc 
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proc BookRoomProc(mid,d) 

 if ∃r.AvailableRoom(r,d) then 

  πr.AvailableRoom(r,d)?; 

  bookRoom(MRBS,mid,d,r); 
 endIf 

 setDoneBooking(MRBS,mid) 
endProc 

 
proc ConfirmRoom(MS,mid,d) 

 guard DoneBooking(mid) do 

  SendConfirmation(MS,mid,d) 
 endGuard 

endProc 

 
proc SendConfirmation(MS,mid,d) 

 informWhether(MRBS,MS,RoomBooked(mid,d)); 
 if KRef(MRBS,Room(mid,d,r)) then 

  informRef(MRBS,MS,Room(mid,d,r)) 
 endIf 

endProc 

 

A.2 The CASL Specification for the Meeting Participant 
 

Refer to Figure 6.19 for the corresponding iASR diagram. 

 

proc ParticipantBehaviour(mp) 

   <mid: Goal(mp,DoAL(InformAvailableDates(mid,MS),now,then) ∧ 

   Know(mp,¬∃s,s′(s≤s′≤now ∧ DoAL(InformAvailableDates(mid,MS),s,s′))) → 

      InformAvailableDates(mid,MS,mp) 
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   until SystemDone> 

   || 
   <mid,date: Goal(mp,Eventually(AtMeeting(mid,date) ∧ 

     Know(mp,¬AtMeeting(mid,date)) → 

      no_op 
   until SystemDone> 

   || 
   <mid,date: Goal(mp,Eventually(InformedIfAttending(MS,mid,date))) ∧ 

     Know(mp,¬InformedIfAttending(MS,mid,date)) → 

      InformedIfAttendingAndKnowIfScheduled(MS,mid,date,mp) 
   until SystemDone> 

endProc 

 

proc InformAvailableDates(mid,MS,mp) 

 for d: IdDate(d) do 

  informWhether(mp,MS,AvailableDate(mp,d)) 
 endFor; 

 inform(mp,MS,DoneInforming(mid,mp)) 
endProc 

 

proc InformedIfAttendingAndKnowIfScheduled(MS,mid,date,mp) 

 informWhether(mp,MS,Goal(mp,Eventually(AtMeeting(mp,mid,date)))); 

 if Goal(mp,Eventually(AtMeeting(mp,mid,date))) then 

  KnowWhenScheduled(mid,mp) 
 endIf  

endProc 

 

proc KnowWhenScheduled(mid,mp) 

 commit(mp,Eventually(ParticipantInformed(mp,mid))); 
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 guard Goal(mp,Eventually(ParticipantInformed(mp,mid))) do 

  request(mp,MS,Eventually(ParticipantInformed(mp,mid))) 

 endGuard 

endProc 

 

A.3 The CASL Specification for the Disruptor 
 

Refer to Figure 6.20 for the corresponding iASR diagram. 

 

proc DisruptorBehaviour(disr) 

   <p,mid,d:Goal(disr,Eventually(ParticipationRequested( 

disr,p,mid,d))) ∧ 
   Know(disr,¬ParticipationRequested(disr,p,mid,d)) → 

  requestEnc(disr,p,Eventually(AtMeeting(p,mid,d))) 

 until SystemDone> 

endProc 

 

A.4 The CASL Specification for the Meeting Scheduler 
 

Refer to Figure 6.21 for the corresponding iASR diagram. 

 

proc MSBehaviour() 

   <mid,mi: Goal(MS,Eventually(MeetingScheduledIfPossible(mid,mi))) ∧ 

   Know(MS,¬MeetingScheduledIfPossible(mid,mi)) → 

  TryToScheduleMeetingAndBookRoom(mid,mi) 
   until SystemDone> 

   || 
   <part,mid: Goal(MS,Eventually(ParticipantInformed(part,mid))) ∧ 

  Know(MS,¬ParticipatnInformed(part,mid)) → 
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InformParticipant(part,mid) 
   until SystemDone> 

endProc  

 
proc TryToScheduleMeetingAndBookRoom(mid,mi) 

 request(MS,mi,DoAL(informParticipants(mid))); 

 request(MS,mi,DoAL(informDates(mid))); 

 guard KnowAllDates(mid) do 

  GetRidOfWeekendDates(mid) 
 endGuard; 

 guard KnowAllPtcp(mid) do 

  commit(MS,Eventually(AvailableDatesKnown(mid) 

 endGuard; 

 guard Goal(MS,Eventually(AvailableDatesKnown(mid) do 

  for p: Ptcp(mid,p) do 

   request(MS,p,DoAL(InformAvailableDates(mid)) 

  endFor 

 endGuard; 

 guard AvailableDatesKnown(mid) do 

  TryAgreeableDates(mid,mi) 
 endGuard; 

endProc 

 
proc GetRidOfWeekendDate(mid) 

 for d: Weekend(d) ∧ SuggestedDate(mid,d) do 

  removeWeekendDate(MS,mid,d) 
 endFor 

endProc 
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proc TryAgreeableDates(mid,mi) 

 for d: AgreeableDate(mid,d) do 

  TryDates(mid,d,mi) 
 endFor; 

 if ¬SuccessfullyScheduled(mid) then 

  setDoneScheduling(MS,mid) 
 endIf 

endProc 

 
proc TryDates(mid,d,mi) 

 if ¬SuccessfullyScheduled(mid) then  

  TryOneDate(mid,d,mi) 
 endIf 

endProc 

 
proc TryOneDate(mid,d) 

 lockDate(MS,mi,d); 
 for p: Ptcp(mid,p) do 

  lockDate(MS,p,d) 
 endFor; 

 for p: Ptcp(mid,p) do 

  ContactParticipant(mid,d,p) 
 endFor; 

 guard ∀p.Ptcp(mid,p) ⊃  

KWhether(MS,Goal(p,Eventually(AtMeeting(p,mid,d)))) do 

ProcessReplies(mid,d,mi) 
 endGuard 

endProc 
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proc ContactParticipant(mid,d,p) 

 request(MS,p,Eventually(AtMeeting(p,mid,d))); 

 request(MS,p,Eventually(InformedIfAttending(p,MS,mid,d))) 

endProc 

 
proc ProcessReplies(mid,d,mi) 

 if SomeoneDeclined(mid,d) then 

  CancelMeetingForDate(mid,d,mi) 
 endIf; 

 if AllAccepted(mid,d) then 

  ReserveRoomForDate(mid,d,mi) 
 endIf 

endProc 

 
proc CancelMeetingForDate(mid,d,mi) 

 unLockDate(MS,mi,d); 
 for p: Ptcp(mid,p) do 

  unlockDate(MS,p,d) 
 endFor; 

 for p: Ptcp(mid,p) do 

  cancelRequest(MS,p,Eventually(AtMeeting(p,mid,d))) 

 endFor 

endProc 
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proc ReserveRoomForDate(mid,d,mi) 

 request(MS,MRBS,Eventually(RoomBooked(mid,d))); 

 AskForConfirmation(mid,d); 
 guard KWhether(MS,RoomBooked(mid,d) do 

  ProcessReply(mid,d,mi) 
 endGuard 

endProc 

 
proc AskForConfirmation(mid,d) 

 request(MS,MRBS,DoAL(ConfirmRoom(MS,mid,d))); 

endProc 

 
proc ProcessReply(mid,d,mi) 

 if Know(MS,RoomBooked(mid,d) then 

  setDoneScheduling(MS,mid) 
 endIf; 

 if Know(MS,¬RoomBooked(mid,d)) then 

  FailedToBookRoom(mid,d,mi) 
 endIf 

endProc 

 

proc FailedToBookRoom(mid,d,mi) 

 unlockDate(MS,mi,p); 
 for p: Ptcp(mid,p) do unlockDate(MS,p,d) endFor; 

 for p: Ptcp(mid,p) do 

  cancelRequest(MS,p,Eventually(AtMeeting(p,mid,d))) 

 endFor 

endProc 
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proc InformParticipant(p,mid) 

 guard DoneScheduling(mid) do 

  SendStatusAndRoom(p,mid) 
 endGuard 

endProc 

 
proc SendStatusAndRoom(p,mid) 

 informWhether(MS,p,SuccessfullyScheduled(mid)); 
 if Know(MS,RoomBooked(mid,d)) then 

  informRef(MS,p,Room(mid,d,r)) endIf 

endProc 


