
Modeling Mental States in Requirements
Engineering – An Agent-Oriented

Framework Based on i* and CASL

Alexei Lapouchnian

A thesis submitted to the Faculty of Graduate Studies in

partial fulfillment of the requirements
for the degree of

Master of Science

Supervisor: Yves Lespérance

Graduate Programme in Computer Science

York University

Toronto, Canada

July, 2004

 iv

Abstract

As the problems that software systems are used to solve grow in size and complexity, it

becomes harder and harder to analyze these problems and come up with system

requirements specifications using informal requirements engineering approaches.

Recently, Goal-Oriented Requirements Engineering (GORE), where stakeholder goals

are identified, analyzed/decomposed and then assigned to software components or actors

in the environment, and Agent-Oriented Software Engineering (AOSE), where goals are

objectives that agents strive to achieve, have been gaining popularity. Their reliance on

goals makes GORE and AOSE a good match. A number of goal-oriented approaches

include formal components that allow for rigorous analysis of system properties.

However, they do not support reasoning about the goals and knowledge of agents. This

thesis presents an agent-oriented requirements engineering approach that combines

informal i* models with formal specifications written in the CASL language. CASL’s

support for agent goals and knowledge allows for formal analysis of agent interactions,

goal decompositions, and epistemic feasibility of agent plans. Intentional Annotated

Strategic Rationale (iASR) diagrams based on the SR diagrams of i* are proposed in this

thesis, together with the mapping rules for creating the corresponding formal CASL

specifications. A methodology for the combined use of i* and CASL is proposed and

applied to a meeting scheduling process specification.

 v

Acknowledgments

I would like to thank my supervisor, Professor Yves Lespérance, for introducing me to

this research area and for his advice, guidance, careful editing, and patience during the

preparation of this thesis.

I am grateful to my parents, my brother, and the rest of my family for their continuous

support and encouragement during my graduate studies at York.

 vi

Contents

1 Introduction.. 1

1.1 Overview of the Area.. 1

1.2 The Problem.. 4

1.3 The Approach.. 5

1.4 Outline of the Thesis... 8

2 Foundations .. 9

2.1 The i* Modeling Framework .. 9

2.1.1 Actors... 10

2.1.2 Intentional Dependencies... 11

2.1.3 Strategic Dependency Models ... 13

2.1.4 Strategic Rationale Models .. 15

2.2 The Cognitive Agents Specification Language .. 17

2.2.1 Modeling the Domain .. 18

2.2.2 Modeling Agents’ Mental States ... 20

2.2.3 Specifying Agent Behaviour.. 24

2.2.4 Epistemic Feasibility.. 25

2.2.4.1 Blind Subjective Execution of Processes.. 27

2.2.4.2 Deliberate Execution of Processes.. 28

3 Related Work ... 30

3.1 Software Engineering.. 30

3.2 Requirements engineering .. 31

3.3 Agents, Multiagent Systems and Agent-Oriented Software Engineering 34

3.4 Agent-Oriented Development Methodologies.. 38

3.5 Goal-Oriented Requirements Engineering Methodologies..................................... 42

3.5.1 KAOS... 42

 vii

3.5.2 Albert II.. 45

3.6 i*-based Goal-Oriented Development Methodologies ... 49

3.6.1 Tropos .. 49

3.6.2 The i*-ConGolog Approach .. 53

4 Modeling and Formalism .. 57

4.1 Intentional Annotated Strategic Rationale Diagrams ... 57

4.1.1 Annotations .. 58

4.1.2 Composition Annotations .. 59

4.1.3 Link Annotations ... 61

4.1.4 Obtaining Intentional Annotated SR Diagrams ... 65

4.2 Mapping ASR Diagrams... 65

4.2.1 Mapping Task Nodes ... 66

4.2.2 Mapping Link Annotations .. 66

4.2.3 Mapping Task Decompositions and Composition Annotations 69

4.2.4 Mapping Agents, Roles, and Positions .. 72

4.3 Goals ... 74

4.3.1 Introducing Goal-Oriented Analysis.. 74

4.3.2 The Use of Goal Decompositions .. 75

4.3.3 Applicability Conditions.. 78

4.3.4 Using Link Annotations in Goal Decompositions ... 79

4.3.5 Explicit Goals in CASL ... 80

4.3.6 Declarative vs. Procedural Specification in CASL.. 81

4.3.7 Acquiring Goals: Dependency-Based Goals ... 84

4.3.7.1 Task Dependency-Based Goals .. 87

4.3.7.2 Resource Dependency-Based Goals ... 90

4.3.7.3 The Serves Relationship.. 92

4.3.7.4 Reasoning about Inter-Agent Communication ... 93

4.3.8 Acquiring Goals: Self-Acquired Goals.. 94

4.3.9 Mapping Goals into CASL .. 98

 viii

4.3.9.1 Introduction... 98

4.3.9.2 Mapping Goal Nodes .. 98

4.3.9.3 The Use of Interrupts .. 101

4.3.9.4 Mapping Dependency-Based Goals.. 105

4.3.9.5 Mapping Task Dependency-Based Goals... 109

4.3.9.6 Mapping Self-Acquired Goals .. 111

4.3.9.7 Mapping Achievement Procedures ... 114

4.4 Knowledge .. 118

4.4.1 Introduction.. 118

4.4.2 Acquiring Knowledge.. 119

4.4.3 Mapping Information Resource Dependencies.. 119

4.4.4 The Trusts Relationship ... 122

4.4.5 Self-Acquisition of Knowledge ... 123

4.4.6 Specifying Interaction Protocols.. 124

4.4.7 Conditional Commitments in Interaction Protocols 126

4.5 Capabilities ... 128

4.5.1 Introducing Capabilities... 129

4.5.2 Physical Executability vs. Epistemic Feasibility ... 131

4.5.3 Using Capability Nodes in SD, SR and iASR diagrams................................ 133

4.5.4 Mapping Goal Capability Nodes ... 137

4.5.5 Mapping Task Capability Nodes ... 143

4.5.6 Discussion .. 146

4.6 Synchronizing Procedural and Declarative Components of CASL Agents.......... 149

5 The Combined i*/CASL Methodology... 150

5.1 Introduction... 150

5.1.1 Methodology Overview ... 152

5.2 Early Requirements: Understanding the Organizational Setting 154

5.2.1 Identifying Stakeholders .. 155

5.2.2 Discovering Stakeholder Goals.. 157

 ix

5.2.3 Discovering Intentional Dependencies among Actors................................... 158

5.2.4 Analyzing Non-Functional Dependencies ... 162

5.2.5 More Organizational Details: The Trusts and Serves Relationships 164

5.3 Late Requirements Using SD Diagrams ... 166

5.3.1 Introducing the System-To-Be... 167

5.3.2 The System Agent .. 169

5.4 Architectural Analysis .. 173

5.4.1 Organizational Architecture... 173

5.4.2 The System Architecture.. 174

5.5 Late Requirements Using SR Diagrams ... 175

5.5.1 Building Strategic Rationale Diagrams ... 176

5.5.2 Building iASR Diagrams: Adding Annotations .. 179

5.5.3 Building iASR Diagrams: Keeping Goal Dependencies 180

5.5.4 Building iASR Diagrams: Deidealizing Goals and Suppressing Softgoals... 182

5.5.4.1 Suppressing Softgoals... 182

5.5.4.2 Deidealizing Goals.. 183

5.5.5 Building iASR Diagrams: Adding Agent Interaction Details........................ 184

5.5.6 Building iASR Diagrams: iASR-style Goal Decompositions 186

5.5.7 Using Capability Nodes in iASR diagrams ... 186

5.6 Requirements Verification Using CASL .. 187

5.6.1 Mapping iASR Diagrams into CASL .. 187

5.6.2 Verifying the System with CASLve .. 188

5.6.3 Supporting Requirements Traceability .. 189

5.8 Automating the Mapping into CASL.. 191

6 The Meeting Scheduling Process Case Study.. 194

6.1 Introduction... 194

6.2 Early Requirements Analysis.. 195

6.2.1 Identifying Stakeholders .. 195

6.2.2 Identifying Stakeholder Goals and Intentional Dependencies....................... 197

 x

6.2.3 Modeling Additional Organizational Details... 199

6.2.4 Modeling Non-Functional Dependencies .. 201

6.3 Late Requirements with SD Diagrams ... 202

6.3.1 Introducing the System-To-Be... 202

6.3.2 Introducing the System Agent .. 203

6.3.3 The System’s Architecture... 205

6.4 Late Requirements with SR Diagrams.. 205

6.4.1 Modeling the Meeting Initiator: Using Softgoals for Alternative Selection.. 206

6.4.2 Developing an SR Model for the MRBS ... 209

6.4.3 Developing an SR Model for the Meeting Participant................................... 211

6.4.4 Developing an SR Model for the Disruptor... 213

6.4.5 Modeling the Meeting Scheduler... 213

6.5 Toward iASR Diagrams.. 216

6.5.1 Refining the Meeting Initiator Model .. 217

6.5.2 Refining the SR Model for the Meeting Scheduler 220

6.6 Developing iASR Models ... 224

6.6.1 Developing the iASR Model for the Meeting Initiator.................................. 225

6.6.2 Developing the iASR Model for the MRBS.. 228

6.6.3 Developing the iASR Model for the Meeting Participant 231

6.6.4 Developing the iASR Model for the Disruptor.. 233

6.6.5 Developing the iASR Model for the Meeting Scheduler............................... 235

6.7 Mapping iASR Diagrams into CASL ... 243

6.7.1 Specifying the Basic Domain Model ... 243

6.7.1.1 Modeling Meeting Dates... 243

6.7.1.2 Meeting Participants and Suggested Meeting Dates............................... 244

6.7.1.3 Flags for Managing the Scheduling Process... 245

6.7.1.4 Managing Participants’ Schedules.. 247

6.7.1.5 Booking Rooms .. 248

6.7.2 Creating the CASL Model for the Meeting Initiator 250

 xi

6.7.3 Creating the CASL Model for the MRBS.. 258

6.7.4 Creating the CASL Model for the Meeting Participant 261

6.7.5 Creating the CASL Model for the Meeting Scheduler 263

6.7.6 Creating the CASL Model for the Disruptor ... 267

6.7.7 Formal Verification.. 267

6.8 Discussion ... 269

7 Conclusion .. 272

7.1 Contributions... 272

7.2 Benefits ... 274

7.3 Future Work.. 275

Bibliography .. 277

Appendix A. The Complete CASL Specification for the Case Study 285

A.1 The CASL Specification for the MRBS .. 285

A.2 The CASL Specification for the Meeting Participant.. 286

A.3 The CASL Specification for the Disruptor .. 288

A.4 The CASL Specification for the Meeting Scheduler ... 288

 1

1 Introduction

In this thesis, we propose an agent-oriented requirements engineering methodology that

supports formal modeling of the agents’ mental states (goals and knowledge). This

chapter provides an overview of the problem area (Section 1.1), describes the specific

problem that we deal with in this work (Section 1.2), sketches our approach for solving

this problem (Section 1.3), and outlines the rest of the thesis (Section 1.4).

1.1 Overview of the Area

Modern software systems are becoming increasingly complex, with lots of subsystems

and interactions. In today’s world, software applications are not confined to just one

computer or even a local area network. More and more software systems are becoming

internet-aware and distributed. The recent popularity of electronic commerce, web

services, and peer-to-peer applications confirms the need for software engineering

methods for constructing applications that are open, distributed, and adaptable to change.

While technologies like remote procedure calls are still adequate for certain types of

software systems, more and more researchers and practitioners are looking at agent

technology as a basis for distributed applications.

Agents are active, social, and adaptable software system entities situated in some

environment and capable of autonomous execution of actions in order to achieve their set

objectives [Wooldridge, 1997]. Most problems are too complex to be solved by just one

agent — one must create a multiagent system (MAS) with several agents having to work

together to achieve their objectives and ultimately deliver the desired application.

Multiple agents in a multiagent system represent multiple perspectives, multiple threads

of control, or competing interests [Jennings, 1999]. Therefore, adopting the agent-

oriented approach to software engineering means that the problem is decomposed into

 2

multiple, autonomous, interacting agents, each with a particular objective. Multiagent

systems are a great match for open, complex systems in many areas such as process

control, manufacturing, information management, electronic commerce, etc. [Jennings

and Wooldridge, 1998] discusses domains that are suitable for the application of agent

technology.

Agents in a multiagent system frequently represent individuals, companies, or parts of

companies. This means that there is an “underlying organizational context” [Jennings,

1999] in multiagent systems. Therefore, one of the most important features of agents is

their social ability. Like humans, they need to coordinate their activities, cooperate,

negotiate, request help from others, etc. Unlike in object-oriented or component-based

systems, interactions in multiagent systems occur through high-level speech act-based

[Searle, 1969] agent communication languages, so interactions are mostly performed not

at the syntactic level, but at the knowledge level, in terms of goal delegation, etc.

[Jennings, 1999]. Speech act-based agent communication allows for the specification and

execution of generic communication protocols and supports reasoning about the effects

of communication without knowing the exact content of the messages, just the types of

the messages (e.g., request, inform). For example, requests by other agents make the

requested agent acquire new goals, while the messages informing the agent of something

modify its knowledge base. Since agents are aware of the purpose of their interactions,

not all of them need to be fixed at design time. This supports flexible runtime behaviour

with dynamic goal delegation and team formation.

Requirements engineering (RE) is the area of software engineering that deals with the

discovery and specification of the objectives for the system under development. This is

an extremely important activity since the measure of success of software systems is the

degree to which they satisfy their requirements. Many of the existing software

engineering methods have concentrated on the design of the system and devoted

relatively little attention to requirements engineering. As well, most RE approaches have

 3

assumed that the initial formulation of the requirements was given. However, the

activities that lead to the formulation of the initial requirements for the system-to-be were

mostly ignored. Recently, goal-oriented requirements engineering [Dardenne et al.,

1993] has become prominent. Goal-oriented RE approaches (e.g., KAOS [Dardenne et

al., 1993] and Tropos [Castro et al., 2002]) devote a lot of attention to understanding the

environment of the system-to-be (the organizational context) and the rationale (the “why”

[Yu and Mylopoulos, 1994]) for the system. This is usually referred to as the early phase

of requirements engineering. The goals of the stakeholders (the individuals or

organizations that influence the system and/or are influenced by it) are analyzed, refined

and later assigned to the components that are part of the system and the agents that are in

its environment. These approaches are requirements-driven as opposed to being driven by

the design or implementation factors. Their reliance on goals makes goal-oriented

requirements engineering methods and agent-oriented software engineering a great

match. Agent-oriented analysis is central to requirements engineering since the

assignment of responsibilities for goals and constraints among components in the

software-to-be and agents in the environment is the main outcome of the RE process [van

Lamsweerde, 2000]. Therefore, it is natural to use a goal-oriented requirements

engineering approach when developing multiagent systems. The goals of the stakeholders

are refined and then assigned to the agents, thus turning into the objectives of agents in a

multiagent system.

The early phase of requirements engineering — the domain analysis — is usually done

informally, possibly with the help of informal diagrammatic notations. i* [Yu, 1995] is

one such notation. It supports the modeling of stakeholders (actors), their goals, the

intentional dependencies that exist in the organization, as well as the reasoning each actor

goes through while attempting to achieve its goals. As problems grow in size and

complexity, the need for formal analysis during the early RE phase increases. However,

formal support for the early-phase requirements engineering has been relatively sparse.

There are several approaches that augment the i* framework with tools for formal

 4

analysis. For example, Formal Tropos [Fuxman et al., 2001b] adds model checking

support for i*’s Strategic Dependency diagrams, while another approach [Wang, 2001]

uses the ConGolog [De Giacomo et al., 2000] agent programming language to animate

and verify i* models. Unfortunately, in the above methods, the goals of the agents are

abstracted out of the formal specifications. This is done due to the fact that the formal

components of these approaches (the NuSMV [Cimatti et al., 1999] input language and

ConGolog respectively) do not support reasoning about agent goals. Reasoning about

agent knowledge is not supported either. However, we note that agent communication is

very important in multiagent systems since these systems are developed as social

structures. Most of the interactions among agents involve knowledge exchange and goal

delegation. Thus, complementing informal modeling techniques such as i* with formal

analysis of agent goals and knowledge is very useful for the design of multiagent

systems. Moreover, the adoption of goal-oriented requirements engineering makes formal

analysis of agent goals very useful at the RE stage of the software engineering process.

1.2 The Problem

Goals are the most appropriate abstraction for specifying the needs of the stakeholders in

the environment of the system under development and are the natural means for

identifying the purpose of agents in multiagent systems. During the requirements

engineering phase of software development, the goals of stakeholders are identified,

refined, and assigned to either the actors in the environment, thus becoming the

assumptions that the designers make about the environment, or to the agents that are part

of the system, therefore becoming the system requirements.

When goal-oriented RE is used, it is easy to make the transition from the requirements to

the high-level system specifications. For example, goal-oriented RE approaches assign

goals or tasks to the system’s agents. In multiagent systems, these requirements become

 5

the objectives that the agents strive to achieve. During requirements analysis, it is

important to determine how the stakeholders as well as the agents in the system-to-be will

collaborate to achieve the system’s objectives. In multiagent systems, agents delegate

some of their responsibilities to other agents that are better equipped for achieving them.

On the other hand, the same agents may be asked to help others with their goals. Strategic

relationships among agents (represented by intentional dependencies in i* models) thus

become high-level patterns of inter-agent communication.

With the i* modeling framework, designers identify system stakeholders, determine their

goals and analyze how responsibilities can be assigned to system components and how

inter-agent dependencies can be configured so that the system’s objectives are met. In the

above context, while it is possible to informally analyze small systems, formal analysis is

needed for any realistically-sized system to determine whether such distributed

requirements imposed on each agent in the system are correctly decomposed from the

stakeholder goals, consistent and, if properly met, achieve the system’s objectives.

The aim of this work is to devise an agent-oriented requirements engineering approach

with a formal component that supports reasoning about agents’ goals (and knowledge),

thus allowing for rigorous formal analysis of the requirements expressed as the objectives

of the agents in multiagent systems. While some goal-oriented RE approaches (e.g.,

KAOS) support the formal analysis of goals, their temporal logic-based formalizations

are not agent-oriented, i.e., which agent has a goal is not formalized. Also, most RE

approaches do not support the formal analysis of agent knowledge.

1.3 The Approach

In this thesis, we are proposing an agent-oriented requirements engineering approach that

combines the i* modeling framework [Yu, 1995] and the Cognitive Agents Specification

 6

Language [Shapiro and Lespérance, 2001]. CASL is a language with formal semantics

and thus can be used to complement the informal diagrammatic notation of i*.

The i* approach has two types of models: Strategic Dependency (SD) and Strategic

Rationale (SR). SD diagrams are used to model actors (stakeholders) that are in the

environment of the system-to-be or are part of the system itself along with the intentional

dependencies (goal, task, etc. delegation) among these actors. These diagrams model the

external relationships among the actors. On the other hand, Strategic Rationale (SR)

diagrams are used to model the reasoning each actor goes through while attempting to

achieve its goals. Thus, SR models concentrate more on the internals of the actors.

With our i*-CASL-based approach, a CASL model can be used both as a requirements

analysis tool and as a formal high-level specification for a multiagent system that satisfies

the requirements because it is possible to produce a high-level, formal model of the MAS

right from the i* diagrams developed during the requirements analysis performed with

our proposed method. This model can be formally analyzed using the CASLve [Shapiro

et al., 2002] tool or other tools and the results can be fed back into the requirements

model. After requirements analysis is finished, the CASL model becomes the starting

point for the design of the system. CASL’s support for reasoning about knowledge also

opens new possibilities for the formal analysis of issues such as privacy and allows for

more precise specification of agent interactions.

We extend the approach presented in [Wang, 2001] that proposed the use of the

ConGolog language to provide formal semantics as well as verification and animation

tools for the SR diagrams of i*. In our framework, we use CASL to provide formal

semantics for the i* diagrams. Since CASL supports specification of agent goals and

knowledge, formal reasoning about agent goals, goal delegation, agent knowledge, and

inter-agent communication is now possible. In this thesis, we define a mapping from i*

diagrams into corresponding CASL models that can be formally analyzed.

 7

i* models have limited facilities for specifying agent processes. Rather, the i* framework

concentrates on the social and intentional aspects of the system-to-be and its

environment. CASL specifications have two parts: a procedural part that is used to

specify the behaviour of the agents in a multiagent system and a declarative part where

the changes to the mental states of the agents are specified. It is natural to pair up CASL

specifications with SR-level i* diagrams since they are a much closer match for CASL

than SD diagrams. SD diagrams are simply too high-level for CASL to be useful in

providing a formal semantics for them. In fact, not unlike ConGolog in the framework

described in [Wang, 2001], CASL requires a greater level of detail and precision than

even SR diagrams can offer.

An i* model is associated with the corresponding CASL specifications through a

mapping. We introduce extensions to the notation of SR diagrams to allow the modeler to

disambiguate and add details to the models so they can be mapped into CASL. We call

these Intentional Annotated SR (iASR) diagrams. We use the idea of composition and

link annotations [Wang, 2001] to add (along with applicability condition annotations) the

necessary details to the SR diagrams. We also suggest a number of rules for the use of

means-ends decompositions (see Section 4.3.6 for details) in iASR diagrams to simplify

and streamline the mapping to CASL. Each element of iASR diagrams is then mapped

into CASL for formal analysis with the help of the CASL verification environment

(CASLve) [Shapiro et al., 2002] or other CASL-based tools. Unlike the approach in

[Wang, 2001], agent goals are not removed from the agent specifications, but are added

to the agents’ mental states, thus allowing the agents to reason about their objectives.

Information exchanges among agents are also formalized as mental state changes in

CASL specifications. The intentional dependencies that are present in the i* models will

be modeled in CASL as interactions among agents with the help of such actions as

request and inform. These interactions bring change into the agents’ mental states

allowing them to receive new information or accept responsibility for achieving certain

 8

goals for their fellow agents. We also introduce the notion of self-acquired goals (Section

4.3.8), which can be used by the designer to assign goals to agents.

We develop a methodology for the combined use of i* and CASL for requirements

engineering. This methodology is rooted in Tropos and Wang’s methodology for the

combined use of i* and ConGolog and includes a number of suggested modifications to

the i* modeling framework.

1.4 Outline of the Thesis

Chapter 2 provides the background material for the thesis. In Chapter 3, we review

related approaches and compare them to our own. There, we talk about the related areas

of computer science and software engineering — agents, agent-oriented software

engineering, requirements engineering, as well as describe the specific methodologies,

frameworks, and languages that we use in our approach — Tropos, i*, and the Cognitive

Agents Specification Language. Chapter 4 discusses our formalism and notation, and the

mapping process from iASR diagrams into CASL models, while Chapter 5 describes our

goal-oriented requirements engineering methodology that combines the i* modeling

framework with CASL. A case study, which illustrates our methodology on the process

of scheduling meetings in an organization, is presented in Chapter 6. We conclude in

Chapter 7 by outlining the contributions of the thesis and identifying avenues for future

work.

 9

2 Foundations

In this chapter, we introduce the background material for the thesis. Here, we talk about

specific techniques and approaches that we used in this research. Section 2.1 introduces

the i* modeling framework, while in Section 2.2 we talk about the Cognitive Agents

Specification Language (CASL) as well as the epistemic feasibility of agent plans.

2.1 The i* Modeling Framework

i* [Yu, 1995] is an agent-oriented modeling framework that can be used for requirements

engineering, business process reengineering, organizational impact analysis, and software

process modeling. Since we are most interested in the application of the framework to

modeling systems’ requirements, our description of i* is geared towards requirements

engineering. The framework has two main components: the Strategic Dependency (SD)

model and the Strategic Rationale (SR) model.

Since i* supports the modeling activities that take place before the system requirements

are formulated, it can be used for both the early and late phases of the requirements

engineering process. During the early requirements phase, the i* framework is used to

model the environment of the system-to-be. It facilitates the analysis of the domain by

allowing the modeler to diagrammatically represent the stakeholders of the system, their

objectives, and their relationships. The analyst can therefore visualize the current

processes in the organization and examine the rationale behind these processes. The i*

models developed at this stage help in understanding why a new system is needed.

During the late requirements phase, the i* models are used to propose the new system

configurations and the new processes and evaluate them based on how well they meet the

functional and non-functional (qualitative) needs of the users.

 10

In the following sections, we briefly present the elements of the i* modeling framework:

actors, intentional dependencies, as well as Strategic Dependency and Strategic Rationale

models.

2.1.1 Actors

i* centers on the notion of intentional actor and intentional dependency. The actors are

described in their organizational setting and have attributes such as goals, abilities,

beliefs, and commitments. In i* models, an actor depends on other actors for the

achievement of its goals, the execution of tasks, and the supply of resources, which it

cannot achieve, execute, and obtain by itself, or not as cheaply, efficiently, etc. Therefore,

each actor can use various opportunities to achieve more by depending on other actors.

At the same time, the actor becomes vulnerable if the actors it depends upon do not

deliver. Actors are seen as being strategic in the sense that they are concerned with the

achievement of their objectives and strive to find a balance between their opportunities

and vulnerabilities. It is easy to see that most human organizations (as well as software

systems) can be modeled using the ideas of actors and intentional dependencies.

While actors in i* are any units to which “intentional dependencies can be ascribed” [Yu,

1995], when i* is used for requirements engineering, the actors represent the system’s

stakeholders (“people or organizations who will be affected by the system and who have

a direct or indirect influence on the system requirements” [Kotonya and Sommerville,

1998]) as well as the agents of the system-to-be. The goals of the stakeholders thus

become the objectives of the actors representing them. In the early requirements phase,

when the organizational context for the system-to-be is analyzed, the dependencies in the

models represent the current state of affairs in the organization, the way the stakeholders’

objectives are presently met (without the help of the new system). In the late

requirements phase, they represent the desired new state of the organization including the

new system.

 11

It is useful to subdivide actors into agents, roles, and positions. Agents are concrete

physical actors, systems or humans. A role is an “abstract characterization of the

behaviour of a social actor within some specialized context, domain, or endeavour”

[Alencar et al., 2000]. A position is a set of socially recognized roles typically played by

one agent. For example, the same person/agent in a company can play the roles of a

webmaster and a database administrator with different sets of dependencies associated

with each role. The introduction of roles and positions facilitates the analysis of

dependencies by grouping the related ones together.

2.1.2 Intentional Dependencies

When a pair of agents participate in an intentional dependency, the depending agent is

called the depender, the depended agent is called the dependee, and the subject of the

dependency (the goal, the task, the resource, or the softgoal) is called the dependum.

Dependencies between actors are identified as intentional if they appear as a result of

agents pursuing their goals.

There are four types of dependencies in i*. In a goal dependency, the depender depends

on the dependee for the achievement of one of its goals (for bringing about a certain state

in the world). It is up to the dependee to decide how to achieve that goal. In a task

dependency the depender depends on the dependee for the execution of a certain task.

Unlike a goal dependency, here the dependee must execute exactly the task that the

depender requested. In a resource dependency, the dependee is expected to provide a

resource for the depender. The resource could be some physical resource (e.g., money or

steel) or information. In a softgoal dependency, the depender depends on the dependee to

“perform some task that meets the softgoal” [Yu, 1995]. The notion of softgoals (quality

goals) is related to the notion of non-functional requirements [Chung et al., 2000].

Softgoals are the goals that do not have a clear-cut satisfaction condition. For softgoals

one needs to find solutions that are just “good enough”. Examples of softgoals are

 12

security, efficiency, speed, customer satisfaction, etc. In i*, the dependee usually

identifies alternative ways for achieving (to a certain degree) the softgoals. The selection

of the right alternative is generally made by the depender.

The model distinguishes among three degrees of dependency. For the depender, the

strength of the dependency corresponds to the level of its vulnerability to the failure of

the dependency. The stronger the dependency, the more vulnerable the depender becomes

if the dependee cannot provide the dependum. On the other hand, a stronger dependency

means that the dependee will make more effort in providing the dependum (the

assumption here is that the dependee is cooperative or there exists a reciprocal

dependency). In an open dependency, the dependee’s failure to achieve the goal, perform

the task, or furnish the resource will to a certain degree affect the depender, but without

serious consequences. From the point of view of the dependee, an open dependency is a

declaration that it can provide the dependum for some depender. In a committed

dependency, the depender will be quite seriously affected by the failure of the dependee

to provide the dependum — some chosen course of action would fail as a result. There

can be other potential courses of action for the depender, but, in any case, the depender

would incur losses if the dependum is not provided. This means that the depender is

concerned about the dependee having a viable way to supply the dependum. The

dependee will also try to make sure that it has a viable way to do that. The strongest

dependency is called critical. Here, if the dependee does not provide the dependum, all

courses of action for the achievement of an associated goal, which are known to the

depender, would fail. In this case, the depender is concerned not only with the viability of

that dependency, but also with the viability of the dependee’s dependencies, and so on

[Yu, 1995].

As we noted above, in all four dependencies, the depender gains the ability to achieve the

goal/softgoal, execute the required task, or acquire the needed resource, but at the same

time becomes vulnerable should the dependee fail to deliver. We must remind the reader

 13

here that since the agents are not objects, one cannot guarantee that the dependee will

always provide the dependum even if it is perfectly capable of doing so: it may simply

choose not do it based on its current situation. Therefore, it is important for dependers to

try to mitigate the vulnerability that stems from their dependencies. One way to do it is to

create an enforceable dependency [Yu, 1995]. A dependency is enforceable if there is a

reciprocal dependency. This means that providing the dependum is in the dependee’s

interests since if it fails to supply the dependum, the depender can make one of the

dependee’s own goals fail. For example, a car owner depends on a garage for the quality

of his/her car repairs, while the garage depends on the car owner for continued business.

[Yu, 1995] identifies several ways of reducing the depender’s vulnerability. The way to

get assurance is to make sure that the dependency is reciprocal or otherwise is the

interests of the dependee. Insurance reduces the depender’s vulnerability by reducing the

degree of dependence on a particular dependee. For example, one way to do this is to

have several dependees for the same dependum.

2.1.3 Strategic Dependency Models

A Strategic Dependency (SD) model is a “network of dependency relationships among

actors” [Yu, 1995]. This model represents the actors and their intentional dependencies

graphically allowing for easier understanding and analysis of the organization and its

processes. The SD model captures the intentionality of the processes, what is important to

its participants, while abstracting over all other details. The diagrammatic notation allows

for representing agents, positions, and roles, all four types of intentional dependencies, as

well as their strength. The model allows for the analysis of the direct or indirect

dependencies of each actor and exploration of the opportunities and vulnerabilities of

actors (analysis of chains of dependencies emanating from actor nodes is helpful for

vulnerability analysis). Figure 3.1 presents the SD diagram notation. The diagram has

two actors: Agent1 and Role1. Role1 depends on Agent1 for the achievement of the goal

 14

Goal1. On the other hand, Agent1 needs Role1 to provide it with Resource1 and to

execute Task1.

Agent1 Role1

Task1

Goal1

Resource1

Task Dependency

Goal Dependency

Resource Dependency

Agent Role Position

Intentional
Dependencies

Actors

Softgoal Dependency

Figure 3.1. The SD diagram notation.

SD models can be used to model the existing processes in the organization (the early

requirements phase) before the new system is introduced. In this case, the actors are the

stakeholders of the system-to-be. SD models help in the analysis of stakeholder goals,

their current dependencies, and the rationale for the current processes in the organization.

The model is also useful in the identification of the organization’s need for a new system.

On the other hand, SD diagrams can be used during the late requirements analysis phase

to create a high-level model of the system and its organizational environment. This model

is used to understand how the network of intentional dependencies can be reorganized

with the introduction of the system as one or more actors in the diagram. Opportunity and

vulnerability analysis can be performed from the point of view of each actor. One can

 15

also analyze the potential system-and-environment configurations and see which ones are

the best with respect to the achievement of stakeholder goals and softgoals.

2.1.4 Strategic Rationale Models

Strategic Rationale models are used to explore the rationale behind the processes in

systems and organizations. In SR models, the rationale behind process configurations can

be explicitly described, in terms of process elements and relationships among them [Yu,

1995]. The model provides a lower-level abstraction to represent the intentional aspects

of organizations and systems: while the SD model only looked at the external

relationships among actors, the SR model provides the capability to analyze in great

detail the internal processes within the actors that are part of the system and of its

environment. The model allows for deeper understanding of what each actor’s needs are

and how these needs are met; it also enables the analyst to assess possible alternatives in

the definition of the processes to better address the concerns of the actors.

SR models have four types of nodes, one for each dependency type. These nodes are:

goal, task, resource, and softgoal. Goals are the states of the world that the actors would

like to achieve. The goal node itself does not specify how the goal is to be achieved,

therefore alternatives can be considered. Task nodes specify “particular ways of

achieving something” [Yu, 1995]. Resources are physical or informational entities that

can be provided and/or required by actors. Softgoals are similar to goals in that they are

the conditions in the world that the actor would like to achieve; the difference is that

these conditions are qualitative, without a clear-cut satisfaction condition. Softgoals in

SR diagrams are used as restrictions or selection criteria for choosing among alternatives.

Figure 3.2 illustrates the main elements of the SR modeling notation. It is the SR diagram

for the Meeting Initiator actor, who is part of the meeting scheduling process fully

described in Chapter 6.

 16

Figure 3.2. The SR diagram notation.

The above-described nodes are related by two types of links: task decomposition links,

and means-ends links. Means-ends links specify alternative ways to achieve goals,

perform tasks, etc. Means-ends links connect the end, which is usually a goal, but can

also be a task, a resource, or a softgoal, with a means of achieving it. The means is

usually a task since “the notion of task embodies how to do something” [Yu, 1995]. For

example, in the model in Figure 3.2, there are two ways to achieve the goal

MeetingOrganized: the tasks ManuallyScheduleMeeting and

LetMeetingSchedulerScheduleMeeting. Task decomposition links connect a task with

its components. These components could be simpler tasks, subgoals, resources needed for

the task, or softgoals. In Figure 3.2, the task OrganizeMeeting is decomposed into the

goal MeetingOrganized and the task RequestParticipation. It is possible to link a

task/goal node with an intentional dependency going to another actor to represent its

delegation to that actor. The SR model is strategic in that its elements are included only if

they are considered important enough to affect the achievement of some goal [Yu, 1995].

The presence of softgoal nodes with positive or negative contribution links connecting

them with other nodes in the SR diagram allows the analyst to evaluate alternative

process configurations and select the best one. For example, in Figure 3.2 the task

+/- MeetingOrganized

MIBehaviour

MeetingScheduled

LowEffort Quick

OrganizeMeeting

Request
Participation

Manually
Schedule
Meeting

Meeting
Initiator

Let Meeting
Scheduler
Schedule
Meeting

Task decomposition

Softgoal contribution

Means-ends link

 Task

 Goal

 Softgoal

 Actor boundary

 17

ManuallyScheduleMeeting contributes negatively to the softgoals Quick and

LowEffort, while the task LetMeetingSchedulerScheduleMeeting contributes

positively to both softgoals.

The central concept in the SR model is the notion of a routine — an interconnected

collection of process elements serving some purpose for an agent. An actor has the ability

to do something if it has a routine for it. A routine may delegate tasks, goals, etc. to other

actors. A routine is said to be workable if the actor believes (at “process design time”)

that it can successfully carry it out (at “run-time”) [Yu, 1995]. The notions of ability and

workability are important for analyzing whether the actor has processes for

accomplishing its goals and whether these processes are going to work.

2.2 The Cognitive Agents Specification Language

The Cognitive Agents Specification Language (CASL) [Shapiro and Lespérance, 2001] is

a formal specification language that combines theories of action [Reiter, 1991] and

mental states [Scherl and Levesque, 1993] expressed in the situation calculus [McCarthy

and Hayes, 1969] with ConGolog [De Giacomo et al., 2000], a concurrent, non-

deterministic agent-oriented programming language with a formal semantics. CASL uses

special predicates [Shapiro and Lespérance, 2001] to formally express the agents’

knowledge and goals; communicative actions (e.g., inform) are used to describe inter-

agent communication and ConGolog is then employed to specify the behaviour of agents.

This combination produces a very expressive language that supports high-level reasoning

about the agents’ mental states. The logical foundations of CASL allow it to be used to

specify and analyze a wide variety of multiagent systems. For example, it can support

non-deterministic systems and systems with incompletely specified initial state. In

addition, different agents can be specified at different levels of abstraction. For instance,

some agent specifications will make use of both goals and knowledge, while others will

 18

use only knowledge (or goals), and some may use neither. CASL specifications consist of

two parts: the model of the domain and its dynamics and the specification of the agents’

behaviour.

2.2.1 Modeling the Domain

In order to be able to reason about the processes executing in a certain domain, that

domain must be formally specified — what predicates describe the domain, what

primitive actions are available to the agents, what the preconditions and effects of these

actions are, what is known about the initial state of the system. CASL represents a

dynamic domain declaratively using an action theory [Reiter, 1991] that is formulated in

situation calculus [McCarthy and Hayes, 1969]. The situation calculus is a predicate

calculus language for describing dynamic domains. The key notion in the situation

calculus is that of a situation. A situation is a state of the domain that results from a

particular sequence of actions. The situation calculus assumes that the world starts in a

certain state (initial situation). In the model of a domain, there is a set of initial situations

corresponding to the ways agents think the world might be like initially. The constant S0

specifies the domain’s actual initial situation. Initial situations do not have predecessors

meaning that no actions already have been performed. Actions performed by various

agents (and only these actions) change the current situation. The term do(a,s) represents

the unique situation that results from performing the action a in situation s. Situations

therefore can be organized in trees. The situations are the nodes of the tree with the roots

being the initial situation; the actions are the edges in those trees.

Fluents are the predicates and functions that change from situation to situation. They

have a situation as their last argument. For example, Near(a,b,s) might be the fluent that

is used to state that some object a is near some object b in situation s. Primitive actions

are executed by the agents in the domain. Precondition axioms for actions specify under

which conditions the primitive actions are executable. The predicate Poss(a,s) denotes

 19

the executability of action a in situation s. For example, the formula below states that the

action pickup(x) is possible when the robot arm is not holding anything and its is next to x

and x is not heavy [De Giacomo et al., 2000]:

((),) . (,) (,) ()Poss pickup x s y Holding y s NextTo x s Heavy x≡ ∀ ¬ ∧ ∧ ¬

To find legal executions of programs, the interpreter must reason about the preconditions

and effects of actions. Primitive actions have effects on fluents. It is also necessary to

provide frame axioms to describe which fluents are not affected by the actions. The

number of these axioms is potentially very large. In the worst case, one would need a

frame axiom for every combination of primitive action and fluent. This is known as the

frame problem. CASL uses the solution to this problem proposed in [Reiter, 1991]. In

this approach, successor state axioms, which encode effects of primitive actions on

fluents, are used. Each successor state axiom defines which primitive actions have what

effects on some particular fluent. For example, below is a possible successor state axiom

for Holding(x,s). It says that for the agent to be holding some object x in the situation

following the execution of the action a in situation s, either a must have been the action

of picking up x, or the agent had been holding the object x in situation s before a

occurred, and a was not the action of dropping x:

(, (,)) () ((,) ())Holding x do a s a pickup x Holding x s a drop x≡ = ∨ ∧ ≠

The relation 's sp over situations holds if s′ results from performing an executable

(possibly empty) sequence of primitive actions in s. In this approach, a domain is

specified by a theory containing axioms of these types:

• Axioms that describe the initial state of the domain and the initial mental states of

all of the agents.

• Action precondition axioms, one for each primitive action a, defining Poss(a,s).

 20

• Successor state axioms, one for each fluent F(x1,…,xn,s), which characterize the

conditions under which F(x1,…,xn,do(a,s)) holds in terms of what holds in

situation s.

• Unique name axioms for primitive actions.

• Domain-independent foundational axioms (these include the unique name axioms

for situations and the induction axiom).

2.2.2 Modeling Agents’ Mental States

CASL models two characteristics of agents’ mental states, goals and knowledge. The

formal representation for both goals and knowledge is based on a possible worlds

semantics incorporated in the situation calculus, where situations are used as possible

worlds [Moore, 1985; Scherl and Levesque, 1993]. What agents know is modeled

through an accessibility relation K(agt,s′,s). It holds if the situation s′ is compatible with

what the agent agt knows in situation s, i.e., in situation s, the agent thinks that it might

be in the situation s′. In this case, the situation s′ is called K-accessible. The K

accessibility relation is used to define what the agents know. An agent knows some

formula φ if φ is true in all K-accessible situations:

(, ,) ((, ,) [])
def

agt s s K agt s s sφ φ′ ′ ′= ∀ ⊃Know

Here, []sφ is the formula φ with all free occurrences of the special constant now

substituted with s. For example, Know(agt,HaveKey(Door1,now),s) stands for

∀s′.(K(agt,s′,s) ⊃ HaveKey(Door1,s′)). Often, when there is no possibility of confusion,

the now constant is suppressed (e.g., Know(agt, HaveKey(Door1),s)). Constraints on the

K relation ensure that what is known is true and agents have positive and negative

introspection, i.e., they always know whether or not they know something. If the agent

knows either φ or its negation, it knows whether it holds or not:

 21

(, ,) (, ,) (, ,)
def

agt s agt s agt sφ φ φ= ∨ ¬KWhether Know Know

Also, the abbreviation KRef(agt,θ,s) is used for . (, ,)t agt t sθ∃ =Know . This means that

the agent knows the value of θ. Additional communicative actions, informWhether and

informRef, are used to inform agents about the truth value of a formula or the value of a

function respectively.

The K relation on initial situations is specified through the initial state axioms. For non-

initial state axioms the successor state axiom for the K relation shows how agent

knowledge changes from situation to situation. Here, we assume that the action inform is

the only knowledge-producing action (the modifications needed to support other

knowledge producing actions are straightforward), and use the following successor state

axiom:

K(agent,s′′,do(a,s)) ≡ ∃s′ (K(agent,s′,s) ∧ s′′ = do(a,s′) ∧ Poss(a,s′)

∧ ∀informer,φ (a=inform(informer,agent,φ) ⊃ φ[s′])))

It says that the situation s′′ is K-accessible from the situation do(a,s) under the following

conditions: if the action a is not an inform action, then the situation preceding s′′, s′,

must be K-accessible from s, it must be the case that executing the action a in s′ takes you

to s′′, and that action must be executable in the situation s′. If, on the other hand, the

action a is the inform action, then in addition to the above conditions, φ must hold in s′,

i.e., when an agent informs another that φ, φ must be true. Here, φ is a formula encoded

as a term as in [De Giacomo et al., 2000]. This successor state axiom ensures that the

agents are aware of the execution of every action that occurs (and the fact that those

actions were executable). In case of the inform actions, the recipient is sure that the

content of the message holds. This axiom only handles knowledge expansion with the

inform action. It is easy to modify the successor state axiom to handle other types of

communicative actions or belief revision. For example, [Lespérance, 2002] shows the

 22

version that supports informing about the value of a function (using the communicative

action informRef), [Shapiro and Lespérance, 2001] modifies the axiom to handle

encrypted messages, while [Shapiro et al., 2000] provides an account of belief revision

compatible with CASL. Perception actions can also be modeled.

Another accessibility relation on situations is used to model agents’ goals. The relation

W(agt,s′,s) holds if the situation s′ is compatible with what the agent wants in s. Here, the

agent may want something that does not currently hold. Agents may even want things

that they know are impossible to attain, but the goals of agents must be consistent with

what they know. Thus, the goals of agents are defined to be the formulae that are true in

all W-accessible situations that have a K-accessible situation in the past [Shapiro and

Lespérance, 2001]. The formula ψ below has two free variables, now and then. then refers

to the future situation where the goal has been achieved, while now is the current

situation along the path to then. So, goals are formulae that are true in the W-accessible

paths that start from a K-accessible situation:

(, ,)
def

agt sψ =Goal

, .((, ,) (, ,) [,])now then K agt now s W agt then s now then now thenψ∀ ∧ ∧ ⊃p

Here, ψ[s′,s′′] is the formula ψ with s′ and s′′ substituted for now and then respectively.

The successor state axiom for W is similar to the one for K and describes what affects the

agents’ goals. In particular, request actions coming from other agents make the agent

acquire new goals provided that the goals are consistent with existing goals of the agent.

We use the following successor state axiom for W:

(, , (,)) ((, ,)W agt then do a s W agt then s≡ ∧

, , .((, ,) (, ,)requester now a request requester agt K agt now sψ ψ∀ = ∧ ∧

(, ,) [(,),]))now then agt s do a now thenψ ψ∧ ¬ ¬ ⊃Goalp

 23

The axiom says that the situation then is W-accessible from do(a,s) iff it is W-accessible

from s and if the action a is a request action requesting that ψ hold, and now is the current

situation along the path defined by then, and the agent does not have the goal that ¬ψ in

s, then ψ holds at do(a,now),then). This formalization does not support goal revision.

However, the communicative action cancelRequest can be used by the requester to

cancel a previously made request (we omit the modifications to the successor state axiom

for W). Note that if the agent already has the goal that ¬ψ, it will not adopt the goal that

ψ to avoid inconsistency.

In our approach, we mostly use achievement goals that specify the desired states of the

world that one must eventually reach. These goals have one situation variable now. For

such goals, we use the definition that says that eventually φ holds (note that now is

replaced by s') on the path defined by (now,then):

Eventually(φ(now),now,then) =

def . [/]s now s then now sϕ ′ ′ ′∃ ∧p p ,

Note that in CASL to simplify modeling, it is assumed that every agent knows about all

the actions performed by all the agents. If this is not desired, one can use encrypted

messages [Shapiro and Lespérance, 2001] or use communication actions that do not make

the complete message explicit (informWhether and informRef as in [Lespérance,

2002]).

As mentioned earlier, the framework requires that the content of the inform messages be

true. Thus, after receiving a message, the recipient knows that the sender knew that the

content of the message was true. This prevents agents from sending false information.

Also, when executing the request action, the sender must not have goals that conflict

with the request. Alternatively, one could require that the requesting agent have the goal

that it is asking another agent to adopt. These constraints are expressed through the

precondition axioms for the inform and request actions:

 24

((, ,),) (, ,)Poss inform informer recepient s informer sφ φ≡ Know

((, ,),) (, ,)Poss request requester recepient s requester sψ ψ≡ ¬ ¬Goal

2.2.3 Specifying Agent Behaviour

The ConGolog agent programming language [De Giacomo et al., 2000] is used to specify

the behaviour of the agents in this framework. ConGolog is used here as a specification

language even though it has been implemented. Here, we take a ConGolog program to

consist of a sequence of procedure declarations and a complex action (in [De Giacomo et

al., 2000], nested procedures are handled). Complex actions can be constructed out of the

following constructs:

a, primitive action

φ?, wait for condition

δ1;δ2, sequence

δ1|δ2, nondeterministic choice of actions

δ*, nondeterministic iteration

πv.δ nondeterministic choice of argument

if φ then δ1 else δ2 endIf, conditional

for x∈Σ do δ endFor, for loop

while φ do δ endWhile, while loop

δ1||δ2, concurrency with same priority

δ1>>δ2, concurrency with δ1 at higher priority
:x φ δ→ , interrupt

β(p), procedure call.

In the above table, a is a primitive action; φ is a situation calculus formula with the

situation argument of its fluents suppressed; δ, δ1, and δ2 represent complex actions; Σ is

a set, x is a list of variables; β is a procedure name, while p represents the actual

 25

parameters of the procedure. Procedures are defined as proc β(y) δ endProc, where β is

the name of the procedure, y represents its formal parameters, and δ is the body of the

procedure, a complex action [Shapiro et al., 1998].

One of the most expressive facilities of ConGolog is the interrupt construct. The interrupt

fires whenever there is a binding of variables in x that makes the trigger condition φ true.

The body of the interrupt, δ, is then executed. Once the execution of the body is

complete, the interrupt is ready to fire again. Interrupts allow for modeling of concurrent

and nondeterministic systems, reactive controllers, etc. One can easily write programs

that can stop their normal activities and proceed to handling high-priority tasks when the

need arises.

The semantics of ConGolog is defined in terms of transitions [De Giacomo et al., 2000].

Transition semantics defines single steps of computation (as opposed to defining

complete computations) that can be either primitive actions or tests of whether certain

things hold in situations. The semantics is defined using two special predicates,

Trans(δ,s,δ',s'), which means that program δ in situation s may legally execute one step

of computation, ending in situation s' with program δ' remaining, and Final(δ,s), which

means that program δ may legally terminate in situation s. These predicates are

characterized by axioms that define possible computations and legal terminations for all

ConGolog language constructs (e.g., primitive action, concurrency operator, etc.). The

overall semantics of a ConGolog program is defined by the Do relation, which is defined

in terms of Trans and Final (see [De Giacomo et al., 2000] for details). Do(δ,s,s') holds

iff s' is a legal termination situation of process δ started in situation s.

2.2.4 Epistemic Feasibility

In [Lespérance, 2002] the notion of epistemic feasibility of CASL programs is introduced

and formalized. CASL, like many other multiagent specification frameworks, does not

 26

provide a good way for ensuring that plans of the agents in the MAS are epistemically

feasible, that is that the agents have enough knowledge to be able to successfully execute

their plans. It is noted in [Lespérance, 2002] that in CASL, the behaviour of the system is

specified as a set of concurrent processes that may or may not refer to the agents’ mental

states during their execution. Thus, it may be the case that an agent chosen to execute a

certain process does not have enough knowledge to do it. For example (adapted from

[Lespérance, 2002]), suppose there is a safe and a robot capable of dialling the safe’s

combination. The designer can write a program that makes the robot dial the safe’s

combination (whatever it is), for example, dial(Robot1,combination(Safe1),safe1).

While this program is physically executable, it is not epistemically feasible if the robot

does not know the combination. Such programs are useful if we just want to identify

some possible execution traces of the system, but they do now take into consideration

how the mental state of the agents affects their actions.

In CASL, like in many other specification frameworks, systems are specified from the

third-person point of view. While this could have some advantages (e.g., some systems

are best specified objectively), it is quite easy to write specifications that are not

executable. To remedy this, [Lespérance, 2002] provides ways to guarantee that

specifications are epistemically feasible for the agents in the system. The paper defines

subjective plan execution (with or without lookahead), which ensures that the plan can be

executed by the agent based on its own knowledge.

How can an agent know that it can execute an action? Before being able to execute an

action, the agent must, for one thing, know that its preconditions are true. These kinds of

requirements are known as “knowledge prerequisites of action” [Moore, 1985]. While the

modeler could specify these preconditions manually, as suggested in [Lespérance, 2002],

it would be better if these preconditions fell out automatically when the modeler specified

that the process was to be executed subjectively by some specific agent.

 27

2.2.4.1 Blind Subjective Execution of Processes

A new construct, Subj(agt, δ), is proposed in [Lespérance, 2002]. This means the process

δ is to be subjectively executed by the agent agt, that is, in terms of its knowledge. Subj

is formally defined in terms of transitions. The standard ConGolog axioms for Trans and

Final are appropriately modified (the details are presented in [Lespérance, 2002]). With

subjective execution, only if the agent knows that it can make a transition can the system

make that transition. Also, if the transition involves a primitive action, this action must be

executed by the agent itself. A subjectively executed program can terminate only if the

executing agent knows that it may do so. So, during subjective execution all the fluents,

tests, and action preconditions are evaluated with respect to the agents’ knowledge state

as opposed to being evaluated against the global world state.

For single agent programs without nondeterministic operators, such as π, *, |, and ||, Subj

is an adequate formalization of epistemic feasibility since it is sufficient for the agent to

know which transition to perform at each step and when it can legally terminate. On the

other hand, if the program contains nondeterminism, there are possibly many transitions

that are allowed at any step and the agent must choose which one to execute.

Nondeterministic programs enclosed in the Subj construct are executed blindly with the

executing agent choosing the next transaction arbitrarily. Therefore, it can end up making

rather bad choices. For example, suppose that the agent knows that both actions a and b

are executable and the program is Subj(agt, (a; False?)| b). Since the agent performs no

lookahead, it may very well choose to execute the action a and be left with False?, which

can never become true, so the agent is stuck. Therefore, to show that a nondeterministic

program is subjectively (and blindly) executable by an agent, one must show that all the

paths are subjectively executable and lead to successful termination. That is, if there is a

path in a nondeterministic program that is subjectively executable by an agent, it is not

enough to guarantee epistemic feasibility. One must make sure that all the paths are

subjectively executable. In [Lespérance, 2002] this is captured by the predicate

 28

AllDo(δ,s), which is true if all the possible executions of the program δ starting in

situation s successfully terminate. That is why the new predicate is called AllDo — all

paths lead to a successful termination of the program.

Epistemic feasibility for single-agent programs that are blindly executed as described

above is formalized by the predicate KnowHowSubj(agt,δ,s) defined as:

KnowHowSubj(agt,δ,s) =
def AllDo(Subj(agt,δ),s)

This means that every subjective execution starting in s successfully terminates. If we

want to generalize this to the system consisting of two agents executing in parallel, we

can define the epistemic feasibility as:

KnowHowSubj(agt1, δ1, agt2, δ2, s) =
def AllDo(Subj(agt1, δ1)||Subj(agt2, δ2), s)

This guarantees that no matter how the two programs are executed and how they are

interleaved, the execution will terminate successfully. This can be generalized further. If

δ is a multiagent process with all the agents subjectively executing their programs in a

blind manner (their programs are all inside the Subj operator), then the epistemic

feasibility is defined as:

KnowHowSubj(δ,s) =
def AllDo(δ,s)

2.2.4.2 Deliberate Execution of Processes

[Lespérance, 2002] also proposes the notion of deliberate execution for the smart agents

that can deliberate and perform lookahead. The Delib(agt,δ) operator is used for such

programs. It is again formalized using the transition semantics of ConGolog (full details

can be found in [Lespérance, 2002]). The epistemic feasibility for deliberately-executed

single-agent (deterministic or nondeterministic) programs is defined as

 29

KnowHowDelib(agt,δ,s). The essence of epistemic feasibility in a deliberate execution is

that the system can make a transition only if the executing agent knows that it can make

this transition and, in addition, it knows how to deliberately execute the remainder of

program δ until the legal final situation. Therefore, before selecting an action to execute

the agent must ensure that it knows how to complete the execution of the program. Since

one can depend on the agent for the smart selection of its transitions, there is no need to

require that all the paths through the program lead to the successful termination — it is

enough to show that at least one such path exists. There is no definition of Delib for

general multiagent processes yet. Scaling Delib up to the case of multiple agents is hard

since the choice of actions of each agent will depend on other agents’ deliberations.

 30

3 Related Work

In this chapter, we briefly introduce Software Engineering in Section 3.1 and

Requirements Engineering in Section 3.2. We talk about software agents, multiagent

systems, and Agent-Oriented Software Engineering in Section 3.3, introduce a number of

agent-oriented development methodologies in Section 3.4, discuss several important goal

oriented requirements engineering approaches in Section 3.5, and describe two i*-based

methodologies, on which our approach is based, in Section 3.6.

3.1 Software Engineering

Creation of reliable, maintainable, etc. software systems that satisfy customer

requirements is a hard task, which is steadily becoming more and more difficult.

Software systems are constantly growing in size and complexity. In many cases, small

teams of developers can no longer deliver new product versions on schedule because of

the ever increasing number of features. As the number of developers grows, the

management of the development team as well as the systematic and efficient

communication and document sharing among its members becomes essential. Software

development organizations now routinely use third party libraries, components and

services in their projects. They also experience pressure from their customers to deliver

customized and easily maintainable systems quickly and cheaply. Software Engineering

studies the methods and techniques that help develop reliable, efficient, maintainable,

evolvable, etc. software systems on time and on budget, thus alleviating the above-

mentioned difficulties.

There are many definitions of what Software Engineering is. The definition given in

[IEEE, 1990] states the following:

 31

Software Engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software.

Software Engineering studies the following activities that are part of the software

development process: requirements engineering, design, implementation, testing,

deployment, and maintenance. In this thesis, we concentrate on requirements engineering

and high-level design.

3.2 Requirements engineering

The main measure of the success of software systems is the degree to which it meets its

purpose. Requirements engineering is the process of discovering the purpose of software

systems [Nuseibeh and Easterbrook, 2000]. Requirements engineering is defined by

[Zave, 1997] as: “the branch of software engineering concerned with the real-world goals

for, functions of, and constraints on software systems. It is also concerned with the

relationship of these factors to precise specifications of software behaviour, and their

evolution over time and across software families”. The core RE activities are as follows

([Nuseibeh and Easterbrook, 2000]):

• eliciting requirements,

• modeling and analyzing requirements,

• communicating requirements,

• agreeing to requirements,

• evolving requirements.

In this thesis, we are concerned with the fist two activities of RE, namely the

requirements elicitation, as well as the requirements modeling and analysis.

 32

Requirements elicitation deals with analyzing the environment of the system-to-be,

identifying the system’s stakeholders — people or organizations that influence the

system-to-be and are affected by it — and recognizing their needs.

Much of the RE research in the last decade has been concentrated in the area of goal-

oriented requirements engineering. Goals are the objectives of the stakeholders, thus

eliciting stakeholder goals makes the requirements engineer concentrate on the problem,

rather then on finding solutions to the problem. Goal-oriented approaches like KAOS

[Dardenne et al., 1993] and Tropos [Castro et al., 2002] provide means to systematically

refine stakeholder goals to the point where they can be assigned for achievement to either

the system (or one of its components) or the environment of the system-to-be.

One of the main difficulties of requirements elicitation and modeling is the imprecise,

informal nature of requirements. Requirements for a system exist in a certain social

context and therefore during requirements elicitation a high degree of communication,

negotiation, and other interaction skills is needed. For example, various stakeholders have

different, possibly (and usually) conflicting points of view on what the system-to-be

should deliver. Thus, getting stakeholders to agree on requirements is an important step

of the process and requires a good social and communication skills. Requirements

engineers should also be very careful while gathering the requirements: the same words

and phrases used by different stakeholders may mean different things for them. One way

to overcome this problem is to construct a common ontology to be used by all the

stakeholders. Another way is to model the environment formally. One approach for

carefully describing the environment using ground terms, designations and definitions is

presented in [Jackson, 1997]. A brief overview of the requirements elicitation techniques

is presented in [Nuseibeh and Easterbrook, 2000].

Requirements modeling is the activity of “building abstract descriptions of the

requirements that are amenable to interpretation” [Nuseibeh and Easterbrook, 2000].

 33

Modeling facilitates in requirements elicitation by guiding it and helping the

requirements engineer look at the domain systematically. Domain models allow for

requirements reuse within the domain. The presence of inconsistencies in the models is

indicative of conflicting and/or infeasible requirements. While informal models are

analyzed by humans, formal models of system requirements allow for precise analysis by

both the software tools and humans. As systems grow in size and complexity, formal

analysis of requirements becomes more and more important. System requirements

specifications that are expressed formally allow the designer to rigorously verify that the

software system satisfies its requirements.

Requirements engineering is generally viewed as a process containing two phases. The

early requirements phase concentrates on the analysis and modeling of the environment

for the system-to-be, the organizational context, the stakeholders, their objectives and

their relationships. A good analysis of the domain is extremely important for the success

of the system. Understanding the needs and motivations of stakeholders and analyzing

their complex social relationships helps in coming up with the correct requirements for

the system-to-be. Domain models are a great way to organize the knowledge acquired

during the domain analysis. Such models are reference points for the system requirements

and can be used to support the evolution of requirements that stems from changes in the

organizational context of the system.

The late requirements phase is concerned with modeling the system together with its

environment. The system is embedded into the organization; the boundaries of the system

and its environment are identified and adjusted, if needed; the system requirements and

assumptions about the environment are identified. The boundary between the system and

its environment is initially not well defined. The analyst will try to determine the best

configuration of the system and its environment to reliably achieve the goals of the

stakeholders. Putting too much functionality into the system could make it, for example,

 34

too complex and hard to maintain and evolve, while making too many assumptions about

the environment may be unrealistic.

It is generally acknowledged that uncaught errors in requirements cost tens of times more

to fix at the later stages of the software development process than if they had been caught

at the requirements stage. Also, a lot of times failures of software systems have to do not

with poor design or programming errors, but with the failure to properly capture the

needs of the stakeholders. Thus, spending time to carefully figure out what the system is

supposed to do is extremely important. On the other hand, requirements are quite volatile

and supporting the evolution of the system requirements is also crucial. Creating

traceability links between requirements models and design-level models helps when

requirements change either during development or after the deployment of the system.

3.3 Agents, Multiagent Systems and Agent-Oriented
Software Engineering

Agent-Oriented software engineering is a relatively new approach to software

construction. With the advent of the internet, electronic commerce, web services, and

peer-to-peer networks more and more software systems are becoming distributed, with

complex communication patterns. These systems are frequently built out of components

that were developed and may be operated by different companies. In this context, many

researchers and practitioners find that object-oriented and even component-oriented

approaches offer abstractions that are too low-level to concisely and conveniently

describe such systems.

In agent-oriented software engineering, the problems are decomposed into autonomous,

interacting components called agents, each of which has a goal or a set of goals to

achieve. The system’s objectives are achieved as these components act together to

 35

achieve their individual goals. Therefore, agent interaction is needed for the agents to

achieve their individual goals and for the system to achieve its objectives. Most

frequently, agents in multiagent systems represent and act on behalf of individuals,

companies, departments within companies, etc. Therefore, as it is noted in [Jennings,

1999], when agents interact, there is usually some “underlying organizational context”

that characterizes the relationship between the agents in the system. Multiagent systems

often mimic human organizations and social relationships by involving agent coalitions

and teams and by distinguishing among bosses, peers, etc. This makes multiagent

systems a great match for goal-oriented requirements engineering approaches such as

those based on the i* modeling framework. The i* models of the future system and its

organizational context contain the stakeholders, the system agents, and their intentional

dependencies and can be easily mapped into an analogous multiagent system with the

stakeholders modeled by software agents and intentional dependencies replaced by

similarly patterned agent interactions. Multiagent systems have the essential ability to

adapt to the changes in their underlying social context and thus promise big savings for

supporting the system evolution.

There is no universally accepted definition of software agent. One of the most popular is

presented in [Wooldridge, 1997]:

an agent is an encapsulated computer system that is situated in some

environment, and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives

Agents are thought of as self-contained software or (rarely) hardware systems that

encapsulate some state information and are able to communicate with each other.

Wooldridge and Jennings ([Wooldridge and Jennings, 1995]) define weak and strong

notions of agency. Weak agency is the basic, minimal characterization of agents. Weak

agents have the following properties:

 36

• autonomy: agents are able to pursue their objectives without direct guidance from

humans or other systems and have control over their actions and state;

• social ability: agents are capable of interacting with other agents using some kind

of agent communication language;

• reactivity: agents are capable of reacting in a timely manner to changes in their

environment;

• pro-activeness: agents exhibit goal-directed behaviour.

The above properties define the essence of being an agent. Systems not exhibiting the

above properties most likely are not agents. Strong agency involves characterizing the

states of the agents using mentalistic notions such as knowledge, belief, intention (e.g.,

BDI formalisms of [Rao and Georgeff, 1995]). Therefore, strong agents have more

artificial intelligence/knowledge-based technology built into them and to a certain extent

are specified formally. Describing agents in terms of their mental states allows for higher-

level specifications. When matched with the appropriate agent interaction language (e.g.,

FIPA ACL [FIPA, 2001] or KQML [Finin et al., 1997]), these specifications support

reasoning about the effects of inter-agent communication without knowing the exact

content of the messages (knowing the type of the message is enough to predict the type of

effect it has on the mental state of the agent). This allows for more thorough analysis of

multiagent systems and for prediction of changes in the agents’ behaviour in response to

change in the agents’ environment. Equipped with appropriate reasoning tools, agents can

determine the best course of action under changing circumstances, thus displaying

autonomy and reactivity in the environment. They can change partners, form teams,

request assistance, switch to achieving lower priority goals while higher priority ones

cannot be effectively achieved, etc. Moreover, in open and dynamic systems that are well

suited for agent technology, agent interactions cannot be fully specified at design time

since multiagent system configurations are very fluid. Using AI agent technologies

allows designers to create highly flexible and dynamic systems by deferring much of the

decision making until runtime.

 37

Agent research argues that agent orientation is the next logical step for software

engineering. Jennings ([Jennings, 1999]) shows that agents are a good way of partitioning

the complex problems and that agent-oriented systems are much better equipped for

dealing with complex organizational relationships that exist in today’s software than

systems built using other paradigms, most notably the object-oriented one. Agents, unlike

objects, have a much greater degree of control over which actions they execute. While

objects (or, more generally, software components) are passive and need some sort of

invocation to become active, agents “encapsulate behaviour activation (action choice)”

[Jennings, 1999]. Any object can call any publicly accessible method of another object

and the called object cannot refuse the invocation. This may not be appropriate for

competitive environments. On the other hand, an agent can refuse to execute an action for

one reason or another. This way action invocation becomes a “process of mutual consent”

[Jennings, 1999]. Another advantage of agent-oriented approach is that agent interactions

occur at a higher level than interactions among components and objects. Agents usually

employ a speech act-based agent communication language that allows them to

communicate at a semantic level as opposed to the purely syntactic-level communication

employed by objects.

Agent orientation, while a very promising approach, also has some important problems

[Jennings, 1999]. For example, agents heavily loaded with AI may be hard to implement

efficiently and require substantial expertise in artificial intelligence. Designers must

balance reactive and proactive behaviour, which is hard even for small systems (e.g.,

[Lapouchnian and Lespérance, 2002]). Since agents interact in flexible ways, quite

frequently the pattern of interactions as well as their timing cannot be predicted. Also,

generally the behaviour of the multiagent system is difficult to understand only in terms

of the behaviour of its individual agents. The system’s overall emergent behaviour can be

hard to predict.

 38

3.4 Agent-Oriented Development Methodologies

The growth of interest in agents and multiagent systems in the 1990’s generated a need

for software engineering methodologies designed specifically for agent-based systems. A

number of agent-oriented software development methodologies were reviewed in

[Iglesias et al., 1998] and in [Wooldridge and Ciancarini, 2001]. Iglesias et al. note that

many researchers avoid developing agent-oriented methodologies from scratch. Instead,

most agent-oriented methodologies extend existing methodologies to include aspects

relevant to agents. The majority of agent-oriented methodologies are based on two types

of existing methodologies [Iglesias et al., 1998]: object-oriented (OO) and knowledge

engineering (KE).

Extending existing object-oriented approaches to support agents appears to be quite

natural since there are a lot of similarities between agents and objects. Shoham [Shoham,

1993] noted that the agents can be considered as active objects (objects with a mental

state that act on their own volition). Message passing, inheritance, and aggregation are

used in both agent-oriented and object-oriented analysis paradigms [Iglesias et al., 1998].

The popularity of object-oriented analysis and design methods and the abundance of tools

for object-oriented development are other factors in the selection of object-oriented

methodologies as a base for the development of new agent-oriented ones.

One example of the above approach is the methodology of Kinny et al. [Kinny et al.,

1996] developed at the Australian AI Institute. This approach is mainly based on object-

oriented methodologies with the addition of some agent concepts. It provides internal and

external models, which define a multiagent system specification. The external model is

concerned with agents and relationships among them. On the other hand, the internal

model describes the internals of the agents, their beliefs, desires, and intentions. The

external model is divided into an interaction model and an agent model, which is in turn

subdivided into an agent class model and an agent instance model. They define classes of

 39

agents and their relationships via inheritance, aggregation, and instantiation. The

methodology in can be briefly described as follows:

• relevant roles are identified in the problem domain;

• the responsibilities of the roles, and the services required and provided by it are

then identified;

• the goals associated with each role are identified;

• achievement plans are chosen for each goal, along with the context conditions that

determine when the plan is appropriate;

• the belief structure of the system (the information required for each plan and goal)

is mapped out.

The resulting model is closely related to the Procedural Reasoning System (PRS)

[Ingrand et al., 1992] agent architecture and thus could be easily implemented using PRS.

The PRS, developed at the Stanford Research Institute, is “the first agent-based

architecture based on the belief-desire-intention paradigm” [Wooldridge and Ciancarini,

2001]. The PRS was used in Australia in some of the most complex multiagent systems

ever built (including an air traffic control system and an air force simulation system).

Another example of a methodology based on object-oriented concepts is Gaia

[Wooldridge et al., 2000]. This methodology aims at allowing analysts to systematically

go from a requirements statement to a sufficiently detailed, directly implementable design

[Wooldridge and Ciancarini, 2001]. Gaia borrows some notation as well as terminology

from object-oriented analysis methods, but instead of applying them naively to agent-

oriented analysis, it introduces a new set of concepts for modeling complex agent-

oriented systems. Gaia encourages designers to think of building agent-based systems as

a process of organizational design [Wooldridge and Ciancarini, 2001]. When applying

Gaia, the analyst moves from more abstract concepts (e.g., roles, permissions,

responsibilities, etc.) to progressively more concrete concepts (e.g., agent types and

 40

services). Abstract entities are used during conceptual analysis of the system. They do not

usually have direct realizations within the system, unlike the concrete concepts, which are

used during the design of the system and are typically realized in the system at runtime.

Each step brings the specification closer to the final design, reducing the number of

possible systems that could be implemented to satisfy the requirements specification.

The analysis stage in Gaia is aimed at understanding the system and its structure (no

implementation details are introduced at this point). This understanding is captured by the

system’s organization [Wooldridge and Ciancarini, 2001]. An organization in Gaia is

viewed as a collection of roles that have relationships with each other and take part in

interactions. Roles are defined by their responsibilities (divided into liveness and safety

properties), activities (private internal actions of a role), permissions (resources available

to a role to realize its responsibilities), and protocols (ways a role can interact with other

roles).

Gaia is somewhat similar to the i* modeling framework, which is used in this thesis,

since in both i* and Gaia, organizational aspects are given a very prominent role in the

analysis and development of the system-to-be. Similarly, organizations in Gaia are

described using roles and their relationships, while i* uses the concepts of actor (actors

can be agents, positions, and roles, see Section 2.1.1) and intentional dependencies

between actors. These dependencies, when operationalized, become patterns of

interaction among the actors in the system.

There are also a number of approaches for agent-oriented software engineering that

extend knowledge engineering methodologies. As noted in [Iglesias et al., 1998],

knowledge engineering methodologies can provide a good basis for modeling multiagent

systems since agents have cognitive characteristics. By extending these methodologies, a

rich experience in knowledge engineering as well as ontology libraries and problem

solving methods can be reused for agent-oriented software engineering. The agent-

 41

oriented methodologies based on knowledge engineering approaches concentrate mainly

on modeling knowledge acquisition and use.

Several agent-oriented methodologies extend the CommonKADS approach [Schreiber et

al., 1994], which can be considered a European standard in knowledge modeling [Iglesias

et al., 1998]. Glaser [Glaser, 1996] proposed one such extension. The approach defines

the following models to capture the properties of multiagent systems:

• The Agent model is the main model and is used to define the agent architecture

and knowledge, which is classified as social, cooperative, control, cognitive, or

reactive.

• The Expertise model is used to describe the cognitive and reactive capabilities of

agents. It models three types of knowledge: task knowledge (task decomposition

knowledge described in the task model), problem solving knowledge (problem

solving methods and strategies for their selection), and reactive knowledge

(procedures to react to various events).

• The Task model describes the decomposition of tasks and assigns tasks to the

agents of the system or the user.

• The Cooperation model describes the cooperation among the agents.

• The System model defines the organizational aspects of the MAS.

• The Design model collects all the above models to operationalize them. It also

describes non-functional requirements for the system.

Other agent-oriented development methodologies include DESIRE [Brazier et al., 1995],

which is used for specifying composite systems and has an extensive tool support, and

Cassiopeia [Collinot et al., 1996], which, unlike the Gaia and many other approaches, is

bottom-up in nature. A lot of research has been recently focused on adapting the

Universal Modeling Language (UML) [Booch et al., 1999] notation to the specification

of agent-oriented systems. One of the outcomes of this research is the AgentUML

 42

notation [Odell et al., 2000] (it is not a methodology). It is being used in some agent-

oriented methodologies (e.g., Tropos [Castro et al., 2002]).

3.5 Goal-Oriented Requirements Engineering
Methodologies

3.5.1 KAOS

The KAOS (Knowledge Acquisition in autOmated Specification) approach [Dardenne et

al., 1993] is a goal-oriented requirements engineering framework supporting formal

modeling and analysis of both functional and non-functional requirements. It can be used

for elicitation, specification, and analysis of system goals, scenarios, and responsibility

assignments. It was one of the first requirements engineering approaches that put

emphasis on “high-level system goals as opposed to their operationalization into

constraints” [Dardenne et al., 1993]. Thus, in KAOS, one starts with the system-level

goals and organizational objectives and subsequently refines them to produce low-level

constraints that can be guaranteed by agents through appropriate actions.

KAOS provides a conceptual meta-model and requirements models are acquired as

instances of this meta-model. The meta-model is represented as a graph with nodes

capturing the abstractions such as goals, actions, agents (in KAOS, agents are objects that

are processors for some actions; they have a choice on their behaviour and could be

humans, physical devices, or programs [Dardenne et al., 1993]), etc. and edges capturing

the semantic links between these abstractions. A requirements acquisition process is then

a particular way of traversing the meta-model graph to acquire the instances of

abstractions and their relationships. A way to traverse the meta-model graph is called an

acquisition strategy.

 43

KAOS specifications consist of a number of complementary models. The goal model is

the basis for the KAOS methodology. Goals are statements of what the composite system

should achieve. Goals in KAOS are classified according to the temporal behaviour

patterns required by the goal. The goals can be achieve goals, cease goals, maintain

goals, and avoid goals. The KAOS goal model is a graph that shows the refinement of the

high-level goals of the combined system into lower-level goals suitable for assignment to

agents in the system or in the environment. Goals are refined into subgoals through AND

or OR-decompositions. An AND-decomposition is used if all of the subgoals must be

achieved in order to achieve the parent goal. An OR-decomposition is used if the parent

goal can be achieved by achieving alternative subgoals. Examining the goal graph top-

down, one can see how the system goals are realized, while examining the graph bottom-

up, one sees why particular subgoals are to be achieved. Goal decomposition in KAOS is

done centrally and from the designer’s point of view. The i* framework [Yu, 1995], on

the other hand, allows for the subjective analysis of high-level goals from the point of

view of actors that are part of the system-to-be or its environment. Another difference

between KAOS and i*-based methods (and thus between KAOS and our approach) is that

the KAOS process starts at the late requirements phase by analyzing the goals of the

combined system, while the i*-based frameworks support both the early and the late

requirements phases and allow the modeling of the environment of the system-to-be as

well as the system under development separately.

The KAOS agent responsibility model shows the assignment of responsibilities for

achieving goals to agents. In this model, agents can be the components of the system-to-

be, existing software components, hardware devices, and humans. Goals assigned to

agents are deemed sufficiently fine-grained and are not refined any further. This means

that unlike the i* modeling framework, KAOS only allows the assignment of leaf-level

goals to agents. The delegation of subgoals to agents is thus the responsibility of the

designer and is done at design time. In i*, on the other hand, any goal/task can be

assigned to an actor, refined within that actor (based on the actor’s own reasoning), and

 44

lower-level subgoals/subtasks produced during this refinement can be further delegated to

other actors or achieved/performed by the actor itself. We feel that this makes the i* goal

decomposition more flexible and more suitable for agent-oriented development. With the

use of appropriate goal-supporting formal notation in conjunction with the i* framework,

goal analysis and decomposition can be performed at runtime.

The KAOS approach includes refinement strategies for goal decomposition. For example,

[Darimont and van Lamsweerde, 1996] describe a number of tactics for goal refinement

including milestone-driven (refines achievement goals by introducing some intermediate

milestone assertion) and case-driven (splits goal achievement into cases). These

strategies help the modeler to systematically refine high-level goals into more

manageable ones. Moreover, agent-based refinement strategies are described in [Letier

and van Lamsweerde, 2002]. In KAOS, goals can only be assigned to agents if they are

capable of achieving them. Agent-based refinement tactics are designed to help in dealing

with goals that cannot be realized by agents due to the lack of monitorability (the agent

cannot monitor the variables that need to be evaluated in the formulation of the goal) or

controllability (the agent cannot control the variables that need to be controlled to achieve

the goal).

Obstacle analysis is a major component of the KAOS framework. [van Lamsweerde et

al., 1995] note that quite frequently initial specifications of goals, refinements, and

assumptions are too ideal and are easily violated due to the unexpected behaviour of

agents (software, devices, or humans). The need to anticipate exceptional circumstances

is at the heart of obstacle analysis. Obstacles are duals of goals — they capture

undesirable conditions. An obstacle obstructs some goal: when the obstacle becomes true,

the goal may not be achieved [Letier and van Lamsweerde, 2000]. Obstacles can be

refined (AND/OR-refinement) into subobstacles. Techniques for obstacle identification

and avoidance are also proposed. Obstacle avoidance techniques include goal substitution

(coming up with an alternative refinement of goals that does not give rise to the obstacle),

 45

agent substitution, obstacle prevention (a new goal, which requires that the obstacle be

avoided, is added), and goal deidealization (reformulating the goal so that the obstacle

disappears).

3.5.2 Albert II

Albert II [du Bois, 1995a; du Bois et al., 1997] is a formal requirements specification

language based on a real-time temporal logic [Chabot et al., 1998]. The name is an

acronym for Agent-oriented Language for Building and Eliciting Real-Time

requirements. The main purpose of the framework is to model distributed heterogeneous

real-time cooperating systems. The development of the language started in 1992.

Throughout its development, the language was tested on specifications of non-trivial

systems like computer-integrated manufacturing [Dubois and Petit, 1994], process

control, and telecommunications systems [Wieringa and Dubois, 1998].

The underlying formal framework of Albert II is based on Albert-CORE [du Bois,

1995a], an object-oriented variant of temporal logic with actions that have been

introduced as a means of solving the frame problem. Albert II specifications are centered

on describing the behaviour of agents found in the environment and the system-to-be.

This way large specifications are structured in terms of smaller agent specifications that

each guarantee a part of the global behaviour of the system [du Bois, 1995b]. Albert II,

like the original Albert [Dubois et al., 1994] language, treats agents as specializations of

objects (agents do not have intentions in Albert II). This “object-oriented” [du Bois,

1995b] approach compares favourably to the use of purely logical frameworks that results

in large unstructured specifications.

Agents are autonomous entities that can perform actions, which may modify the internal

state (physical state or the state of knowledge about the outside world) of the agent or

external agents. Actions may have duration. In this case, the effect of the action on the

 46

state takes place at the end of the action. Actions may also be executed concurrently.

Conflicting actions, actions that affect the same component of an agent’s state, are not

allowed. Agents perform their actions based on their obligations that are expressed in

terms of local constraints or cooperation constraints. Local constraints apply to the agent

itself while cooperation constraints apply to inter-agent communication in agent societies.

Therefore, specifications may be considered at two levels. The agent level specifies the

set of possible behaviours of individual agents without regard to the behaviours of other

agents in the system. At this level, the modeler specifies which actions the agent is

responsible for, the effects of these actions, and the trigger conditions for them. The

society level, on the other hand, takes into account the interactions among agents.

Constraints on the interactions lead to additional constraints on the behaviours of

individual agents. The language supports specification of agent knowledge, which is

restricted to action perception and state perception (actions and parts of the states of other

agents that are visible to the agent).

Albert II specifications consist of two main components: the graphical component where

the vocabulary of the specification is declared and a textual part where temporal logical

formulae organized using the above-mentioned templates are used to constrain the

admissible behaviours of agents. The graphical declarations for agents define the state

components of agents, the actions that the agents perform, and the visibility relationships

that link the agents to the other agents. These relationships specify which state

components and actions of each agent are not visible from the outside and which are

exported to the outside. One can specify to which agent or to which society of agents the

information is exported. While these importation and exportation constraints are static

properties of specifications, perception and information constraints, their dynamic

counterparts, are available for more detailed specification of state and action visibility.

The graphical notation supports the specification of agent societies. Both individual

agents and classes of agents (i.e., roles) can be declared.

 47

Michael Jackson [Jackson, 1995] proposed to separate requirements into indicative —

related to the environment of the system-to-be (assumptions about the environment), and

optative — concerned with the system itself. One of the features of Albert II is that it

supports the distinction between optative and indicative requirements. Among other

features of the language is its naturalness: the language offers the ability to map informal

customer requirements statements into formal Albert II statements. The goal is to avoid

introducing any new elements in the formal specification, which do not have counterparts

in the informal customer statements. This is achieved by supporting operational and

procedural styles of requirements specification [Dubois et al., 1998]. The language also

helps modelers by providing various templates to guide the elicitation and structuring of

requirements.

A number of projects evaluated the use of the Albert II language in combination with the

i* framework and/or the KAOS approach to specify and analyze requirements for

cooperating systems. In [Yu et al., 1997], the combined use of i* and Albert II for

requirements engineering in cooperative multiagent systems is proposed and evaluated. i*

is employed for modeling the organizational aspects of the system-to-be. The modeling

notation helps in generating and evaluating organizational alternatives, while Albert II is

used to produce formal requirements specifications for the system. The authors stress the

iterative nature of the requirements engineering process where the detailed elaboration of

functional requirements using Albert II may reveal unresolved organizational issues,

resulting in further use of i* to refine the organizational model. A banking system is used

as a case study to evaluate the approach.

Another approach, which is described in [Dubois et al., 1998], proposes the use of

KAOS, Timed Automata [Merritt et al., 1991], and Albert II together in a requirements

engineering framework. In this approach, the authors consider three distinct activities in

requirements engineering: the modeling of goals associated with the introduction of the

new system into an organization, the modeling of software requirements for the system

 48

solving the organizational goals, and the modeling of the internals of the software system.

The approach uses three formal languages for each of the three above activities: KAOS is

used for reasoning about system goals, Albert II is used to specify the requirements for

the software system, while Timed Automata are used for the specification of system

internals. The three resultant models are linked at a high level using the i* modeling

framework, which is used to model the organizational issues and rationale behind the

introduction of the new system and the particular system configuration. Thus, the i*

model is used to link together the three formal models by creating a high-level intentional

model that captures the organizational perspective on the new system. A small process

control case study is used to illustrate the approach.

Bissener [Bissener, 1997] proposed a requirements engineering methodology that

combined the i* and Albert II frameworks. He attempts to provide an approach that deals

with organizational issues and can effectively model and analyze both functional and

non-functional requirements. Here, the i* modeling framework is used to model and

reason about organizational issues and non-functional requirements, while Albert II is

used for system specification. The process consists of three main steps: the modeling of

the domain and the identification of system objectives, the introduction of the system that

achieves the identified objectives, and the specification of the system’s internals.

Albert II specifications are completely declarative. On the other hand, the CASL [Shapiro

and Lespérance, 2001] specification language used in this thesis, while supporting the

declarative specification of agent goals, knowledge, actions and their effects, is process-

oriented and is used to specify the behaviour of agents procedurally. The account of

knowledge in CASL is more general than in Albert II, where one can only specify action

and state perception. Therefore, CASL can be used to model rich agent interactions, to

analyze the epistemic feasibility of agent plans [Lespérance, 2002], etc.

 49

3.6 i*-based Goal-Oriented Development Methodologies

In this section we introduce the Tropos methodology [Castro et al., 2002] and the i*-

ConGolog framework [Wang, 2001], which both form the basis of our own approach.

3.6.1 Tropos

Tropos is a requirements-driven agent-oriented software development methodology. One

of the goals of the methodology is to reduce the mismatch between the concepts used to

describe the operational environment of information systems and the concepts used to

describe the architecture and high-level design of these systems [Castro et al., 2002].

While the environment of the system-under-development is described in terms of

stakeholders, responsibilities, objectives, and so on, high-level descriptions of systems

typically use the notions of modules, interfaces, objects, etc. The quality of the systems

developed using many popular software development methods suffers from this

mismatch, which is due to the fact that usually development methodologies are driven by

the dominant programming paradigm of the day. For example, the current dominant

approach to programming is object orientation and object-oriented analysis and design is

the most popular type of software development methods. While using the same concepts

to align the design process with the requirements analysis process is a good idea, the

authors of the Tropos approach (e.g., [Castro et al., 2002]) stress that the development

methodology should be based on concepts from requirement engineering and not on

implementation concepts. The reason for this is the growing realization that the

requirements analysis phase of software development is crucial to the success of software

systems. It is the phase where “technical considerations have to be balanced against

social and organizational ones and where the operational environment of the system is

modeled” [Castro et al., 2002]. Therefore, the Tropos approach is requirements-driven,

that is, based on the concepts from early requirements analysis. The approach adopts the

 50

concepts used in the i* modeling framework [Yu, 1995], such as actor and intentional

dependency, and extensively uses i* diagrams for modeling.

Below we present an outline of the phases of the Tropos methodology adapted from

[Castro et al., 2002]:

1. Acquisition of Early Requirements. In this phase, the environment of the system-

to-be is analyzed. The stakeholders are identified, as are their goals, and the

intentional dependencies among them. The output of this phase is two models:

a) The SD model that captures the stakeholders, their goals, and their

dependencies.

b) The SR model that gives a better understanding of the processes in the

organization.

2. Definition of Late Requirements. In this phase, the new system is introduced in

the diagrams and possibilities for the reconfiguration of the intentional

dependencies are proposed and analyzed. The output of this phase is the revised

models:

a) An actor to represent the new system is included in the original SD

diagram with its dependencies.

b) Means-ends analysis is done on the new system actor and a revised SR

diagram is produced. Based on this analysis, the system actor can be

decomposed into multiple actors. Both steps in this phase can be

iteratively repeated.

3. Architectural Design. In this phase, the high-level architecture of the system is

produced. The methodology makes use of the NFR framework [Chung et al.,

2000] and a repository of organizational architectural styles [Kolp and

Mylopoulos, 2001] to select the most suitable (from the organizational point of

view) architecture for the system (see Section 5.4.1 for more information). This

phase involves the following:

 51

a) Selecting the architectural style based on the desired quality attributes

such as security, modularity, etc. At this point, the NFR diagram

identifying the rationale for the selected alternative is produced.

b) New system actors, dependencies, sub-actors and sub-dependencies may

be introduced if needed. The SD and SR models are revised.

c) Roles and positions are assigned to the agents.

4. Detailed Design. In this phase, one uses various types of UML [Rumbaugh et al.,

1999] diagrams modified to accommodate Tropos concepts within UML

[Mylopoulos et al., 2001b] and possibly AUML [Odell et al., 2000]. This

involves:

a) Producing class diagrams based on the SD and SR models.

b) Producing sequence and collaboration diagrams depicting inter-agent

interactions.

c) Developing state diagrams describing both inter- and intra-agent

dynamics.

5. Implementation. In this phase, an appropriate development platform (possibly

agent-oriented) is used to produce the implementation of the system.

The approach proposed in this thesis can be easily integrated into the Tropos

methodology and offers new modeling, analysis, and verification capabilities to the

Tropos framework. In Chapter 5, we present an agent-oriented requirements engineering

methodology that is based on Tropos and makes use of the iASR diagrams (see Chapter

4), CASL models, and the CASLve verification tool [Shapiro et al., 2002]. It covers the

first three steps of the Tropos approach (early and late requirements and architectural

design). The later steps can be performed with agent-oriented or conventional design and

implementation methods.

Formal Tropos [Fuxman et al., 2001b] is an addition to the Tropos framework designed

to provide a formal analysis tool for the early requirements specification phase. During

 52

the early requirements analysis phase the analysts concentrate on modeling the

environment of the system-to-be (the domain): the stakeholders, their goals and their

relationships. The authors note that most formal approaches are designed to be used later

in the software development process and attempts to apply formal techniques at the early

requirements stage are often hindered by a concept mismatch between the constructs of

the formal approaches and the notions used during the early requirements analysis.

Formal Tropos bridges this gap by using the concepts of i* [Yu, 1995] such as actors,

goal, and dependencies, while also adding a KAOS-inspired rich temporal specification

language. The Formal Tropos language describes the relevant domain objects and their

relationships. The description of objects has two layers: the outer layer defines the

structure of instances and their attributes, while the inner layer consists of constraints on

the lifetime of the object specified using a linear-time temporal logic. The i*’s Strategic

Dependency (SD) diagrams used during the early requirements analysis can be mapped

into the Formal Tropos language. The latter can, then, be mapped into the input language

of the NuSMV model checker [Cimatti et al., 1999] for analysis. Thus, early

requirements specifications expressed using SD models can be checked for consistency

and their properties can be validated.

The Formal Tropos approach is complementary to the method proposed in this thesis.

Formal Tropos allows for the formal analysis of early requirements specifications

expressed using Strategic Dependency models. Capturing all the properties and only the

properties of the domain can be a difficult task. Formal models of the domain along with

the appropriate analysis tools can help in identifying inconsistent, missing, etc. properties

of the system’s environment. Our approach, which combines the i* modeling framework

with the CASL specification language [Shapiro and Lespérance, 2001], is geared more

towards late requirements (and possibly high-level design): rather than checking whether

the environment is correctly modeled, we use our approach to analyze whether the system

together with its environment achieves its goals.

 53

3.6.2 The i*-ConGolog Approach

An approach to requirements engineering that combines the use of the i* framework with

ConGolog agent programming language [De Giacomo et al., 2000] for requirements

analysis is proposed in [Wang, 2001]. ConGolog is a formal process specification and

agent programming language and is also a major part of Cognitive Agents Specification

Language (CASL) [Shapiro and Lespérance, 2001], where it is used to specify the

behaviour of agents. In Wang’s approach, the i* framework is used to model the

environment of the system-to-be, analyze the dependencies among the actors in the

environment, explore alternative system configurations and the rationale behind agent

processes and design choices, while ConGolog is used to formally specify and analyze

agent behaviour described informally in i* [Wang and Lespérance, 2001]. Since fully

developed ConGolog specifications are executable, ConGolog system specification can

be validated by simulation. Unexpected system behaviour during execution will be

indicative of problems with the model such as incomplete or conflicting requirements,

etc. The goal of the approach is to devise a method for the analysis and validation of

requirements models represented in i* with ConGolog.

The main difficulty in relating i* models and ConGolog specifications is that the level of

detail and precision provided by i* is simply not sufficient to derive a corresponding

ConGolog specification from an i* model. ConGolog models suitable for automated

analysis need to be complete and precise, while i* models, intended for informal analysis

by requirements engineers are often incomplete and are quite imprecise. For example,

goal and task decompositions used in i*’s Strategic Rationale diagrams (SR) (see Section

2.1.4 for details) do not specify in which order the subgoals/subtasks must be

achieved/executed and whether the subtasks or subgoals can be executed/achieved in

parallel.

 54

To bridge this gap, a set of annotations to the SR diagrams is introduced. These

annotations allow the modeler to add the necessary precision to the diagrams. Two types

of annotations are introduced: composition annotations and link annotations.

Composition annotations are applied to goal/task decompositions in SR diagrams. They

specify how the subgoals/subtasks are to achieved/executed — sequentially, in parallel,

with different priorities, or non-deterministically. The link annotations, on the other hand,

are applied to individual subgoals/subtasks. They specify under what circumstances or

how many times they are to be achieved/executed. The resulting diagrams are called the

Annotated SR (ASR) diagrams. These diagrams are detailed enough to be mapped into

the corresponding ConGolog models. To support requirements traceability, a mapping

between the ASR diagrams and ConGolog models must be defined by the modeler. Using

this mapping, it is easy to identify which parts of the i* model are related to which parts

of the ConGolog model and vice versa. In order to “ensure that the mapping respects the

semantics of both frameworks” [Wang and Lespérance, 2001] a set of mapping rules is

defined, which ensures that the i* and ConGolog models are closely aligned.

The mapping rules state how each type of node and link of ASR diagrams is to be

mapped into ConGolog. In a nutshell, actor nodes are mapped into ConGolog procedures

specifying the behaviour of the actor, task nodes are mapped into procedures, and goal

nodes are mapped into a pair consisting of a ConGolog fluent (a predicate that changes

from situation to situation, see Section 2.2.1 for details) that represents the desired state

of affairs for the actor and a procedure that encodes the means for achieving this goal.

Leaf-level task nodes are mapped into procedures or primitive actions that represent the

task. SR diagram links are also mapped into ConGolog. For example, a portion of an SR

diagram with a task node decomposed into a number of subgoals/subtasks is going to be

mapped into a ConGolog procedure. The composition and link annotation are reflected

by the use of the corresponding ConGolog operators (see [Wang, 2001; Wang and

Lespérance, 2001] for details) for composing the ConGolog procedures for the subtasks

together. In this way the procedure for accomplishing the parent task captures the

 55

meaning of the ASR diagram. Means-ends links are handled similarly — the achievement

procedure for the goal being decomposed must involve the constructs specified by the

composition and link annotations, which are used in the ASR goal decomposition. We

apply the same approach to Intentional ASR diagrams for mapping task and goal

decompositions in into CASL specifications in this thesis (see Sections 4.2.3 and 4.3.9

respectively).

Intentional dependencies present in ASR diagrams are not present per se in the ConGolog

model. They have to be operationalized in ASR diagrams: the modeler must specify the

tasks that the depender and the dependee must carry out in order to ensure that the

dependency is fulfilled (e.g., requests, communication protocol, etc.). The framework

provides no formalization for softgoals, which are used to model non-functional

requirements in i*. Softgoals help in the evaluation and selection of the best process

alternatives and then are either approximated by some hard goals, or are abstracted out of

the model before the mapping takes place.

Once the ASR diagram is mapped into the corresponding ConGolog model, the

ConGolog code can be used to animate the model. Using the ConGolog interpreter, one

can run this high-level model of the system on some sample environment/agent

parameters and determine if the behaviour of the program corresponds to the expected

behaviour of the system-to-be. If discrepancies are found, they can be analyzed and

appropriate changes can be made to the ConGolog model and the original ASR diagram.

Because of the tight mapping between ASR diagrams and ConGolog models, it is easy to

find parts of the ASR diagram that are related to specific parts of the ConGolog program

and vice versa.

The approach proposed in this thesis is based on the same idea of mapping appropriately

annotated SR diagrams into a formal language for analysis, validation, and verification.

The key difference is that in our work, we use a more powerful formal language for the

 56

analysis of i* models. The Cognitive Agents Specification Language is built on top of

ConGolog adding support for reasoning about agents’ mental states, goals and

knowledge. While the i*-ConGolog approach handles goals purely procedurally, goals

and knowledge in our framework are handled declaratively, thus allowing for formal

reasoning about them. Therefore, formal analysis of agent goals, goal delegation, agent

knowledge, and inter-agent communication is possible in our framework.

 57

4 Modeling and Formalism

In this chapter we will discuss the approach that we are taking to integrate the i*

modeling notation with the CASL agent specification/programming language. First, we

describe the Intentional Annotated Strategic Rationale diagrams (Section 4.1), an

intermediate notation between i* and CASL. Then we discuss the mapping to CASL of

the basic diagram elements such as tasks, task decompositions, annotations, agents, and

roles (Section 4.2). We later introduce the new concepts of goal (Section 4.3), knowledge

(Section 4.4), and capability (Section 4.5) along with their mapping into CASL.

4.1 Intentional Annotated Strategic Rationale Diagrams

i* is a modelling framework that provides a diagrammatic notation for representing the

intentional aspects of the system through inter-actor dependencies. i* diagrams are a tool

for modelling the intentional aspects of systems and organizations. It could be used for

strategic analysis and the exploration of alternative system models and designs at the

requirements engineering stage of the software engineering process. We can represent the

motivations and intentions of the stakeholders, give a high-level view of the processes in

the system, and represent inter-agent dependencies and (possibly alternative) ways to

provide services to other agents. i* is an intuitive and easily understandable informal

notation that can be very beneficial in early requirements engineering and systems

modeling.

i* is a diagrammatic analytical tool and as such allows for incompleteness and

impreciseness. On the other hand, CASL is a precise language that, while allowing for

non-determinism, concurrency and incomplete information, requires the designer to

specify the agents’ behaviour with a much greater level of precision. To allow the two

 58

approaches to be used together we need an intermediate notation that provide a smooth

and semantically correct transition from i* diagrams to CASL specifications. While SD

diagrams are more high-level and are mainly used as a tool for strategic analysis, SR

diagrams are much more detailed models of the system. In this sense, SR diagrams are

closer to CASL specifications. We therefore will use the SR diagrams as a basis for our

intermediate notation. Annotations will be added to SR diagrams. Annotated SR diagrams

were introduced in [Wang, 2001] for use in the combined i*-ConGolog approach and we

believe the same idea can be successfully applied in our work. Annotations will provide a

way for adding the CASL-needed details to the SR diagrams. In order to simplify the

mapping process and make the semantics of the ASR diagrams clearer, we will introduce

Intentional Annotated SR (iASR) diagrams, which are different from the ASR diagrams

of [Wang, 2001] in that they streamline the use of goals in the ASR diagrams, add new

link annotations to the set of annotations proposed in [Wang, 2001], and add the support

for the new capability nodes. These modifications and extensions are described in Section

4.3. Coupled with methods that provide a mapping from iASR diagram elements (e.g.,

task nodes) to CASL specifications, the iASR diagrams allow the designer to gradually

move from high-level i* models to more precise and design-oriented CASL

specifications. These specifications can then be formally analyzed. CASL programs can

also be used in simulations.

4.1.1 Annotations

To add the CASL-required precision to the i* process specifications we will use SR

diagram annotations, which are textual constraints on the Strategic Rationale diagrams.

The annotations allow the modeler to add details to task and goal decompositions and to

specify the applicability conditions for the alternative ways of achieving goals,

performing tasks, etc. There are two types of annotations: composition annotations and

link annotations. Composition annotations specify how subgoals/subtasks with the same

parent goal/task are to be composed together to achieve the parent goal or task. Link

 59

annotations are assigned to each subgoal/subtask and describe how this subgoal/subtask

is to be performed and under which conditions. There are certain differences in the way

goals and tasks are used in iASR diagrams. For example, we require that the link

annotations accompanying goal nodes be interrupts or guards. We will go over the

restrictions on the goal nodes and the reasons behind those restrictions later in this

chapter.

Figure 4.1. The composition and link annotations

Figure 4.1 illustrates the use of composition and link annotations. The task Task_1 is

decomposed into subtasks/subgoals n1 through nk (filled ellipses denote nodes that are

either goals or tasks) with the link annotations γ1 through γk. The subgoals/subtasks are

composed using the composition annotation σ.

4.1.2 Composition Annotations

There are four types of composition annotations: sequence (“;”), concurrency (“||”),

prioritized concurrency (“>>”), and alternative (“|”).

Figure 4.2. The sequence annotation

 60

The sequence annotation (Figure 4.2) is the default composition annotation and can be

omitted. Here, the task Task_1 is decomposed into subgoals/subtasks n1 through nk. The

sequence annotations means that the subtasks will be performed in sequence from left to

right, so in the case of Figure 4.2 the subgoal/subtask n1 will be performed first, followed

by n2 and so on. The sequence annotation corresponds to the sequence operator in CASL

(“;”).

||

Task_1

n1 n3n2 nk...

Figure 4.3. The concurrency annotation.

The concurrency annotation “||” (Figure 4.3) specifies that the subtasks/subgoals that the

task Task_1 is decomposed into are to be executed concurrently in order to perform

Task_1. The concurrency annotation corresponds to the concurrency operator in CASL

(“||”).

The prioritized concurrency annotation “>>” means that the subgoals/subtasks are to be

executed concurrently with priority decreasing from left to right. If we were to replace

the concurrency annotation in Figure 4.3 with a prioritized concurrency annotation, then

the subtasks/subgoals n1 through nk will be executed concurrently with n1 having the top

priority, n2 having lower priority than n1, but higher than n3 and so on. Thus, n2 is able to

execute only if n1 is blocked or finished executing, n3 can execute only if n2 is blocked or

finished and so on. The subgoal/subtask nk has the lowest priority, so it will be executed

only when the other subgoals/subtasks are blocked or done executing. The prioritized

concurrency composition annotation corresponds to the prioritized concurrency operator

in CASL (“>>”).

 61

The alternative annotation “|” is used to specify alternative ways of accomplishing a task.

Any of the subtasks/subgoals that the super-task is decomposed into can be selected to

accomplish the super-task. The alternative composition annotation corresponds to the

nondeterministic choice operator in CASL (“|”).

4.1.3 Link Annotations

Link annotations allow the modeler to present an even more detailed view of the process.

A link annotation is applied to a single decomposition link and specifies under which

conditions the subtask or subgoals is performed and whether and how it should be

repeated. There are six types of link annotations: the while loop annotation

(while(condition)), the for loop annotation (for(variable,valueList)), the pick

annotation (π(variableList,condition)) , i.e., non-deterministically pick a value for

the variables in variableList that satisfies condition and do the subtask/subgoal for

these bindings, the if annotation (if(condition)), the interrupt annotation

(whenever(variableList,condition,cancelCondition)), which adds a cancellation

condition to the version used in [Wang, 2001], and guard annotation

(guard(condition)) that blocks the execution of a subtask until a certain condition is

true. Goal nodes can only be linked with the interrupt or guard annotations.

Figure 4.4. The While loop link annotation.

The while loop link annotation (Figure 4.4) is used to specify that the subtask of the link

is meant to be executed repeatedly while condition is true in order to accomplish the

super-task. The condition is tested before each iteration of the loop and the loop

 62

terminates when the condition becomes false. This annotation corresponds to the while

loop construct in CASL.

Suppose that the while loop link annotation is replaced with the for loop link annotation

in Figure 4.4. The for loop link annotation for(variable,valueList) is used to specify

that Subtask_1 has to be performed for every value of valueList sequentially from left

to right. The subtask could be parameterized over variable so that Subtask_1 is

performed for every element of valueList (e.g., to inform every meeting participant of

something) or the loop can be used only to execute the subtask a certain number of times.

This annotation corresponds to the for loop in CASL.

The pick link annotation π(variableList,condition) applied to the task

decomposition link in Figure 4.4 specifies that the subtask Subtask_1 must be executed

for some binding of variables from variableList that satisfies condition. This

annotation corresponds to the π (the non-deterministic argument choice operator) in

CASL. The if link annotation if(condition), if applied to the task decomposition link

in Figure 4.4, indicates that Subtask_1 is to be executed only if condition is true. This

link annotation corresponds to the conditional operator in CASL.

Figure 4.5a. The guard annotation used with a task. Figure 4.5b. The guard annotation used with a goal.

The guard annotation is similar to an interrupt, which fires just once. There is no guard

operator in CASL as defined in [Shapiro and Lespérance, 2001], so we introduce one in

Section 4.2.2. Figure 4.5 illustrates the use of the guard annotation with goals and tasks.

When used with the task node Subtask_1 (Figure 4.5a) the guard link annotation makes

 63

sure that the task is to be executed only when condition becomes true. The difference

between the guard annotation used with a task node and the if annotation is that in case of

the if annotation, if condition is false, Subtask_1 is skipped, while in case of the guard

annotation, when condition is false, the execution is blocked until condition becomes

true.

The acquisition of goals in CASL is done declaratively (e.g., through the successor state

axiom for goals and the request/commit actions). To monitor for newly acquired

intentional dependency-based goals designers usually (but not always) employ interrupts

(see Section 4.3.9.3). On the other hand, self-acquired goals are mostly used with guard

annotations (see Section 4.3.8). For example, when used with the goal node Goal_1

(Figure 4.5b), the guard annotation blocks the execution of the program until the goal is

in the mental state of the agent. Thus, the interrupt and guard link annotations are used

with both subtasks and subgoals (see Figures 4.5 and 4.6).

Figure 4.6. The interrupt link annotation.

The interrupt link annotation (Figure 4.6) specifies that the subtask/subgoal n is activated

whenever condition becomes true for some binding of the variables on the list

variableList provided the cancellation condition cancelCondition is false. The

cancellation condition used here is a new feature of the interrupt annotations over [Wang,

2001]. When the cancellation condition is true, the interrupt stops firing even though

there might be a binding of variables in variableList that makes condition true.

 64

To illustrate the expressivity of annotations, let us look here (Figures 4.7a and 4.7b) at a

simple SR diagram fragment. The diagram is presented with and without the annotations.

Figure 4.7a. An example diagram without annotations.

The first version of the diagram (Figure 4.7a) is a regular SR diagram. It allows the

modeling of agents’ internals, but does not provide the level of detail required to map the

diagram into CASL. It is not clear from this diagram how the subtasks are related and

under what conditions they are executed.

Figure 4.7b. An example diagram with annotations.

With the use of annotations we can present much more information in SR diagrams

(Figure 4.7b). The diagram corrects the sequencing of subtasks (the default sequence

annotation is used here): tire pressure is checked before the car is driven to work. We can

now see that the CleanCar task has to be executed only if the car is covered with snow

and that the pressure has to be checked for all the tires. Most important, however, is the

fact that we now can clarify the relationship between the subtasks OperateCar and

 65

ListedToRadio, which are composed to achieve the task DriveToWork: they are done

concurrently and OperateCar has a higher priority than ListenToRadio. As well, the

tasks CleanCar, CheckTirePressure, and DriveToWork are done in sequence, the

default composition annotation. This detailed version of the diagram is much easier to

map into CASL, but regardless of whether we are mapping iASR diagrams into CASL or

not, the annotations provide us with a precision that is quite beneficial for the i*-based

analysis.

4.1.4 Obtaining Intentional Annotated SR Diagrams

In order to get an iASR diagram that is easily mappable to the CASL formalisms, the

designer needs to produce a much more precise SR diagram with (in addition to the

presence of the required annotations) softgoals operationalized or removed, and inter-

agent interactions specified in details. Also, resource dependencies will be represented

through goal or task dependencies. A resource dependency either is converted to a goal

dependency with the goal being the supply of the required resource or to a task

dependency, which executes the task that provides the resource. We will discuss the

process of converting a Strategic Rationale diagram into an Intentional Annotated SR

diagram thoroughly in this chapter as well as in Chapter 5.

4.2 Mapping ASR Diagrams

iASR diagrams are mapped into CASL models by specifying a mapping m for every

diagram element. Mapping rules are defined for each class of iASR diagram elements.

These are constraints on the mapping process that ensure it is consistent with the

semantics of i* and CASL. We will now describe the mapping rules for link annotations,

agents, roles, and tasks. Later in this chapter, we will introduce the new notions of goal,

knowledge, and agent capability and provide mapping rules for them.

 66

4.2.1 Mapping Task Nodes

The tasks that are leaf nodes (without any subtasks) of the Intentional Annotated

Strategic Rationale diagrams are generally mapped into CASL procedures or primitive

actions. These tasks are routines that are simple enough to be represented atomically in

iASR diagrams, without further decompositions or analysis.

Figure 4.8. The task node SomeTask is a leaf node.

Figure 4.8 shows a simple iASR diagram with a task SomeTask being a leaf node. The

mapping m will map this task into either a primitive action or a CASL procedure. Figure

4.9 displays the two possible CASL mappings for SomeTask.

Figure 4.9. The two possible CASL mappings for someTask.

4.2.2 Mapping Link Annotations

Link annotations that accompany decomposition links, which connect super-tasks with

subtasks, are mapped into the corresponding CASL operators. These operators are then

 67

applied to the mapping of the subtasks since link annotations specify under what

conditions and in what manner the subtasks are performed.

Figure 4.10. The γ link annotation applied to the link connecting SuperTask with SomeTask.

In Figure 4.10, we have a decomposition link with the link annotation γ connecting

SuperTask with its subtask called SomeTask. As explained above, the CASL mapping for

γ will be applied to the mapping of SomeTask. Here, m is a mapping function from iASR

diagram elements into CASL formalisms. m(γ) is then the mapping from the link

annotation γ into the corresponding CASL operator. It gives us the function to be applied

to the mapping of SomeTask:

m(γ)(m(SomeTask))

Conditions that appear in some link annotations (e.g., the if annotation) are mapped into

CASL formulae.

Figure 4.11. An example subtask with an if link annotation.

For example, the mapping of the area inside the box on the diagram fragment above

(Figure 4.11) will be:

 68

m(if(φ))(m(SomeTask))

The if annotation contains condition φ that has to be mapped into a formula. We therefore

expand the mapping for the annotation to get the following:

if m(φ) then m(SomeTask) endIf

By applying the mapping function m to the remaining elements, we would ultimately get a

CASL expression.

Suppose that the γ link annotation in Figure 4.10 is guard(φ). For the task node

SomeTask and the associated link annotation guard(φ) we get the following mapping

formula:

m(guard(φ))(m(SomeTask)),

which then, based on the definition of guard(φ,δ) (see below) transforms into

guard m(φ) do

m(SomeTask)

endGuard

We define the new guard operator guard(φ) do δ endGuard as follows:

if φ then δ else False? endIf

The above conditional operator executes the program δ when the condition φ holds. If the

condition is false, the else branch of the operator is chosen, but it always blocks since

False will never become true. Therefore guard φ do δ endGuard makes the program

 69

block until the condition φ becomes true and then executes the program δ. This is similar

to having an interrupt that fires just once. While the semantics of the guard operator can

be expressed using interrupts with the cancellation conditions that make the interrupts fire

only once, using the guard operator is more convenient for the analyst.

Now suppose that the γ link annotation in Figure 4.10 is π(variableList,condition).

Here, the agent must nondeterministically pick the list of arguments that satisfy

condition and then execute the procedure for the task node SomeTask. The CASL code

corresponding to this diagram will then be:

π variableList. m(condition)(variableList)?; m(SomeTask)

4.2.3 Mapping Task Decompositions and Composition Annotations

Task decompositions are abundant in i* diagrams and are one of the main instruments in

the modeling approach. The subgoals/subtasks that are linked to a super-task with the

decomposition links are subcomponents of the super-task and have to be combined to

perform this parent task.

SuperTask

n1 n3n2 nk...

Figure 4.12. A super-task that is decomposed into k subtasks/subgoals.

The code for the CASL procedure that the super-task is mapped into has to include the

code for all the subgoals/subtasks appropriately combined to perform the super-task. i* is

not strict in requiring that the decomposition of a super-task into subgoals/subtasks be

complete — there may be other ways of performing the super-task (other subtask/subgoal

 70

decompositions) that are not presented in the SR diagram. In addition, there may be some

subtasks that are necessary, but that are not represented. Since CASL, on the other hand,

if process-oriented language, it assumes that every way of achieving a goal or performing

a task is specified in its models. In our approach we will make a completeness

assumption — we assume that all the possible alternative ways of achieving goals and

performing tasks that are of interest to the designer are represented in SR diagrams before

they are converted into iASR diagrams.

In Figure 4.12, we have SuperTask being decomposed into k subtasks/subgoals. Each

decomposition link connecting SuperTask with subtask/subgoal ni is accompanied by a

link annotation γi. The composition annotation σ is applied to the subtasks. Complex

tasks, such as SuperTask of Figure 4.12 will be mapped into CASL procedures according

to the following generic rule:

(SuperTask)

n1 nk
...

SuperTaskProc

SuperTaskProc
(γ1)((n1))

(σ)
(γ2)((n2))

(σ)
(γ3)((n3))

(σ)
(γk)((nk))

SuperTask

Figure 4.13. The CASL mapping of a complex task decomposition.

The complex task SuperTask is mapped into a CASL procedure called SuperTaskProc.

To obtain the code for that procedure we recursively apply our mapping m to the

subtasks/subgoals that SuperTask is decomposed into as well as to the composition and

link annotations that are present in the decomposition. Intuitively, CASL operators

matching the composition annotations are used to join the procedure calls (or primitive

actions), which correspond to the subtasks/subgoals and are wrapped by the CASL

 71

operators corresponding to the appropriate link annotations. If subtasks/subgoals are

further decomposed into other subtasks/subgoals, we recursively repeat the mapping

process for those subtasks/subgoals thereby moving down the decomposition tree.

We now present a small example illustrating the mapping of complex tasks (Figure 4.14):

Figure 4.14. An example of a complex task.

The task in the example is DriveToWork. It is mapped into the following procedure:

proc DriveToWorkProc

if m(SnowCovered) then m(Clean) endIf;

m(Start);

m(Drive);

<m(RedLight) → m(Stop) until SystemDone>

...
endProc

Start, Drive and Stop will be mapped into CASL procedures, while SnowCovered and

RedLight will be mapped into fluents or formulae. SystemDone is a special condition

that becomes true once the system is terminated. The use of this condition in interrupts

indicates that these interrupts will not stop firing while the system is running.

 72

4.2.4 Mapping Agents, Roles, and Positions

Agent, role and position nodes are used in the iASR diagrams to encapsulate the

behaviour(s) associated with the corresponding actors. Agent nodes contain the behaviour

specifications of concrete agents in the system and are mapped into a CASL agent name

— this name has to be included in the set of agents (we assume that

IsAgent(AgentName) holds) and a CASL procedure, AgentBehaviour, that defines the

behaviour of the agent:

m(iASRAgent) = <AgentName,AgentBehaviour>

The notation below will be used to access the name and the procedure for the agents:

m(iASRAgent).name = AgentName

m(iASRAgent).behaviour = AgentBehaviour

Figure 4.15 illustrates the mapping:

m(iASRAgent)

<AgentName, AgentBehaviour>,

where Agent(AgentName) holds
and AgentBehaviour is defined as

 proc AgentBehaviour
…

 endProc

iASR
Agent

Figure 4.15. The mapping of agent nodes.

A role specifies a certain behaviour that could be exhibited by many different agents in

the system. We will map an iASR role node into a CASL procedure that models the

behaviour associated with that role. In i*, a role can be played by various agents. Since

roles describe the behaviour of many different agents, procedures corresponding to iASR

 73

roles will most likely have the agent playing that role as a parameter. On the other hand,

agent procedures will have the name of the agent built into them.

Figure 4.16. The mapping of role nodes.

A position node will be mapped into a CASL procedure that specifies the behaviour

associated with the position.

m(iASRPosition) = PositionBehaviour(AgentName)

Since a position is “a set of socially recognized roles typically played by one agent” [Yu,

1995], it will also feature the agent occupying the position as its parameter. The

procedure for a position calls the CASL procedures for roles that are covered by the

position. For example, in the code below, procedures for the roles, which are covered by

position1 are combined using prioritized concurrency.

proc Position1Proc(Agent)

 Role1Proc(Agent)

 >>

 ...

 >>

 RoleNProc(Agent)
ensProc

 74

4.3 Goals

4.3.1 Introducing Goal-Oriented Analysis

Goal-oriented analysis starts with the identification of the goals — the objectives to be

achieved — of the stakeholders or of the software system as a whole. Such goals provide

rationale for the software system requirements. Various alternative decompositions of

these goals are then discovered and analyzed and the possible assignments of

responsibility for the subgoals to the agents of the system-to-be are explored.

While goal-oriented analysis has been around for some time (e.g., KAOS [Dardenne et

al., 1993]), goals were commonly used only in the earliest stages of the analysis.

Frequently, functional goals were operationalized during the late phase of the

requirements engineering process and softgoals were removed, operationalized, or

metricized [Davis, 1993]. We, on the other hand, try to give the modeler the ability to

operate with goals at later stages of the RE process.

One of the most important advantages of CASL is that it supports reasoning about agents’

goals (as well as knowledge). Therefore, in our combined i*/CASL method we can push

goals down to the simulation and verification stage and use goal-oriented analysis

throughout the whole requirements engineering process. Moreover, leaving goals and

goal dependencies in the late requirements, verification, and design stages instead of

operationalizing them early provides improves the flexibility of the software development

process. Leaving goals as part of the late requirements specifications, design, and

possibly even implementation means that the new system will be designed with many

alternative approaches for achieving those goals in mind. Some of the decisions on the

choice of the strategy for achieving these goals can be made at the RE stage, while other

decisions will be made during the design phase and the rest will be postponed until

runtime. Removing goals early on leads to fragile software systems [Mylopoulos, 1999]

 75

with possibly incorrect decisions being hard-coded into the system. Once a goal has been

operationalized, the system (at runtime) or the designer (at design time) will cease to

recognize the existence of alternative ways of achieving this particular goal (Figure 5.13

illustrates this).

4.3.2 The Use of Goal Decompositions

As previously mentioned, goal decomposition is one of the main aspects of goal-oriented

analysis. The i* approach provides us with means-ends links, which are most commonly

used together with goal nodes in the i*’s SR diagrams, linking task nodes that are means

to achieve some goal with that goal node (see Figure 4.17). This way we can represent

various design choices or refinements in the system. The sub-tree rooted at Means1

represents one possibility for achieving Goal_1, one design choice, while the sub-tree

rooted at Means2 represents another design choice. Which alternative will be selected

depends on many factors. Some of these factors (e.g., the positive or negative

contribution of these alternatives to various softgoals) could be taken into consideration

at design time while others may be left until runtime. We no longer need to preselect the

alternative before moving from i* diagrams to CASL models. We can model all the

alternatives in CASL and capture the semantics of this choice point: the agent will have

the goal in its mental state with various procedures for achieving this goal available.

Instead of having to make the choice of approach to achieve a goal at the requirements

analysis stage, we can now leave the choice to design time or even runtime, if needed.

Another advantage of this approach is that it allows us to better document the design

decisions that led to the selection of one alternative over the others even if this selection

is not made until the verification or design stages. If the goal is abstracted out before

runtime, the model that shows appropriate means for achieving this goal and the

applicability conditions for those means will help establish the traceability link between

the design and the requirements.

 76

Figure 4.17. Means-ends links connect goals with means to achieve them.

To make our modeling framework more intuitive, and to streamline the way goals are

used in Annotated SR diagrams, we introduced Intentional Annotated Strategic Rationale

(iASR) diagrams. Let us discuss the features of iASR diagrams.

In i*, a means-ends link indicates a relationship between an end — which can be a goal to

be achieved, a task to be accomplished, a resource to be produced, or a softgoal to be

satisficed — and a means of attaining it [Yu, 1995]. Several means to an end model

alternative ways to accomplish that end. The ends are usually the goal nodes, since they

are used to represent the desired state of affairs in the world for actors and do not specify

how the goals are to be achieved, thus allowing for alternatives to be explored. The

means are usually expressed in a form of task nodes, since the notion of task embodies

how to do something.

We would like to capture the above intuitive use of goal nodes in iASR diagrams. This

will streamline both the use of these nodes in the iASR models and the mapping of the

goal nodes and goal decompositions into the corresponding CASL code. The iASR

diagrams will therefore have the following feature: the means-ends links only connect

goal nodes as ends and task/capability nodes as means to achieve these goals (see Section

4.5 for the discussion of capabilities). The alternative composition annotation is applied

to the various means, which are specified in the means-ends decompositions.

This restriction provides a clear guidance for the use of goal decompositions in the

models and their mapping to CASL. It stresses the fact that goals are a tool to be used in

SR diagrams to allow for the exploration of alternatives in system models. While it is

 77

|
SuperTask

AltTask_1 AltTask_2

quite common for some of the alternative means of achieving goals to be goals

themselves (e.g., one of the ways to achieve the goal “become rich” is to achieve the goal

“win a lottery”), these means will still have to be tasks nodes in iASR diagrams. The

reason for this constrains will be thoroughly examined later in the chapter. It is related to

the way the agents acquire goals in CASL and the fact that agents need to use procedural

means to monitor for their goals.

The constraint, while restricting the use of means-ends links to goal decomposition only,

does not preclude the designer from using other i* facilities to represent, for example,

alternative ways of performing tasks. This can be easily expressed without the use of

means-ends links through the use of task decompositions accompanied by the alternative

composition link annotation (see Figures 4.18a and 4.18b).

Figure 4.18a. Means-ends links are used to
represent alternative ways to execute SuperTask.

Figure 4.18b. The alternative composition
annotation is used to represent alternative ways to
execute SuperTask.

iASR diagrams can easily support various goal decomposition techniques. Figure 4.19a is

an example of an AND goal decomposition in the notation of [Mylopoulos et al., 2001a].

AND-decompositions are marked with an arch in this notation.

Since Goal_2 and Goal_3 both must be achieved for Goal_1 to be achieved, this is in fact

a single possibility for achieving Goal_1. The diagram in Figure 4.19b satisfies the

constraint described above in that the goal node Goal_1 has the task node Means_1 as the

means of achieving it. The task is further decomposed into several subgoals that must be

achieved concurrently. The concurrency annotation is used to represent the AND-

SuperTask

AltTask_1 AltTask_2

 78

decomposition since it is the most unrestrictive way of executing any two programs — it

does not specify any ordering of the primitive actions that comprise the two programs.

Note that Figure 4.19b omits some details of the decomposition of the task Means_1

related to another constraint (discussed later) on the use of goal nodes in the iASR

diagrams as well as the fact that Goal_2 and Goal_3 both have to be acquired by the

agent by executing a special commit action. The details will be described in the

subsequent sections.

Figure 4.19a. AND-Decomposition of Goals. Figure 4.19b. Task decomposition with the

concurrent composition annotation is used to model
AND-decomposition of goals.

It is important to note that the restriction that the means to achieve goals can only be task

nodes is present because of the way goals are handled in CASL. It is not a conceptual

restriction, unlike the one that requires that the means to achieve goals be alternatives.

4.3.3 Applicability Conditions

If alternative means of achieving a certain goal exist, the designer is able to specify under

which circumstances it makes sense to attempt to execute each alternative. We call these

applicability conditions and introduce a new annotation ac(Condition) to be used with

means-ends links to specify these conditions. The presence of the applicability condition

(AC) annotation specifies that only when the condition is true the agent may select the

associated alternative in attempt to achieve the parent goal. The absence of the condition

says that the alternative can always be selected. The applicability condition may, for

 79

example, specify the conditions under which the corresponding alternative is effective,

efficient, etc.

Figure 4.20. The applicability condition annotation.

Figure 4.20 shows that the goal MeetingSetup has two means of achieving it:

SetupMeetingManually and UseMeetingSchedulter. We assume that in the first case

the organizer of a meeting will manually contact the participants in attempt to setup a

meeting, while in the second case the organizer will use a specialized agent to achieve the

goal. The figure shows that the first alternative has an applicability constraint, which says

that the task SetupMeetingManually can be selected as a means for achieving the goal

MeetingSetup only when the number of the intended participants is less that four. The

idea here is that while it makes sense to attempt to organize a meeting of up to 3 people

manually (e.g., by calling or emailing them), it is much better to let an automated

Meeting Scheduler agent schedule the meeting with the larger number of participants.

The absence of an applicability condition for the task UseMeetingScheduler means that

the Meeting Scheduler agent can be used under any circumstances.

4.3.4 Using Link Annotations in Goal Decompositions

In addition to applicability constraints, means-ends links can be supplemented with the

regular link annotations: while loops (while(condition)), for loops (for(variable,

valueList)) and pick annotations (π(variableList,condition)). The if, interrupt,

and guard annotations are not allowed since they specify under which condition the

associated task is to be performed, something that is already covered by the applicability

 80

constraints. The link annotations used together with means-ends links provide the details

on how the means are to be used in achieving the parent goal.

Figure 4.21. The use of link annotations with means-ends links.

Figure 4.21 illustrates the use of link annotations with means-ends links. In the above

example, we have the goal NotifyParticipants from the Meeting Scheduler domain.

Suppose there are two ways to notify the meeting participants of the time of the meeting:

by phoning them and by emailing them. The for link annotation specifies that the tasks

EmailParticipant and PhoneParticipant are to be executed for every member of the

set Participants. Note that we use the applicability condition for the first alternative —

we assume that if the number of participants is greater than three, it will not be effective

to phone each of them, so the first alternative will not be executed.

4.3.5 Explicit Goals in CASL

While other methods (e.g., Formal Tropos [Fuxman, et al., 2001] and the formal notation

of KAOS [Dardenne, et al., 1993]) represent goals as assertions, we are able to support

explicit goals (e.g., Goal(MI,Eventually(MeetingScheduled(mid,now),now,then),

s)). Such explicit goals represent the desirable states of the world for agents and are part

of their mental state. These goals allow us, among other things, to model goal acquisition

and propagation through speech act-based [Searle, 1969] interaction so that in addition to

having some initial goals an agent can communicate and acquire new goals from other

agents that are being served or helped by it and delegate some of its goals to agents that

are helpful and capable of achieving these goals. Agent interactions is one of the most

 81

important components of multiagent systems and the ability to represent interaction

protocols accurately using knowledge and goals is crucial for agent-oriented software

engineering approaches. Explicit goals allow us to build more “intentionality” into CASL

models, thus preserving the i* idea of strategic, intentional actors. They also allow us to

model the conflicts of interests of the system’s stakeholders and help in their resolution.

One could say that this layer of explicit goals and goal delegation is an added complexity

over the simple method/procedure invocation approach used in [Wang, 2001], but it is

this layer that allows us to model systems more naturally and flexibly and to match i* in

representing the strategic and intentional aspects of systems.

The support for explicit goals by CASL also helps us in supporting AND/OR goal

analysis [Mylopoulos et al., 2001a] or other types of goal decompositions or goal

refinements, which are quite common at the early stages of the requirements engineering

process with i* framework, even at runtime. We expect that most of such goal analysis

tasks will be carried out before the i* diagrams are mapped into CASL so that the CASL

models do not contain all of the intermediate goal nodes and all the possible alternatives.

Nevertheless, CASL models can include whole chains of goal refinements and goal

decomposition if necessary, thus allowing agents to reason about these refinements at

runtime. The support for explicit goals also allows us to represent conflicting goals of

agents/stakeholders.

4.3.6 Declarative vs. Procedural Specification in CASL

In CASL, agent behaviour (what actions the agent does) is specified procedurally, while

goal and knowledge changes (changes to the agent’s mental state) are handled

declaratively. This means that while behaviour specification in CASL is fairly similar to

mainstream programming languages (the programmer has the usual high-level constructs

like loops, procedure calls, etc.), changes to the mental state of the agent can be the

effects of perception or commitment actions performed by the agent himself or of

 82

communication actions performed by other agents. In CASL, one cannot explicitly ask

the agent to change its mental state; it must be done by executing the actions, which have

the desired effect on the mental state of the agent. The effects of these actions are

specified through the appropriate successor state axioms. In CASL, as it is described in

[Shapiro and Lespérance, 2001], only the communication actions such as inform (for

knowledge acquisition) and request (for goal acquisition) have effects on the mental

state of the agents. We, on the other hand, would like to get the flexibility of having

agents change their mental state on their own. This will support self-acquired goals,

which we talk about later in the chapter. We, therefore, need a new action to support the

acquisition of goals without communications from other agents. We call this action

commit. This primitive action is thoroughly discussed later in the chapter (Section 4.3.8).

In addition, self-acquisition of knowledge is possible with the new action assume

(Section 4.4.5). See Section 4.6 for the overview of how procedural and declarative

components of CASL agents can be synchronized.

Figure 4.22. An example illustrating the use of the commit action in iASR diagrams.

Since goal change in CASL is handled declaratively, but behaviour is specified

procedurally, the agents need to monitor for newly acquired goals and to respond

accordingly. The agent must recognize that some goal is in its mental state. This is true

for the agent agt and some goal φ when the formula Goal(agt,φ,s) holds. The natural

CASL constructs for this monitoring are the interrupt and the guard. An interrupt fires as

soon as some condition (an instance of some goal in this case) is true, executes its body

(presumably, the procedure that attempts to achieve the goal), and then goes back into the

 83

waiting state. A guard, on the other hand, blocks the execution until the condition (an

instance of the goal in the mental state of the agent) is true and then executes some

procedure. Figure 4.22 shows how the commit action and the guard annotation are used

with self-acquired goals.

Therefore, in iASR diagrams the decomposition link connecting a goal node with its

parent task node must be accompanied by an interrupt link annotation with the

appropriate trigger and cancellation conditions or a guard link annotation with the

appropriate condition. Since interrupts and guards can only be used in CASL procedures,

in iASR diagrams the parent of a goal node must be a task node.

Figure 4.23 illustrates how goal nodes are used with interrupt or guard link annotations in

iASR diagrams. We will talk more about the trigger and cancellation conditions for

interrupts associated with goal acquisition in Section 4.3.9.3.

Figure 4.23. The use of the interrupt and the guard link
 annotations with goal nodes in iASR diagrams.

In Figure 4.23, the parent task is responsible for monitoring for the newly acquired

instances of Goal_1. The parent task node, ParentTask, will be mapped into the

appropriate CASL procedure that will contain the interrupt or the guard that is designed

to monitor for Goal_1.

In summary, the presence of goal nodes in iASR diagrams indicates that the actor

recognizes that it has the corresponding CASL goals in its mental state. In order for those

 84

goals to be achieved the modeler has to provide the necessary means of achieving them

(task nodes), which will be placed below the goal nodes and connected to them by

means-ends links. The parent nodes of the goal nodes will be tasks that are responsible

for monitoring for the goals.

4.3.7 Acquiring Goals: Dependency-Based Goals

In our approach, agents acquire goals in two different ways: through requests coming

from other agents in the system and by themselves using the commit action. The requests

correspond to the inter-agent dependencies in which the agent receiving the request is the

dependee, while the goals acquired by the agent on its own are self-acquired goals. We

discuss goals coming from inter-agent dependencies here and then cover self-acquired

goals in the next section.

In CASL, an agent can acquire a goal after receiving a request from some other agent.

This is very important since it allows for agents acting together as a team to achieve

certain goals together. It also allows agents to delegate some tasks or goals to other

agents that are capable of performing/achieving them or can perform or achieve them

better than the delegating agents. The ability to model this delegation of goals in CASL is

also important for the support of i* style of systems modeling in which the notion of

dependency is of utmost importance. Goal acquisition through requests coming from

other agents is a natural way to model inter-agent dependencies. In fact, in our approach

goal dependencies and task dependencies are modeled through requests to achieve a goal

or perform a task respectively. Resource dependencies are represented through either goal

or task dependencies. The agent in need of a resource can ask the provider of that

resource to use a specific means to supply it. In this case, we map the resource

dependency into a task dependency. Alternatively, the depender may give the provider of

the resource complete freedom in choosing the best way to supply it. This naturally maps

into a goal dependency. Note this is more specific and operational than the dependencies

 85

in i* (which do not specify how goals are delegated). It may be a bit restrictive in some

contexts, where delegation is done without communications (e.g., a mother monitoring

her child), but it seems quite appropriate for agent-based systems.

As previously discussed, we use interrupts (and guards) in CASL models to check for

newly acquired goals. These interrupts are placed inside the procedures responsible for

monitoring for the new goals. As can be seen in Figure 4.24, the node inside the

dependee actor at which an intentional dependency terminates is the node responsible for

fulfilling the dependency. It represents the goal the dependency must achieve or the task

it must execute. In iASR diagrams, dependencies originate from task nodes. The details

of the trigger conditions and cancellation conditions for the interrupts will be presented

later in this chapter.

Depender
Task

Monitoring
Task

Depender

Dependee

Goal_1

Goal_1

whenever(tCond, cCond)

Figure 4.24. An example of inter-agent goal dependency.

To be successfully mapped into CASL models for simulation and verification, SR

diagrams have to be sufficiently detailed. We try to preserve as much of the strategic and

intentional aspects of SR diagrams as possible while mapping them into the

corresponding CASL models. The CASL language is much more process-oriented than i*

and requires that we add the missing details to the iASR diagrams. The particulars of

inter-agent dependencies are one of the areas that need to be modeled at a more detailed

level. While at an early stage the inter-agent dependencies may look like (or be even less

detailed than) the goal dependency depicted in Figure 4.24, before mapping the iASR

diagram into CASL they need to be refined as in Figure 4.25.

 86

Figure 4.25. The iASR-level details of an inter-agent goal dependency.

As you can see in Figure 4.25 above, the idea is for every inter-agent dependency (of any

type) to add a task that makes a request to another agent to supply the dependum. In

Figure 4.25, this task is called RequestAchieveGoal_1. It is the origin of the inter-agent

goal dependency in the iASR diagram. Usually agents continue executing their tasks after

the dependee has performed the required task, achieved the goal, or provided the

resource. If the depender made a synchronous request to the dependee, it will need to

wait until the dependum is provided before continuing with other activities. This situation

is illustrated by Figure 4.25. We added an additional task, Task_2, inside the Depender

agent. This task is the one executed after the dependum (here, it is the goal Goal_1) is

provided. One way to base that task’s execution upon the supply of the dependum by the

dependee is to add the guard link annotation, which blocks until the dependum is

supplied. Alternatively, the Depender may continue with its activities without waiting for

the achievement of Goal_1 (asynchronous request). In this case, it may be concurrently

monitoring for Goal_1. If the dependum is not observable by the depender, the depender

may require the dependee to notify it after providing the dependum. The details of this

refinement of goal delegation will depend on the application context.

In general, the origin of an inter-agent dependency in an iASR diagram is the depender’s

task that sends the request to provide the dependum to the dependee. The end of an inter-

 87

agent dependency is the node in the iASR diagram for the dependee that represents the

goal the dependee must achieve or the task it must execute to provide the dependum.

Agents use the request communicative action to request services of other agents. In the

request below, the Depender requests the Dependee to achieve φ, which can be either a

goal in the CASL sense (a constraint on the future states of the world for the Depender)

or a goal to perform some task.

request(Depender,Dependee,φ)

For a goal dependency, a request for some agent to achieve φ is usually represented as

follows:

request(Depender,Dependee,Eventually(φ))

Note the use of Eventually — it gives the requested agent flexibility in terms of when

the goal can be achieved. Eventually(φ) states that the goal φ has to be achieved by the

depender at some time in the future. Eventually is not the only temporal predicate that

can be used with request action. With the use of other temporal operators we can

express, for example, goals that have to be maintained at all times (Always(φ)).

However, in this thesis, we concentrate on achievement goals in the form of

Eventually(φ).

4.3.7.1 Task Dependency-Based Goals

While goal dependencies allow the dependee to select appropriate ways of achieving

goals for the depender, quite frequently the depender wants to specify what exactly the

dependee has to do in order to provide the dependum of the dependency. In this case, a

task dependency is established. In our approach, in a task dependency the depender

 88

requests the dependee to execute a known procedure. A request by one agent to another

to perform a procedure SomeProc, which must be a properly defined procedure of the

Dependee, is represented as follows:

request(Depender,Dependee,DoAL(SomeProc,now,then))

Here, DoAL(δ,s,s′) (Do At Least) is an abbreviation for Do(δ||(πa.a)*,s,s′). This

means that the program δ must be executed, but other concurrent activities may be

executed as well. The dependee will have the flexibility to do other things while

executing the requested procedure. After finishing the execution of SomeProc, the

dependee will most likely notify the depender of this fact if the completion of the task is

not observable by the depender.

Below we present an example of a task dependency (see Figure 4.26). Here, the Meeting

Scheduler (MS) agent requests the intended meeting participant to send his/her available

dates to it so that the MS can come up with possible mutually agreeable (for all the

participants) dates for the meeting. GetAvailDates task of the Meeting Scheduler sends

a request to the Participant to execute the Participant’s task SendAvailDates:

request(MeetingScheduler,Participant,DoAL(SendAvailDates,now,then))

Figure 4.26. The detailed version of the iASR diagram for the SendAvailDates task dependency.

 89

The FindAgreeableDate task of the Participant monitors for the acquisition of the goal

DoAL(SendAvailDates,now,then). This is not a goal to achieve some state in the

system. Here, the depender asks the dependee to execute one of the dependee’s

procedures. Therefore, the number of alternative ways of achieving this goal is limited to

exactly one — to execute the requested procedure.

In general, a means-ends decomposition of a goal to perform a task is limited to having

just one means — that means being the execution of the task. By acquiring a goal to

perform a task (see the note on the Serves relationship and how it can affect the

acquisition of goals later in this section), the agent acquires the responsibility to perform

the task. The task therefore must be performed unconditionally. This means that

applicability conditions and link annotations are not allowed to be used with task nodes

that are means to achieve such goals. For example, in Figure 4.26 the task

SendAvailDates is the only means to achieve the goal

DoAL(SendAvailDates,now,then)and is unaccompanied by any annotation.

Figure 4.27. A simpler version of the iASR diagram for the SendAvailDates task dependency.

Figure 4.26 is a hypothetical diagram that presents the full details of the task dependency

SendAvailDates including the acquisition of the goal by the Participant and the means-

ends decomposition of the goal. Since the only means to achieve a goal that requests the

dependee to perform a task is to execute this task, modeling means-ends decompositions

in such cases is unnecessary. The designer can replace the diagram of Figure 4.26 with a

 90

simpler diagram, where the means-ends decomposition is removed. Since there is no

means-ends decomposition anymore, we can even remove the goal node from the

diagram as in Figure 4.27. In this simplified version of the diagram, the task

SendAvailDates (the means to achieve the goal) becomes a subtask of the task

FindAgreeableDate (the task responsible for monitoring for the goal) and is executed

whenever the goal is acquired since it is now accompanied by the interrupt annotation,

which was previously associated with the removed goal node. The resultant diagram is

much simpler and much more straightforward to map into the corresponding CASL code.

However, there may be cases where the dependee dos not want to execute the requested

procedure unconditionally. In this case, the model of Figure 4.26 may be extended to

include other conditions.

4.3.7.2 Resource Dependency-Based Goals

In i*, a resource dependency is a separate type of dependency, different from goal and

task dependencies. While modeling systems at high level of abstraction, we talk about

one actor depending on another for some resource to be provided. At the iASR level,

however, we can model resource dependencies more precisely. When one agent is in

need of a certain resource that is provided by another agent, it can either ask that agent to

furnish the resource without specifying the exact means of doing it, or it can instruct the

provider of the resource on how exactly it is supposed to provide the resource. Therefore,

resource dependencies are modeled through requests to either achieve a goal of making

the resource (the dependum of the resource dependency) available to the requesting

agent, or performing some task that provides the resource. A special case of resource

dependency — information resource dependency — will be discussed in Section 4.4.3.

Below we have an example of an SR resource dependency that becomes a goal

dependency at the iASR level. In this case, the resource is money. The SR diagram

fragment shows the resource dependency where the actor representing a telecom

 91

company (Telecom) depends on its customer (Customer) for the payment of his bills. In

this scenario, the Customer actor will have a reciprocal dependency on the Telecom actor

to provide various communication services. This dependency is not shown in the

example.

Figure 4.28. The SR diagram with the Payment resource dependency.

Figure 4.28 shows the SR diagram that represents the Telecom-Customer payment

dependency. At the SR level, we show Payment as being a resource dependency

originating at GetPayment task of Telecom. On the Customer end, the task PayBills is

responsible for supplying the resource. When we go to the Intentional Annotated SR level

however, we need more precision in modeling the dependency (see Figure 4.29).

Figure 4.29. The iASR-level details of the Payment dependency.

Figure 4.29 presents the detailed version of the Payment dependency and is a typical

example of the iASR-level refinement of inter-agent dependencies. First, we specify the

Telecom task that is responsible for requesting the Customer to pay for the Telecom

services. This task is called SendBill and as its subtask we have the appropriate request

 92

action, which is the origin of the dependency. We assume that the value of the predicate

fluent BillPaid becomes true once the Customer pays its telecom bill. The task

CreditAccount is executed by the Telecom once it becomes aware of the payment. Here,

we assume that there are many alternative ways to pay the Telecom bill and the Telecom

actor prefers to leave it up to the Customer to select the way to pay the bill. Therefore, the

resource dependency Payment is converted to a goal dependency TelecomBillPaid.

When this dependency is mapped into CASL code, the request will look like this (we

omit the parameters of the goal here):

request(Telecom,Customer,Eventually(TelecomBillPaid))

On the Customer side, the above request causes the agent to acquire the goal

TelecomBillPaid. As previously discussed, the Customer agent needs to have an

interrupt that monitors for newly acquired goals of this type. The task PayBills contains

the corresponding interrupt. Upon acquiring the goal TelecomBillPaid, the Customer

agent will select one of the means (not shown in the figure) for achieving it.

4.3.7.3 The Serves Relationship

In the discussion so far, we have assumed that agents acquire goals (either to achieve

some conditions or to perform some tasks) whenever they are asked to do so by other

agents. In real-life scenarios, however, agents may not always be helpful and

collaborative, or at least not to every agent in the system. There may be many reasons for

that. Certain services offered by the agents could be too costly and the designer may want

only to allow the use of such services by a restricted number of agents; due to security

concerns, some capabilities may only be offered to some trusted agents. It is very easy to

address the above concerns with the use of the Serves relationship.

Serves(Dependee,Depender,φ) specifies that the Dependee is going to be helpful to the

Depender in providing φ. Another possibility is to use a more general version of the

 93

Serves relationship, Serves(Dependee,Depender), which specifies that the Dependee is

willing to help the Depender in everything. One possible use of this version of Serves is

the specification of the managerial structure of the company. We will return to this issue

in Chapter 5.

In order to make use of the Serves relationship we need to make changes to the way

agents acquire goals. This means that we have to modify the successor state axiom for the

W relation, the accessibility relation on situations that specifies which situations are

compatible with what the agent wants. Below is the modified version of the successor

state axiom for W that takes the Serves relationship into consideration. It specifies that in

order for agt to adopt the goal φ requested by depender, agt needs to be helpful to

depender in achieving φ, i.e., Serves(agt,depender,φ)has to hold.

 W(agt,then,do(a,s)) ≡ [W(agt,then,s) ∧

∀depender,φ,now (a = request(depender,agt,φ) ∧ K(agt,now,s) ∧

now ≤ then ∧ Serves(agt,depender,φ) ∧ ¬Goal(agt,¬φ,s) ⊃

φ[do(a,now),then])]

The above axiom states that a situation then is accessible from do(a,s) iff it is W-

accessible from s and if the action a is a request action requesting that φ hold, and now

is the current situation along the path defined by then, and the agent agt is helpful to

depender, and the agent does not have the goal that ¬φ in s, then φ holds at

[do(a,now),then)].

4.3.7.4 Reasoning about Inter-Agent Communication

Since the semantics of request and other communication acts available to agents is

formally defined in CASL, the framework allows us to reason about the effects they have

on agents’ mental states without knowing the detailed content of those messages. For

 94

example, if we know that when some agent requests the agent agt to achieve the goal

Eventually(φ) and later some other agent requests agt to achieve Eventually(¬φ),

we can conclude that agt may acquire both goals since they are not necessarily

conflicting. On the other hand, if the goals are Always(φ) and Always(¬φ), then the

agent will not acquire the goal Always(¬φ) since the successor state axiom for W

prevents agents from acquiring conflicting goals.

4.3.8 Acquiring Goals: Self-Acquired Goals

Sometimes an agent needs to acquire a goal without other agents requesting it. Most

commonly, these goals are used in goal decompositions or to analyze several possible

scenarios or design alternatives. By making the agent acquire a goal by itself the modeler

makes sure that the agent’s mental state reflects the fact that multiple alternatives exist in

that particular place in the model of the agent’s behaviour. Moreover, unlike task

decompositions with alternative composition annotations, the presence of a goal node

suggests that the designer envisions new possibilities of achieving the goal. This way the

agents would be able to reason about various alternatives available to them or come up

with new ways to achieve the goals. Self-acquired goals are the tool that can be used by

the modelers to identify and analyze problems with multiple solutions and document the

possible alternatives. These goals also add flexibility to the system models in that

alternative approaches for solving the goals can be kept in the model and the designers

will not have to operationalize the goals early.

The agent is able to self-acquire goals by performing a special action called commit. By

executing commit(Agent,φ), where Agent is the name of the agent and φ is the formula

that the agent wants to hold, the agent adds the goal of achieving φ to its mental state. By

executing the commit(Agent,φ) action the agent essentially makes a request to itself to

achieve the goal φ.

 95

Unlike the request action, which is only possible when the requestor agent has the

corresponding goal in its mental state, the commit action does not have any

preconditions. The agents can therefore try to acquire any goal that is consistent with its

existing goals. The successor state axiom for the W accessibility relation is modified to

take into consideration the new commit action. As is the case with the goals that are

acquired through requests coming from other agents, the axiom will guard against

adopting self-acquired goals that are inconsistent with the previously acquired goals:

W(agt,then,do(a,s)) ≡ [W(agt,then,s) ∧

 ∀depender,φ,now((a = request(depender,agt,φ) ∧
Serves(agt,depender,φ) ∨ a = commit(agt,φ)) ∧

K(agt,now,s) ∧ now ≤ then ∧

¬Goal(agt,¬φ,s) ⊃ φ[do(a,now),then])]

Similarly to goals coming from the inter-agent dependencies, upon the execution of the

commit action the agent needs to recognize that the goal is in its mental state. Guard

annotations are used with self-acquired goals in iASR diagrams: the commit action

changes the mental state of the agent and a guard allows the behaviour of the agent to be

modified to reflect the change in the agent’s mental state. We do not need to use

interrupts (which fire multiple times) to monitor for self-acquired goals since agents

acquire up to one goal per every execution of the commit action (goals may not be

acquired if they conflict with existing agent goals, so the agent may acquire no goals for

some executions of the commit action). So, we use the guard annotation instead of an

interrupt since the agent needs to achieve the goal once per each commit action.

The general iASR diagram pattern for handling self-acquired goals is shown in Figure

4.30. The commit action is presented in its own task node so that it is easily visible on the

diagram. The commit action is then followed by a goal node with the corresponding

guard link annotation. The guard condition becomes true when the goal is acquired by

 96

the agent. This happens immediately after commit is performed. The children of a goal

node are the means to achieve this goal.

Figure 4.30. The iASR diagram pattern for handling self-acquired goals.

Let us look at the example that demonstrates the use of self-acquired goals (Figure 4.31).

Suppose that after finishing the scheduling process, the Meeting Scheduler agent needs to

inform participants about the time and location of the meeting. Since there are many

possibilities of contacting participants, any many more may become available later, it is

wise to include the goal ParticipantInformed into the iASR model for the scheduler

instead of simply selecting a means for informing participants and modeling it as a task in

the iASR diagram. The goal ParticipantInformed adds flexibility to the process

specification, allows for documenting all the alternative ways of achieving the goal along

with their applicability conditions (not shown in Figure 4.31), and enables the agent to

select the best way to achieve this goal at runtime based on the most current context.

Figure 4.31. Using self-acquired goals.

 97

One of the main uses of designer goals is to model various types of goal refinement

including AND-decompositions and OR-decompositions of goals. For example, now we

can show the full details of the decomposition of the Figure 4.19b. In the case of goal

decompositions, self-acquired goals enable the agent to go through its designer’s

reasoning at runtime.

Figure 4.32. The fully detailed iASR diagram for the AND-decomposition of goals.

In Figure 4.32, Goal_1 is AND-decomposed into Goal_2 and Goal_3. Goal_2 and

Goal_3 are the self-acquired goals — there are no inter-agent dependencies that make the

agent acquire these goals. Since the goals have to be achieved in parallel, we have two

tasks, AcquireG_2 and AcquireG_3, which are executed concurrently and are responsible

for the acquisition and achievement of Goal_2 and Goal_3 respectively. Each task is

decomposed into the commit action that acquires the required goal. It is followed by the

goal node, which is guarded by the guard that blocks until the goal is acquired. The above

diagram illustrates the fact that at the iASR level the diagrams get quite detailed and

complicated since they have to be easily mapped into CASL code. A lot of the diagram

modifications are quite mechanical and could be automated. Note that in iASR diagrams,

we usually omit the first parameter of the commit action since it is clear what agent is

executing this action. We conclude that there is a price in complexity if one wants to

model goals explicitly in our approach.

 98

4.3.9 Mapping Goals into CASL

4.3.9.1 Introduction

One of the essential features of CASL is that it supports reasoning about agents’ goals,

which play a major role in the i* approach. In this section, we describe the mapping of

goal nodes of iASR diagrams and the associated means-ends decompositions into CASL

models.

The presence of a goal node in an iASR diagram indicates that an agent has the

corresponding goal in its mental state. We, therefore, need to make sure that the

counterparts of the goals that the designer utilizes in the iASR diagrams are present in the

corresponding CASL models. Designers use goal nodes in their iASR diagrams to model

the agents’ objectives that can be achieved by a number alternative approaches. Means-

ends decompositions are used to encode various alternative means of achieving the goals

of the agents. These means-ends decompositions will have to be encoded in CASL and

associated with the goals that they are designed to achieve.

4.3.9.2 Mapping Goal Nodes

An iASR goal node will be mapped into a CASL formula that corresponds to the goal and

a procedure that specifies the approaches that the agent will use to try to achieve the goal.

In our approach, we mostly handle achievement goals. The formulae that we are mapping

the iASR goals into are situation-dependent. They represent the desired states in the

system: when the formulae are evaluated to false, this means that the corresponding goals

are not yet achieved; the fact that the values of such formulae change to true signals the

achievement of the goals. Alternatively, we can map goals into primitive fluents, if

appropriate.

 99

Let us see how the mapping is defined for an iASR goal node called iASR_Goal (see

Figure 4.33). For now, we do not consider the parent and children nodes of iASR_Goal.

Figure 4.33. The mapping of the goal node iASR_Goal.

The mapping m will map the goal node iASR_Goal into the following tuple:

m(iASR_Goal) = <GoalFormula, AchieveGoalProc>,

where

• GoalFormula is a CASL formula with a free situation variable

• cPName∈AchieveGoalProc and AchieveGoalProc is defined in Pc

We remind here that PNamec is a set of procedure names in the CASL theory C and Pc is

a set of procedure definitions in this theory. The constraints on AchieveGoalProc

prevent iASR goal nodes from being mapped into undefined procedures.

 We use the following notation to access the goal formula and the achievement procedure

of a goal node:

m(iASR_Goal).formula = GoalFormula

m(iASR_Goal).achieve = AchieveGoalProc

The achievement procedure for the goal encodes the ways the agent may achieve this

goal. It may use the appropriate applicability conditions and/or link annotations to specify

the means precisely. We assume that generally, the agent has means to achieve the goal

that typically work, but it is rare that they will always work. Thus, we cannot guarantee

that any of the means for achieving the goal that are represented in the achieve procedure

for that goal are always able to achieve it. In order to be assured that AchieveGoalProc

 100

in fact makes GoalFormula true every time it is executed we need to carefully specify,

for instance, the restrictions on the situation in which the procedure is invoked. Making

sure that the applicability condition for the AchieveGoalProc holds when the agent starts

executing the procedure cannot, however, guarantee that it successfully achieves the goal

(the executability of AchieveGoalProc does not imply the achievement of the goal). The

main difficulty here is the fact that we are modeling a multiagent system with lots of

interacting concurrent processes in a shared environment. When the procedure is

executing, other agents’ actions may modify the parameters of the environment (and even

the agent’s own mental state), which are crucial for the successful execution of

AchieveGoalProc. There are a number of ways to deal with the problem. One could

divide the set of fluents in the system into subsets that are each controlled by one agent in

the system, thus making it impossible for other agents to directly affect the values of the

fluents and making sure that procedures relying on those fluents and executed by the

‘owner’ agent cannot be disrupted by other agents. Alternatively, we can set up a system

for managing shared (for reading) and exclusive (for writing) locks on fluents to

guarantee that only one agent at a time can change the value of a shared fluent. We leave

this to the future work. We note here that while some of the approaches for concurrent

systems verification were applied to the problem of multiagent systems verification, the

problem remains largely open.

Here, we assume that AchieveGoalProc is designed to achieve the corresponding goal,

but may not do that at all times. We therefore state that AchieveGoalProc will try to

achieve the goal, instead of saying that it will in fact achieve the goal. The above

semantics is expressed in the following formula:

∃s,s′.Do(AchieveGoalProc,s,s′) ∧ GoalFormula[s′]

 101

The above formula says that sometimes executing AchieveGoalProc in some situation s

in the absence of concurrent actions will lead to its successful termination in situation s’

and in that situation GoalFormula will hold (the goal will be achieved).

Agent capabilities, which are described later in this chapter, provide a greater level of

assurance that the goal will be achieved. They should be used, among other things, as

means of achieving critical goals.

4.3.9.3 The Use of Interrupts

Since goal acquisition in CASL is done declaratively through the use of successor state

axioms and agent behaviours are specified procedurally, the agents need to monitor their

mental states for changes and to modify their behaviour in response to these changes. The

synchronization of the declarative part of the agent — its mental state — and the

procedurally specified behaviour is achieved through the use of interrupts (see Figure

4.34) or guards.

whenever(TrigCond,
CancelCond)

Parent
Task

iASR_Goal

Figure 4.34. The use of interrupts for goal monitoring.

Let us now look more closely at the use of interrupts and interrupt annotations. In the

iASR diagrams, goal nodes always have task nodes as their parents and are connected to

them with the task decomposition links. These tasks are used to monitor for the newly

acquired goals, therefore the interrupts must be placed in the goals’ parent tasks. When

the trigger condition becomes true, it signals that the goal has been acquired in the mental

state of the agent. When the interrupt fires, the agent will attempt to achieve the newly

 102

acquired goal by executing the goal’s achievement procedure. This is how the goal in the

mental state triggers the appropriate achievement behaviour. For example, let us consider

the mapping of the ASR diagram fragment in Figure 4.34. Suppose that the ParentTask

task node is mapped into ParentTaskProc by the mapping m (m(ParentTask) =

ParentTaskProc). When the trigger condition becomes true the achievement procedure

for iASR_Goal is executed. Based on the task decomposition mapping rules presented

earlier in this chapter the procedure for the parent node of iASR_Goal will look like this:

 proc ParentTaskProc

...
<m(trigCond) → m(iASR_Goal).achieve until m(CancelCond)>

...
 endProc

In our approach, we use a new version of interrupts that provides us with more flexibility

in mapping from iASR diagrams into CASL models. This new version of interrupts

includes a cancellation condition that, unlike the original ConGolog version, allows the

programmer to control when interrupts stop firing. We use cancellable interrupts mainly

to specify under which circumstances the parent task of a goal node stops monitoring for

the new instances of the goal. The reason for that is the fact that many goals have to be

repeatedly achieved, some have to be achieved exactly once (these goals are normally

used with guards), some have to be monitored for only during some specific activities,

etc.

Let us discuss how our extended version of interrupts is defined. We first go over the way

interrupts are handled in ConGolog [De Giacomo et al., 2000]:

<φ → δ> ≡ while Interrupts_runnning do

if φ then δ else False? endIf

 103

Here, φ is the trigger condition, while δ is the program that is executed whenever φ

becomes true. It is assumed that a special fluent Interrupts_running is initially True.

When control is given to the interrupt, it repeatedly executes δ until becomes φ false. At

this point, the interrupt blocks and gives up control to another part of the program. Based

on the transition semantics of ConGolog, if φ becomes false, the process blocks right at

the beginning of the loop. If later some action makes φ true, the loop is resumed. To

terminate the loop (not just suspend it) a special primitive action called

stop_interrupts is used. Its sole effect is to make Interrupts_running false.

Therefore, the general pattern for a program δ1 that contains interrupts is

start_interrupts;(δ1>>stop_interrupts). start_interrupts and

stop_interrupts are automatically added by the ConGolog interpreter, so the

programmer does not have to worry about them. This program would stop all the blocked

interrupt loops in δ1 when there are no more actions in δ that can be executed (since

stop_interrupts runs at the lower priority, it is executed only when δ1 blocks).

The cancellation condition in the new version of interrupts allows the user to decide when

the interrupt should be stopped:

< TriggerCondition → Body until CancelCondition >

The above interrupt is in fact defined as a while loop:

while ¬CancelCondition do

if TriggerCondition then Body else False? endIf

The cancellation condition is assumed to be false initially. The loop terminates when the

cancellation condition becomes true. The fluents that correspond to the cancellation

conditions are defined by the programmer. The system specification must ensure that the

 104

cancellation condition is false at the beginning and during the execution of the interrupt

and that it eventually becomes false.

We also define the fluent SystemDone, which, when used as a cancellation condition,

emulates the original ConGolog interrupts. The interrupts with SystemDone are not

stopped until the program is terminated. So, the interrupt

<TriggerCondition → Body>

is viewed as an abbreviation for

<TriggerCondition → Body until SystemDone>.

Quite frequently, we need to use interrupts with parameters. The interrupt fires when

there are bindings for the variables v1, v2, etc. for which TriggerCondition holds:

< v1, v2,…,vn: TriggerCondition → Body until CancelCondition >

The above interrupt is mapped into the following:

while ¬CancelCondition do

if π v1,v2,…,vn: TriggerCondition(v1,v2,…,vn) then

Body(v1,v2,…,vn) else False? endIf

On the other hand, one quite frequently needs interrupts that fire only once. In our

approach, it is possible to use the guard annotation, guard(φ), instead of such interrupts.

This approach saves the developer from defining the unnecessary cancellation conditions.

 105

4.3.9.4 Mapping Dependency-Based Goals

Goals coming from inter-agent dependencies are acquired by agents through request

communication actions. We assume that the agents that acquire these goals have the

commitment to do everything possible in order to achieve them. The dependency-based

goals will most likely have to be constantly monitored for and will have to be repeatedly

achieved. These goals are generic (parameterized) ones: every time the depender agent

makes a request to the dependee to achieve a goal, it actually requests an instance of the

goal to be achieved.

The dependency-based goals are acquired through the actions of other agents — when an

agent receives the appropriate request from some agent in the system, its mental state

changes accordingly. The agent has to detect the change in its mental state and modify its

behaviour in order to respond to the request by attempting to achieve the goal, perform

the requested task, or supply the needed resource. The dependee’s tasks that are

responsible for monitoring for new goals acquired through inter-agent dependencies will

therefore contain the interrupts that will fire when the new goals are acquired. The bodies

of those interrupts will contain the achievement procedure for the goal.

In the example in Figure 4.35, we show the dependency MeetingScheduled between

Meeting Initiator (MI) and Meeting Scheduler (MS). The MS’s task MSBehaviour

monitors for the goal MeetingScheduled and contains an interrupt with the trigger

condition TriggerC and the cancellation condition CancelC. Furthermore, the MS has

one means to achieve the goal MeetingScheduled — by using the task

ScheduleMeeting.

As expected, MSBehaviourProc (the CASL procedure, into which the task MSBehaviour

is mapped) will contain the following code that deals with the goal MeetingScheduled:

 106

 proc MSBehaviourProc

 ...
 <m(TriggerC) → m(MeetingScheduled).achieve until m(CancelC)>

 ...
 endProc

Figure 4.35. The MeetingScheduled goal dependency.

Let us now examine the trigger and cancellation conditions for the above interrupt. As

mentioned earlier, many inter-agent dependencies exist throughout the life of system and

therefore the dependee has to continuously monitor for the new goals coming from these

dependencies. In the example diagram of Figure 4.35, MeetingScheduled is a goal

dependency of this type. Here, achieving the goal MeetingScheduled is the main

responsibility of the Meeting Scheduler agent and it acquires the goal whenever the

Meeting Initiator needs to schedule meetings. In cases like this, goal-monitoring

interrupts run until the system is terminated. We use the fluent SystemDone as a

cancellation condition when we only need it to become true upon the termination of the

system.

On the other hand, unlike the top-level dependencies (similar to MeetingScheduled

dependency above) that are generally present throughout the life of the agent, there are

many cases of dependencies that are present only in certain contexts. For example, when

agents are using an interaction protocol to negotiate about something, request

 107

clarification, etc., the associated dependencies exist only in the context of some other,

higher-level dependencies. Figure 4.36 shows a diagram with a dependency that only

exists in a certain context.

Figure 4.36. Top-level and context-only dependencies.

The diagram in Figure 4.36 models a common scenario of servicing products under

warranty. In the above figure, we have two actors, Service Centre and Customer.

Customer depends on Service Centre for the shipment of replacement products. At the

same time, we have another dependency, this time going from Service Centre to

Customer, where Service Centre requires Customer to ship the defective product back.

While ReplacementShipped is clearly the top-level dependency here,

DefectiveShipped dependency exists only in the context of ReplacementShipped.

When the service centre attempts to solve the instance of the goal ReplacementShipped,

it will in turn request the customer to ship the defective product back. For the Customer

agent it does not make sense to monitor for the goal DefectiveShipped unless it has

already requested the replacement product from Service Centre. Therefore, we can model

the cancellation condition for the interrupt that monitors for the acquisition of

DefectiveShipped with the fluent ReplacementComplete. It could be either a primitive

or a defined fluent. This fluent is false initially and the program will make sure that it

holds once the replacement is complete. Of course, in order to differentiate between

instances of the goal ReplacementShipped, both the formula that the goal node is

mapped into and the fluent ReplacementComplete need to be parameterized. We present

the interrupt for handling DefectiveShipped goals below:

 108

<m(TriggerC) → m(DefectiveShipped).achieve

until m(ReplacementComplete)>

Now we will discuss the trigger conditions. In CASL, once an agent acquires a goal, it

cannot be removed from the agent’s mental state unless the cancelRequest action is

executed for the goal. Even if some goals are achieved, the agent still has them in its

mental state in the sense that they are true in desirable histories for the agent. When

monitoring for new, not yet achieved goals, we need to select only those instances of

goals for which the formula they map into is false. Therefore, the triggering condition for

the dependency-based interrupts will normally be (here we use the version of interrupts

with parameters):

< t
r
: Goal(agt,Eventually(m(G).formula(t

r
),now,then))

∧ Know(agt,¬m(G).formula(t
r
),now) → …>,

where t
r
 is a parameter list and G is a goal node in an iASR diagram. Here, we assume

that m(G).formula(t
r
) (the CASL formula, which the goal is mapped into) is an

achievement goal and therefore was requested as
Eventually(m(G).formula(t

r
),now,then) by the depender. Our assumption is that all

goals are of this form.

In the trigger condition above we pick the parameter list t
r
 such that the goal

Eventually(m(G).formula(t
r
),now,then) is in the mental state of the agent agt. This

means that the agent had to achieve the goal m(G).formula(t
r
) some time after it

acquired it. Additionally, we require that Know(agt,¬m(G).formula(t
r
),now) be true,

meaning that the agent knows that the goal m(G).formula(t
r
) has not yet been achieved.

If there is an instance of the goal that has not been achieved, then the agent must try to

achieve it. Here, we assume that once achieved goals stay true.

 109

In the context of the diagram of Figure 4.36, the interrupt that the Service Centre agent

will use for handling the inter-agent goal dependency ReplacementShipped will look

like this (we omit the situation parameters here):

<sn: Goal(SC,Eventually(m(ShipReplacement).formula(sn))) ∧

Know(SC,¬m(ShipReplacement).formula(sn)) →

m(ShipReplacement).achieve(sn) until SystemDone>

Here, we check if there is a serial number (we assume that it uniquely identifies the

product) for which a customer requested a replacement and Service Centre has not yet

shipped that replacement. In this case, the agent knows that the goal formula, which is

supposed to be true when the goal is achieved, is, in fact, not true for the selected value of

sn. The cancellation condition is SystemDone since this is a high-level dependency

independent of any other dependencies.

Since most of the trigger conditions and many cancellation conditions are quite lengthy,

we expect that many of them could be replaced with special labels (for example,

TCondShipRepl is the label for the trigger condition of the interrupt that hands the goal

ReplacementShipped), which are substituted by corresponding CASL formulae or

fluents before we use the mapping m to map iASR diagrams into CASL models. The

modeler must keep track of these labels.

4.3.9.5 Mapping Task Dependency-Based Goals

In a task dependency, the depender asks the dependee to perform a certain task. Since the

request is made with the use of the request action, the dependee acquires the

corresponding goal to perform the task. As described previously, task dependency-based

goals are special kind of goals since there are no alternative solutions for these goals —

the only way to achieve them is to execute the required task. Therefore, the CASL

 110

mapping for the task dependencies is simpler than for other dependencies. We now

present the code that the Participant agent will use for handling the task dependency

SendAvailDates (see Figure 4.27 for the iASR diagram for this example). The procedure

FindAgreeableDateProc (the CASL procedure that the task node FindAgreeableDate

of Participant is mapped into) will look like the following:

proc FindAgreeableDateProc

 ...
<TC → SendAvailDates until SystemDone>

...
 endProc

The trigger condition TC for the above interrupt should become true if the task

SendAvailDates has not yet been performed by the Participant agent, hence we take it to

be the formula below:

<Goal(Ptcp,DoAL(SendAvailDates,now,then)) ∧

Know(Ptcp,¬∃s,s’(s≤s’≤now ∧ DoAL(SendAvailDates,s,s’))) → … >

The above expression becomes true if the Participant agent (Ptcp in the code above) has

the goal to perform at least the task SendAvailDates and knows that it has not done that

before the current situation. Note here that once the Participant agent performs the

required task, the Know part of the trigger can never evaluate to True since the agent will

know that it performed the task. Therefore, no matter how many requests to perform

SendAvailDates it receives, it will simply ignore them. To remedy the situation the

designer might want to incorporate some parameters (e.g., time, request ID, etc.) into the

 111

task so that different instances of the goal to perform the task can be distinguished from

each other. 1

In general, the agents could be asked to perform tasks with parameters. Below we have a

parameterized version of the trigger condition for handling goals to perform tasks:

< t
r
: Goal(agt,DoAL(SomeTask(t

r
),now,then)) ∧

Know(agt,¬∃s′,s″[s′≤s″≤now ∧ DoAL(SomeTask(t
r
),s′,s″)]) → … >

When using the parameterized version of the trigger condition, the agent is able to

distinguish among various requests asking it to perform the task SomeTask, provided the

parameters of the task are different. If it is required that some task be performed for each

and every request (e.g., the task “check radiation level”), this task could get a time stamp

parameter that will make every request different. The depender then can use the

following code to request some other agent to perform a task with a time stamp:

π t (t = Time(now))?; request(agt1,agt2,DoAL(SomeTask(t),now,then)))

4.3.9.6 Mapping Self-Acquired Goals

Self-acquired goals are the ones obtained without requests from other agents. They could

be used by the designer to model alternative ways of achieving the required results. As

previously described, designer goals are also needed to handle goal refinements if these

refinements are to be analyzed at the CASL level.

1 A simple account of time is presented in [Shapiro et al., 1998]. A special functional fluent Time(s) is
introduced, which maps a situation into the current time at the situation. It is also assumed that all the
actions in the domain increment Time by the amount it takes to perform those actions.

 112

In the example diagram below (Figure 4.37) we have a fragment of a task decomposition

of the ScheduleMeeting task of the Meeting Scheduler agent (we are not showing all the

subtasks of ScheduleMeeting). One of the responsibilities of the task is to get the

information about participants’ availability. There could be some number of ways to

achieve this goal and the designer wants to keep his options open and therefore uses a

self-acquired goal to capture the (potential) existence of alternatives. To acquire the

designer goal AvailableDatesKnown we have to execute the commit action that adds the

instance of the goal into the agent’s mental state. Note that we use the parameter mid

(meeting ID) to allow the MS to acquire and achieve instances of the goal

AvailableDatesKnown for every meeting it schedules.

Figure 4.37. The AvailableDatesKnown self-acquired goal.

We assume that m(ScheduleMeeting)=ScheduleMeetingProc. The guard condition in

Figure 4.37 is mapped into the CASL formula Goal(MS,

AvailableDatesKnown(mid),s), however it is labelled as

Goal(AvailableDatesKnown(mid)). We frequently omit some parameters in

conditions, goal/task node labels, etc. in iASR diagrams for brevity or replace complex

conditions with acronyms, etc. The CASL mapping of Figure 4.37 into CASL is quite

simple:

proc ScheduleMeetingProc(mid)

 ...
 commit(MS,Eventually(m(AvailableDatesKnown(mid)).formula(mid)));

 guard Goal(MS,Eventually(m(AvailableDatesKnown(mid)).formula(mid))) do

 113

 m(AvailableDatesKnown(mid)).achieve(mid)

 endGuard

endProc

We assume that the task node ScheduleMeeting is mapped into the CASL procedure

ScheduleMeetingProc(mid), which takes the meeting ID as parameter. The commit

action is then executed for that specific meeting ID acquiring the goal

AvailableDatesKnown for a specific meeting request. The guard condition is the

presence of this goal in the mental state of the Meeting Scheduler. Since the goal has just

been acquired for the meeting mid, we know that it has not yet been achieved. Therefore,

we do not check whether the goal has been already achieved as we usually do when we

map interrupts into CASL.

In fact, since the execution of the commit action makes an agent acquire a single instance

of a goal, the guard condition can check only for that particular instance, thus making this

condition much simpler than the usual trigger condition of an interrupt. We now present a

generic procedure for handling the self-acquired goal SomeGoal:

 proc ParentTaskProc(t
r
)

 ...
 commit(agt,Eventually(m(SomeGoal).formula(t

r
)));

guard Goal(agt,Eventually(m(SomeGoal).formula(t
r
))) do

m(SomeGoal).achieve(t
r
)

endGuard

 endProc

Here, the procedure for the parent task takes a parameter list t
r
. Somewhere in the code of

the procedure, the agent acquires the goal SomeGoal with the parameters t
r
 by executing

the commit action. Next, we have the guard operator, whose condition becomes true once

 114

this instance of SomeGoal is in the mental state of the agent agt. Since we know which

instance of the goal has just been acquired and we also know that the instance could not

have been achieved yet, the guard condition does not check whether the instance has been

achieved or not.

In this discussion, we assume that the task node that is mapped into the commit action

and the goal node representing the self-acquire goal are next to each other in an iASR

diagram, as in Figure 4.37. If an agent is self-acquiring instances of a goal in one place,

while monitoring for them in another, then the modeler must be careful in using guards

since they block the process until their conditions become true.

4.3.9.7 Mapping Achievement Procedures

Achievement procedures for goals encode the ways in which these goals can be achieved.

The achievement procedure for a goal is produced by mapping the means-ends

decomposition of the goal node, which corresponds to that goal, into CASL. As discussed

previously, in iASR diagrams, the means for achieving goals have to be task nodes and

the only composition annotation available for the means-ends links is the alternative

annotation. In coming up with a goal achievement procedure we must take into

consideration the applicability conditions as well as the link annotations associated with

the various means of achieving the goal.

Figure 4.38. Generic means-ends decomposition.

 115

Figure 4.38 shows generic means-ends decomposition for the goal G. There are n ways to

achieve the goal G, each represented by the task Meansi. The means-ends links that

connect the means with the goal G are each augmented with applicability conditions and

link annotations that provide additional details on the ways the goal G could be achieved.

Figure 4.38 is a diagram representation for the procedure that achieves the goal G.

Suppose that m(G).achieve = G_Achieve. The code for G_Achieve is presented below:

proc G_Achieve

guard m(φ1) do m(α1)(m(Means1)) endGuard

 |
 guard m(φ2) do m(α2)(m(Means2)) endGuard

 |

 …

 |
 guard m(φn) do m(αn)(m(Meansn)) endGuard

endProc

For example, below (Figure 4.39) we have a case, which is a modification of the example

in Figure 4.21. It displays three possibilities for notifying the participants of a meeting:

phoning them, emailing them and coming up to them and notifying them personally.

Figure 4.39. An example of a means-ends decomposition.

π(p, Participants(p))
for(p, Participants(p))

Email
Participant

Phone
Participant

SpeakTo
Participant

NotifyParticipants

ac(NumberOfParticipants =1)

ac(NumberOfParticipants ≤ 3)
for(p, Participants(p))

 116

The means for achieving the goal NotifyParticipants in Figure 4.39 have a mix of

applicability conditions and link annotations. The applicability conditions specify under

which circumstances the means can be selected. If the number of meeting participants is

one, all three alternatives can be considered; if the number of the participants is two to

three, then only two means are considered, etc. The link annotations that are used in

Figure 4.39 are for loops that indicate that each participant must be notified by the chosen

method and the pick annotation, which is used with the first alternative and selects the

only meeting participant. Let m(NotifyParticipants).achieve =

NotifyParticipantsProc. We present the mapping of the means-ends decomposition of

Figure 4.39 below. The absence of an applicability condition for a means to achieve a

goal indicates that the means is applicable under any circumstances. So, the absence of

the applicability condition for the task EmailParticipants means that unlike the two

other tasks there is no guard operator in the mapping of the task procedure and the link

annotation for that means:

proc NotifyParticipantsProc(Participants)

 guard NumberOfParticipants=1 do

π p. Participants(p)?; m(SpeakToParticipant)(p)

 endGuard

 |
 guard NumberOfParticipants≤3 do

 for p: Participants(p) do m(PhoneParticipant)(p) endFor

endGuard

 |
for p: Participants(p) do m(EmailParticipant)(p) endFor

endProc

In mapping means-ends decompositions, we have to take into consideration the

applicability conditions for the means and the link annotations associated with the means.

 117

The mappings of every means to achieve the goal are joined by the non-deterministic

choice operator (”|”) since the means are alternative ways to achieve the parent goal. The

code obtained from mapping a generic means-ends link is shown below:

guard m(φi) do m(αi)(m(Meansi)) endGuard,

which, based on the definition of the guard operator, is defined as follows:

if m(φi) then m(αi)(m(Meansi)) else False? endIf

The conditional construct (and thus the condition of the guard operator) takes care of the

applicability condition m(φi). If the applicability condition m(φi) holds, then we execute

m(αi)(m(Meansi), which is a mapping of the task Meansi augmented with the mapping of

the link annotation αi. Based on the semantics of the if-then-else operator, the test of the

applicability condition and the first transition of the associated means are performed as a

single atomic step. Therefore, we are sure that the applicability condition holds when the

procedure for the means starts executing. If the applicability condition is false, then the

above expression blocks without performing any transitions since the test False? can

never succeed.

In general, if we have several means of achieving some goal, we will have the CASL

code below (we removed the mapping m for brevity). The same discussion applies to any

number of means.

guard AC1 do Means1 endGuard | … | guard(ACn) do Meansn endGuard

Based on the semantics of the non-deterministic choice operator (a | b), either one of the

actions has to be successfully executed for the whole construct successfully execute. In

the code above, if several applicability conditions are true, then either of the means is

 118

executed. If only one applicability condition holds, then only the associated means can be

executed. If none of the applicability conditions hold, then the whole construct blocks

until something makes one of the applicability conditions true.

4.4 Knowledge

4.4.1 Introduction

Information exchange plays an extremely important role in human organizations. It is

used for passing knowledge, coordination, etc. In modern society, information becomes

more and more important and is frequently treated as a critical resource on which the

lives of people and organizations depend. Information resources are becoming

increasingly valuable and many are willing to pay a premium for convenient access to

reliable information. It is hard to find cases where humans working together do not

exchange information

Since multiagent systems mimic human societies in that they are systems with multiple

autonomous and social agents that work together to achieve goals (alternatively, they can

be in competition), they too benefit immensely from information exchange. Not unlike

CASL’s support for reasoning about goals, the ability of the CASL language to model

agent knowledge and knowledge exchange allows us to model multiagent systems more

naturally. Instead of talking about one software entity invoking a mutator method of

another entity to modify the variable, which stores the price of some product, we say that

one agent informs another of the change in price for the product they are negotiating

about.

The support of CASL for reasoning about knowledge allows the designer to model

information exchanges precisely and enables verification of information-related

 119

requirements. Information exchange is abundant in multiagent systems and

communication, coordination, cooperation, etc. all involve the sending and receiving of

information that can be formalized and reasoned about in CASL.

4.4.2 Acquiring Knowledge

The CASL formalism allows us to model two aspects of the mental state of the agents:

their goals and their knowledge. Agents acquire knowledge about something when they

are informed of it by other agents. There are several communicative actions that allow

agents to exchange information with each other. These actions, inform, informRef, and

informWhether, are used by the agents in the system to send information to other agents.

To avoid the situation where agents lie, they can only tell others what they know. The

mental state of the agents receiving the new information changes accordingly. We

discussed how knowledge is represented in CASL in Section 2.2.2.

4.4.3 Mapping Information Resource Dependencies

Since CASL supports reasoning about agents’ knowledge and goals, it is useful for

modeling of information flow in distributed systems. Information exchange and

interaction protocols play an important role in multiagent systems and we are able to

model them well in CASL. As far as we know, the only other approach that explicitly

represents agent knowledge is ALBERT-II [du Bois et al., 1997]. In i*, the flow of

information can be modeled through information resource dependencies. We distinguish

information resource dependencies based on the requests that the dependers make to the

dependees. The request requires the dependee to inform the depender of the value of a

functional fluent or of the truth value of a certain formula.

Figure 4.40 shows a generic information resource dependency example where the

Depender agent asks the Dependee to inform it of the truth value of the formula φ. The

 120

task AskAboutφ is responsible for asking the Dependee agent for information about the

truth value of φ. This is the SR diagram for the dependency and it does not contain

enough information to be mapped into a CASL model.

AskAbout
φ Behaviourφ

Depender Dependee

Figure 4.40. A generic info resource dependency.

At the iASR level, the above diagram will be modified to include more details about how

the dependency is fulfilled. First of all, as is the case with all resource dependencies, an

information resource dependency is turned into a task or a goal dependency. If the

information dependency is turned into a goal one, the goal of that dependency is the fact

that the depender eventually has the requested information. The dependee can achieve the

goal by executing the appropriate inform action, thus passing the needed information to

the depender. We will also include a depender task node that will actually make the

request to the dependee (it will be mapped into the appropriate request action). The

dependee model will include the means to achieve the information goal. To illustrate the

above discussion let us look at the iASR diagram for the example from Figure 4.40 (in

the diagram below, EvKnowφ is an abbreviation for

Eventually(KWhether(Depender,φ))):

Figure 4.41. The iASR diagram for a generic info resource dependency.

 121

The task AskAboutφ now includes a subtask, which is a request action, the new origin

of the dependency. In order to receive the information that it needs, the Depender agent

will execute the following request action (we omit the situation argument):

request(Depender,Dependee,Eventually(KWhether(Depender,φ)))

Here, the Depender agent asks the Dependee agent to be informed of the truth value of

the formula φ. The dependee agent will then acquire the goal

Eventually(KWhether(depender,φ)) and will achieve it by executing the task

Informφ. Since the Depender agent wants to know whether the formula φ is true or false,

the Dependee task InformPhi might be the following (we omit the situation arguments

for brevity):

proc InformPhi

 if Know(Dependee,φ) then

 inform(Dependee,Depender,φ)
 else

 if Know(Dependee,¬φ) then

 inform(Dependee,Depender,¬φ)
 endIf

 endIf

endProc

At first, it may seem that there is only one way of achieving an information goal, namely

to provide the requested information. However, the agent may need to perform some

computation to get the requested information first (or in turn ask other agents for the

information), and then send it to the requestor. As seen from the above example,

achieving information goals is not done by simply executing the appropriate inform

action.

 122

Alternatively, agents can ask to be informed of the value of functional fluents. The way

for the Dependee agent to achieve the goal Eventually(KnowRef(Depender,θ)) is to

execute the corresponding informRef action. The consequence of an agent receiving one

of the inform-type communications is that its knowledge base is updated with the new

information. The details of the interactions will vary according to the application.

4.4.4 The Trusts Relationship

When an agent receives information from other agents through inform actions, its mental

state changes to include the knowledge of the newly communicated information. This is

done unconditionally in that no matter who the sender agent is, the new information is

accepted. This may not be acceptable for all the applications. Trust plays an increasingly

important role in the multiagent systems and it could be very useful for the modeling

framework to support trust and distrust among agents. One of the ways to base

information acquisition on the level of trust among the pair of agents is to introduce a

Trusts relationship, which is similar to the Serves relationship for goals in that it filters

out information coming from untrusted sources. A simple way to specify that an agent

trusts another one is to say Trusts(Depender,Dependee). This says that the Depender

agent trusts all the information provided by the Dependee agent. We can fine-tune the

relation to include the subject of trust in it: Trusts(Depender,Dependee,φ), which says

that the Depender agent trusts the Dependee for updates on the value of the fluent or

formula φ.

In order to make use of the Trusts relationship we need to make changes to the way

agents acquire information. Here is an example of the modifications that one needs to

make to the successor state axiom for the K accessibility relation for knowledge

(assuming that inform is the only knowledge-producing action):

 123

K(agt,s”,do(a,s)) ≡

∃s’ (K(agt,s’,s) ∧ s” = do(a,s’) ∧ Poss(a,s’) ∧

∀informer,φ (a = inform(informer,agt,φ) ∧

Trusts(agt,informer) ⊃ φ[s’]))

The above axiom states the conditions the situation s” is K-accessible from situation

do(a,s). For non-inform actions, the predecessor of s”, called s’, must be K-accessible

from s and the action a, which takes s’ to s”, must be executable in s’. If, however, the

action is an inform action, then, provided that the agent agt trusts the informer, in

addition to the above constraints, the subject of the communication, φ, must hold in

situation s’.

4.4.5 Self-Acquisition of Knowledge

Agents acquire knowledge about something when they are informed of it by other agents.

There could be cases when an agent needs to come to know something without being

informed about it. For example, the agent might compute a value of a function and then

communicate that information to other agents, etc. For these situations we propose the

action assume(agt,φ), whose effect is that agt knows that φ is true. Alternatively, the

agents could use the action assumeRef(agt,θ), whose effect is that the agt knows

who/what θ is.

In CASL, the precondition of the inform action is that the agent knows what it is

informing another agent about (Poss(inform(informer,agt,φ),s) ≡
Know(informer,φ,s)). The assume action does not have this precondition, however, we

require that agents can only assume true propositions (perhaps unknown):

Poss(assume(agt,φ),s) ≡ φ(s).

 124

4.4.6 Specifying Interaction Protocols

There has been a lot of work on the specification of agent interaction protocols. For

example, AgentUML [Odell et al., 2000] is a rich, non-formal, UML-based notation,

while commitment machines [Yolum and Singh, 2001] provide a formal way to specify

protocols that can be executed flexibly. Let us show how goals and knowledge can be

used in describing interactions among agents. More work has to be done to support

intuitive, flexible and formal specifications of interaction protocols in the combined i*-

CASL approach, but even with the facilities we currently have, it is possible to model

interaction protocols and execute them flexibly. Here, we look at the simplified version

of the NetBill protocol discussed in [Yolum and Singh, 2001]. This protocol describes

interactions between a customer and a merchant. In NetBill, once a customer accepts a

quote, the merchant sends the encrypted goods (e.g., software) and waits for payment

from the customer. Once the payment is received, the merchant sends the receipt with the

decryption key. The interactions are shown in Figure 4.42.

Figure 4.42. A simplified NetBill protocol.

For an agent playing a role of customer, a very simple specification of the protocol may

look like the following:

Customer

(6) Send receipt
(5) Send payment

(3) Accept quote
(4) Deliver goods

(2) Present quote
(1) Request quote

Merchant

 125

proc CustomerBehaviour(Cust)

set(¬Done);

assume(¬Done);
 (<Goal(Cust,Eventually(KRef(Cust,Quote(product)))) →

 request(Cust,Merch,Eventually(KnowRef(Cust,Quote(product))))

 until Know(Cust,Done)>

 ||
 <KRef(Cust,Quote(product)) →

 if Know(Cust,GoodPrice(Quote(product))) then

 inform(Cust,Merch,AcceptQuote(Cust,product)))
 else set(Done); assume(Done) endIf

 until Know(Cust,Done)>

 ||
 <Know(Cust,ReceivedGoods) →

 commit(PaymentSent);
 guard Goal(Cust,PaymentSent) do

 SendPaymentProc
 endGuard

 until Know(Cust,done)>

 ||
 <Know(Cust,ReceiptReceived) →

 set(Done); assume(Done)
 until Know(Cust,Done)>)

endProc

In the above code, Done means that the interaction protocol has finished executing. We

initially set Done to false. We change the value of Done by first executing the action set,

which changes the value of the fluent, and then executing the action assume, which

updates the mental state of the agent accordingly. There are four interrupts in the

 126

program. All of them are running concurrently and correspond to the states in the

execution of the protocol, where action on the part of the customer is required. The first

interrupt is triggered when the agent has the goal of knowing the merchant’s quote for

product. In the body of the interrupt the customer asks the merchant for the quote. Once

it knows the quote, the second interrupt is triggered. The customer then evaluates the

quote with the GoodPrice function (we omit its definition here). If the price is good, the

customer informs the merchant that it accepts the quote, otherwise the protocol is

terminated. Once the customer knows that it has received the goods, it commits itself to

sending the required payment to the merchant. Note here that unlike the previous

interrupts, the agent does not simply execute the body of the interrupt, but rather adopts

the goal PaymentSent. This is an example of a self-acquired goal. Since there are a

number of ways the customer can pay the merchant, hard-coding one of the methods into

the protocol can greatly reduce the flexibility of the system. Therefore, the agent acquires

the goal of paying the merchant through the commit action. The usual guard operator that

blocks until the goal is in the mental state of the customer follows this action. The

achievement procedure for the goal PaymentSent, PaymentSentProc is the body of the

guard operator. Finally, the last interrupt is triggered when the customer receives the

receipt from the merchant. At this point, the interaction protocol terminates.

Note that by using assume and commit appropriately to acquire goals or knowledge in the

triggering conditions of the interrupts, an agent can execute this interaction protocol

flexibly by jumping into it at any place.

4.4.7 Conditional Commitments in Interaction Protocols

When humans and human organizations are involved in joint business or other activities,

they (if they are benevolent) are committed to fulfilling their obligations to the other

parties involved in the activities. Quite frequently, the parties have a lot of conditional

commitments related to some possible future situations. In a business setting, these

 127

commitments are usually explicit. For example, when a customer orders a car from a car

dealer, the dealer commits to customizing the car according to the customer wishes (e.g.,

installing the optional equipment) and delivering the car to the customer. It also commits

to fixing the car in case the car breaks down during the warranty period provided that the

car is properly maintained by the customer.

When several agents are involved in some joint activity according to a particular

interaction protocol, they are not only committed to the immediate action that is required

by the protocol, but also are conditionally committed to fulfilling their obligations down

the road, provided their counterparts do the same. In the NetBill protocol, for example,

when the merchant sends the quote to the customer, it also commits to sending the goods

upon the customer's acceptance of the quote. Moreover, the merchant is committed to

sending the receipt upon receiving the payment for the delivered goods. Logically, all of

these commitments have to be in the mental state of the merchant, but handling these

conditional commitments declaratively will greatly increase the number of goals for the

agents (a lot of the conditional commitments are many layers deep resulting in complex

expressions with nested goals) and make the execution of the interaction protocols quite

cumbersome. [Yolum and Singh, 2001] provide a way to solve this problem by

introducing commitment machines that can be compiled into an easily traversable

structure similar to a finite state automaton. While this approach is quite interesting and

the applicability of it (or some of its ideas) to the specification of interaction protocols in

CASL should be investigated, we leave this as a future work. Here, we adopt a simple

approach for handling conditional commitments that can be summarized as follows:

• The agent commits to executing the required interaction protocol (as shown for

the NetBill protocol earlier), thus implicitly acquiring all the conditional

commitments associated with this protocol.

• At each step of the protocol, the agent explicitly acquires the appropriate

commitments deemed appropriate by the designer (e.g., once the merchant

 128

receives the payment, it acquires the commitment to send the receipt to the

customer).

This way we can avoid the potentially huge expansion of the agent’s goals due to the

conditional commitments. In our approach, the designer determines which commitments

should be in the mental state of the agent and which should be handled procedurally,

without any changes to the mental state of the agent. For example, upon receiving the

payment for the goods, the merchant should send the receipt to the customer. We can

make the merchant acquire the goal SentReceiptTo(Customer), thus changing the

mental state of the agent:

<Customer: Know(Merchant,ReceivedPaymentFrom(Customer) →

 commit(SentReceiptTo(Customer))
until Know(Merchant,Done)>

Alternatively, the commitment can be handled purely procedurally by executing the

procedure SendReceiptProc(Customer):

<Customer: Know(Merchant,ReceivedPaymentFrom(Customer) →

 SendReceiptProc(Customer)
until Know(Merchant,Done)>

4.5 Capabilities

In this section, we discuss capabilities. Capabilities are a new notion introduced into the

i* modeling framework in this thesis. Goal capabilities and task capabilities map into

epistemically feasible CASL procedures and are always guaranteed to achieve their

goals/perform their tasks provided their context conditions hold when the capabilities are

 129

invoked and other agents in the environment do not interfere with the execution of the

CASL procedures corresponding to the capabilities.

We introduce capabilities in Section 4.5.1, discuss physical executability and epistemic

feasibility in Section 4.5.2, and describe the use of capability nodes in SD, SR, and iASR

diagrams in Section 4.5.3. We talk about the mapping of goal capabilities into CASL and

the formal restrictions on the CASL procedures corresponding to goal capabilities in

section 4.5.4. The mapping of task capabilities is described in section 4.5.5. We discuss

some capability-related issues in section 4.5.6.

4.5.1 Introducing Capabilities

In analyzing multiagent systems and the interdependencies among the agents in such

systems, it makes sense to talk about the capabilities of agents. These capabilities are

typically viewed as the services that the agents are able to provide. An agent with a

certain capability is usually understood to have at least one plan to achieve the goal

corresponding to that capability. Each plan may have preconditions associated with it or a

context, which describes the circumstances under which the plan is to be used. Some

researchers (e.g., [Sycara et al., 1999]) use the term to describe what agents advertise to

other agents in a multiagent system. Martin, et al. [Martin et al., 1999] call generic goals

that the agents are able to achieve “solvables” and describe them as being the capabilities

of agents. These capabilities could be viewed as a high-level interface to the agents in a

multiagent system.

We, on the other hand, use the term capability to refer to the goals that the agent can

always achieve and the tasks that the agent can always perform in a certain context.

Capabilities of an agent can be the ends of a top-level dependency, thus being part of the

agent’s interface to other agents in the system. Alternatively, capabilities can be used

internally as sub-behaviours of agents. Capabilities will also include the context

 130

conditions and the specifications of other agents’ compatible behaviour that specify when

the capabilities are guaranteed to achieve their goals or perform their tasks. The

capabilities have to be carefully specified to provide this guarantee. In a sense, we use

Design by Contract [Meyer, 1997] here: if the user of a capability makes sure that its

context condition holds (and the behaviours of other agents are compatible with the

capability), the capability is guaranteed to succeed.

There are two types of capability nodes that we can use in diagrams: capabilities to

achieve goals and capabilities to perform tasks. They are used for specifying goals that

can always be achieved and tasks that can always be performed because the

plans/procedures that the agent has for achieving the goals or performing the tasks are

guaranteed to succeed in environments satisfying the context conditions of these

capabilities and when no outside processes interfere with the capabilities. Note that the

goal capability of achieving a goal G first acquires the goal using the appropriate commit

action if the agent does not already have this goal in its mental state and then achieves it.

Capability nodes can be used in both SD diagrams and in SR/iASR diagrams in i*

models.

Figure 4.43. The goal capability RoomBookedCap.

 131

Figure 4.43 is an example of a goal capability node used as a means to achieve a goal. It

is taken from the meeting scheduling case study (see Chapter 6). Here, a goal capability

RoomBookedCap is used as a means of achieving the goal RoomBooked. It is capable of

booking a room for a meeting on a certain date. The top-level procedure of the capability

is called RoomBookedProc. It is decomposed into a commit action and a goal node

RoomBooked. The action is only executed if the particular instance of the goal

RoomBooked with the parameters mid and d (meeting ID and date) is not in the mental

state of the agent (see Section 4.5.4). Once the goal is in the mental state of the agent,

BookRoomProc is executed. A thorough discussion of how capability nodes are used in

iASR diagrams is presented in Section 4.5.3.

4.5.2 Physical Executability vs. Epistemic Feasibility

Recall that we imposed only very weak constraints on the achievements procedures for

goals, i.e., that there be some situations where these procedures achieve the goal when no

concurrent actions occurred (see Section 4.3.9.2). The key difference between regular

goals and capabilities is that in the case of regular goals it is enough that the agent tries to

achieve the goal and it is not required that the agent actually succeed in achieving the

goal; in case of capabilities we require that that the agent always be able to achieve the

goal or perform the task provided the corresponding context conditions hold. To ensure

this, we require that the plans the agent has for achieving the goal/performing the task of

the capability be both physically executable and epistemically feasible in all situations

satisfying the context condition. Note that for ordinary goals, we do not even require

physical executability of the means in all situations — we only require physical

executability in some situation.

Since in our framework we assume that agents have incomplete knowledge, there may be

plans that the agents are not able to execute due to the lack of knowledge. Thus, it is

important that the ability of CASL to reason about knowledge provides us with the means

 132

to evaluate the epistemic feasibility of agents’ plans [Lespérance, 2002] (see also Section

2.2.4). While some researchers (e.g., [Padham and Lambrix, 2000]) have proposed new

mental state modalities to account for agent capabilities, in this work we characterize

capabilities through the notion of epistemic feasibility. Here, agent capabilities are sub-

behaviours that are carefully scripted to be both physically executable and epistemically

feasible, meaning that the agent has to have enough knowledge to be able to successfully

execute the behaviours. This should increase the designer’s confidence in the routines’

workability and the workability of other routines and dependencies that rely on these

capabilities.

To illustrate the difference between the physical and the epistemic abilities to execute a

program let us look at a small example. Suppose we want the agent to open a safe by

dialling its combination, i.e.:

π number((combination(safe1,number))?; dial(safe1,number))

While the above program is physically executable, i.e:

∀s ∃s′.Do(π number((combination(safe1,number))?;

dial(safe1,number)),s,s′),

it is not epistemically feasible if the agent does not know the combination, i.e.:

¬∃number.Know(agent,combination(safe1,number),s).

The capability notation we use in i* (see Figure 4.44) diagrams is inspired by the way

packages are represented in UML [Rumbaugh et al., 1999]. Similarly to UML packages,

capabilities aggregate modeling elements into conceptual wholes. When an agent has a

goal or a task capability, it means that the agent has an epistemically feasible as well as

 133

G1CAP
Goal_1 Task_1

T1CAP

Goal/Task that is achieved/executed

Capability Name (optional)

physically executable plan to achieve the goal or perform the task. All capabilities have

context conditions that must be true for the capabilities to be guaranteed to succeed (see

Sections 4.5.4 and 4.5.5 for more on this). These context conditions are static properties

of capabilities. In most cases to guarantee successful execution of goal capabilities (i.e.,

to assure that the goal achievement procedure actually achieves the goal of a goal

capability) one also needs to specify what actions by other agents are allowed to be

executed concurrently with the execution of the CASL procedure corresponding to the

capability. The specification of the allowed behaviour of other agents is also a static

property of capabilities. The notation of Figure 4.44 shows just the goal/task that the

capability achieves/executes. A more detailed notation showing the internals of the

capability can also be used (see Figure 4.43).

Figure 4.44a. A goal Capability. Figure 4.44b. A task capability.

4.5.3 Using Capability Nodes in SD, SR and iASR diagrams

Figure 4.45. Using capability nodes in SD diagrams.

Capability nodes proposed in this thesis can be used in SD, SR, and iASR diagrams.

Capability nodes in SD diagrams are used mostly to model the abilities of agents that are

part of the environment of the system-to-be. These include humans, hardware devices, or

legacy software systems. Figure 4.45 illustrates the use of capabilities in SD diagrams.

 134

Here, the actor Actor1 has capabilities to achieve Goal_1 and to perform Task_1. See

Section 5.2.3 for more details on using capabilities in SD diagrams.

Capability nodes can be used anywhere task nodes are used in iASR diagrams, namely as

subtasks of other tasks and means to achieve goals. The goal and task capability nodes in

Figure 4.44, which simply show the task that the capability performs or the goal it

achieves, can be used in SD, SR, and iASR diagrams, while capability nodes that show

the internals of the capabilities, i.e., the detailed plan to achieve a goal or perform a task,

can be used only in iASR diagrams (see Figure 4.46).

Figure 4.46 A goal capability node that shows the internals of the capability.

This more detailed view of the capabilities allows the designer to specify various means

of achieving the goal of the goal capabilities and the detailed decompositions of the tasks

that the task capabilities are able to execute. The task and means-ends decompositions are

specified as usual. The usual iASR rules for means-ends decompositions apply, meaning

that the means to achieve the goal of the capability can only be tasks and (nested)

capabilities, that the only composition annotation available is the alternative, that the

means can be labelled by the appropriate link annotations and applicability conditions,

etc. (see Figure 4.46).

 135

The ability to use capability nodes both with and without internal details allows the

designer to concentrate on certain parts of the model while leaving other parts sketchy: on

an iASR diagram, the capabilities that are not pertaining to the specific aspect of the

agent behaviour being analyzed can be represented as single nodes showing just their

goals or tasks, while other capabilities can be fully described through the usual goal or

task decomposition facilities (see Figure 4.47):

Figure 4.47. An iASR diagram with both types of capability nodes.

In Figure 4.47, the goal G2 has two means of achieving it, a task and a capability. The

capability G1Cap is modeled in full detail, showing how the goal G1 is acquired and then

achieved using two means, the tasks Means1 and Means2. Here, the assumption is that

achieving G1 implies the achievement of G2. Another means of achieving the goal G2 is

the task Means3, which is decomposed into the task capability T1Cap. Note the iASR

diagram does not show the details of the task capability (e.g., whether the task Task_1 is

decomposed into subtasks or not). It just shows that the capability executes the task

Task_1.

As previously noted, a goal capability, which achieves the goal G, may acquire this goal

by using the commit action. The reason for this is that we would like to treat capabilities

as modules that contain not only the agent behaviour specification, but also all the

 136

necessary changes to the mental state of the agent. Since we want an agent to be aware of

the goals that it is achieving, we would like it to have the goal that G1 holds in its mental

states if it is executing the capability G1Cap that achieves the goal G1. When an agent is

executing one of its goal capabilities, it may or may not already have the goal of the

capability in its mental state. For example, if the capability is used as a means of

achieving some goal that has been previously acquired either through an intentional

dependency or by executing a commit action, then the goal is already in the mental state

of the agent and does not need to be reacquired.

Figure 4.48a. Goal capability as a subtask. Figure 4.48b. Goal capability as a refinement of a
parent goal.

On the other hand, there are cases that require the agent to acquire the goal of the

capability by executing a commit action. For example, if a goal capability is used as a

task in a task decomposition (Figure 4.48a), then the agent must acquire the goal of the

capability since it is not in the mental state of the agent. Also, the goal capability that

achieves G2 can be used as a means of achieving the goal G1 (it makes sense if by

achieving G2 the agent automatically achieves G1). In this case (Figure 4.48b), the agent

must explicitly acquire the goal G2 by using the appropriate commit action.

Therefore, the commit action in goal capabilities is annotated with an if-annotation that

lets the agent acquire the goal of the capability only when it does not already have it in its

mental state. The explicit overall structure of a goal capability is shown in Figure 4.49.

 137

There, the goal capability G1CAP with its top task, AcquireAndAchieveG1, is responsible

for both acquiring the goal G1 when necessary and providing the means for achieving it.

As it is usual with self-acquired goals, the goal node, which indicates the presence of a

goal in the mental state of an agent, follows the task node for the commit action together

with the corresponding guard annotation (self-acquired goals are discussed in Section

4.3.8). Finally, the means for achieving the goal G1 are specified by the tasks Meansi,

connected to the goal node by the means-ends links with the appropriate link annotations

and applicability conditions (not shown). Since a goal capability has a task at its top

level, it can be used as a task in a larger diagram.

Figure 4.49. The full details of a goal capability node.

4.5.4 Mapping Goal Capability Nodes

A goal capability node will be mapped into a CASL formula that corresponds to the goal,

a procedure that acquires and achieves the goal, a CASL formula that specifies the

context condition (i.e., the circumstances under which the capability is guaranteed to

achieve its goal), and a program that specifies compatible behaviour of other agents

(Figure 4.50).

Figure 4.50. The mapping of a goal capability node into CASL.

 138

The following is the mapping rule for goal capabilities. The mapping m will map the goal

capability G1CAP into the tuple:

m(G1CAP) = <GoalFormula, AcquireAndAchieveProc,

ContextCond, EnvProcessesSpec>,

where

• GoalFormula is a CASL formula with a free situation variable

• cPName∈AcquireAndAchieveProc and AcquireAndAchieveProc is defined in Pc

• EnvProcessesSpec is a program that specifies the template of behaviour of other

agents in the environment that is compatible with the achievement procedure of

the capability

• ContextCond is a CASL formula with a situation variable

Thus, the mapping of a goal capability node is quite similar to the mapping of a goal

node. The differences are the addition of the context condition and the specification of

the allowed processes in the environment. Also, note that instead of AchieveGoalProc

here we have AcquireAndAchieveProc, which is responsible for both acquiring the goal

and achieving it. We think of a goal capability as a module, which is responsible for both

acquiring and achieving the goal.

We use the following notation to access the goal formula, the achievement procedure, the

compatible behaviour of other agents, and the context condition:

m(G1CAP).formula = GoalFormula

m(G1CAP).achieve = AcquireAndAchieveProc

m(G1CAP).context = ContextCond

m(G1CAP).envProc = EnvProcessesSpec

 139

Constructing Achievement Procedures

Achievement procedures for goal capabilities are constructed in a similar way to the

achievement procedures for goal nodes. Each achievement procedure is produced by

mapping the means-ends decomposition of the goal that the capability achieves. The

decomposition specifies the ways that the goal can be accomplished. As is the case with

goal nodes, the mapping of the achievement procedures for the goal capabilities will take

into consideration the applicability conditions that may accompany the task nodes, which

represent various means for achieving the goals of the capabilities (see Figure 4.51).

GCAP

...

AcquireAnd
AchieveG

commit(G) G

guard((G))if(¬ (G))

Means1 Means2 Meansn

ac(φ1) ac(φ2)
ac(φn)

α1 α2 αn

Figure 4.51. Specifying means to achieve the goal of a goal capability.

Figure 4.51 shows a generic goal capability GCAP that achieves the goal G and its means-

ends decomposition that models various approaches for achieving the goal G. We show

the full details of the goal capability here, including the acquisition of the goal G. Each of

the means to achieve the goal, represented by the task Meansi, is accompanied by the

applicability conditions φi and link annotations αi. Suppose that m(GCAP).achieve =

GCAP_achieve, then the code for GCAP_achieve is as follows:

 140

proc GCAP_achieve(t
r
)

if ¬Goal(agt,m(G1CAP).formula(t
r
)) then

commit(agt,m(G1CAP).formula(t
r
)) endIf;

 guard Goal(agt,m(G1CAP).formula(t
r
)) do

 guard m(φ1) do m(α1)(m(Means1) endGuard

 |

 ...

 |
 guard m(φn) do m(αn)(m(Meansn) endGuard

 endGuard

endProc

The above procedure did not make use of the context condition of the capability GCAP.

The condition is not used in the achievement procedures of goal capabilities or the

procedures that perform the required tasks of task capabilities. Instead, the context

condition for a capability can be used to guard the selection of the capability as a means

to achieve a goal or a way to perform a task (similar to the applicability condition for

means-ends links). In addition, a context condition can be used as an assertion that would

help in proving properties about the system. When its context condition does not hold, a

capability is not guaranteed to execute successfully. We use the generic example below

(Figure 4.52) to illustrate this.

Figure 4.52. A goal capability used as a means to achieve a goal.

 141

Figure 4.52 shows a means-ends decomposition of the goal G1. There are n+1 means for

achieving G1: the goal capability G2CAP and n tasks Meansi. Each of the means for

achieving G1 is accompanied by a link annotation: the goal capability has the link

annotation γ, while each task Meansi has the link annotation αi. Additionally, all of the

means to achieve the goal G1 have applicability conditions: the capability G2CAP has the

applicability condition ψ, while the tasks Meansi each have the condition φi. The

applicability conditions specify, as usual, when it makes sense to use the means to try to

achieve the goal G1. The achievement procedure for the goal G1 will then look as follows

(suppose that m(G1).achieve = G1_achieve):

 proc G1_achieve

 guard m(ψ) do m(γ)(m(G2CAP).achieve) endGuard

 |
 guard m(φ1) do m(α1)(m(Means1) endGuard

 |

 …

 |
 guard m(φn) do m(αn)(m(Meansn) endGuard

 endProc

The context conditions of capabilities are mostly used to prove properties of the system.

However, we do not require that the capabilities only be used when their context

conditions hold. One may want to use a capability even though its context condition is

not satisfied. In cases like this, there is no guarantee that the capability successfully

achieves its aim. When the designer wishes to make sure that a capability is used only

when its context condition is satisfied, he should make it part of the applicability

condition. This will guarantee that the capability is not invoked when its context

condition is not satisfied. The context condition for the goal capability G2CAP in Figure

4.52 will become the following:

 142

m(G2CAP).context ∧ m(ψ)

Achievement Procedure Constraints

A CASL procedure that achieves the goal of a goal capability must be written much more

carefully than a regular goal achievement procedure. We require that the procedure

(provided that the context condition for the capability holds) be both physically

executable and epistemically feasible. There is an important restriction on the

achievement procedures for goal capabilities:

∀s.contextCond(s) ⊃
AllDo(Subj(agt,AcquireAndAchieveProc ; Formula?) || EnvProcessesSpec,s)

The above constraint states that in all situations satisfying the context condition, every

subjective execution (see Sections 2.2.4.1 and 2.2.4.2 for the discussion of subjective and

deliberative execution of programs) of the achievement procedure of a capability by the

agent in an environment in which processes specified by EnvProcessesSpec may occur

terminates with the goal being achieved. We note here that for smart agents that

deliberate and use lookahead, the Delib(agt,δ) notation can be used instead of

Subj(agt,δ).

The designer must determine exactly what behaviour guarantees the successful execution

of the achievement procedure for a goal capability. One of the extreme cases is when

EnvProcessesSpec is empty (i.e., EnvProcessesSpec = nil). In this case, no outside

processes are permitted if one wants a guarantee that the achievement procedure

succeeds. On the other hand, if EnvProcessesSpec is as follows:

 143

EnvProcessesSpec = (π act.(Agent(act) ≠ agt)? ; act)≤k2,

then we are saying that the goal will be achieved no matter what the other agents do. Of

course, the specification for most capabilities will identify concrete behaviours for the

agents in the environment, which assure the successful execution of the achievement

procedure. For example, suppose an agent has a goal capability to fill a tank with water.

It is guaranteed to succeed unless the tank’s valve is opened. Here is the corresponding

specification for the outside processes compatible with the capability:

EnvProcessesSpec = (π act.(act ≠ openValve)? ; act)≤k

As we mentioned previously, a goal capability that achieves the goal G2 can be used to

achieve another goal, G1, if G2 is a refinement of G1. In other words, we can put the goal

capability node G2CAP beneath a goal node G1 as a means of achieving that goal if the

following holds:

∀s.m(G2CAP).context(s) ∧ m(G2CAP).formula(s) ⊃ m(G1).formula(s)

4.5.5 Mapping Task Capability Nodes

The mapping rules for task capabilities are simpler than the rules for goal capabilities

described above. Task capabilities are mapped into the corresponding CASL procedures

that execute the task, the context conditions that, as before, describe the circumstances

under which the capabilities are guaranteed to succeed, and the specifications of other

agents’ behaviour, which are compatible with them succeeding. It should always be

possible to successfully execute the CASL procedures that task capabilities are mapped

into, provided the corresponding context conditions hold and the actions of other agents

2 δ≤k specifies that the program δ is iterated nondeterministically up to k times.

 144

in the environment are restricted to the ones allowed by EnvProcessesSpec. These

procedures are also required to be epistemically feasible.

Figure 4.53. The mapping of a task capability node into CASL.

A task capability node will be mapped into a CASL procedure that corresponds to the

task, a context condition that must hold for the procedure to be successfully executed, and

a CASL program that describes the behaviour of other agents that is compatible with the

procedure that the capability maps into (see Figure 4.53).

m(T1CAP) = <TaskProc, ContextCond, EnvProcessesSpec>,

where

• cPName∈TaskProc and TaskProc is defined in Pc

• EnvProcessesSpec is a program that specifies the behaviour of other agents in

the environment that is compatible with TaskProc

• ContextCond is a CASL formula with a free situation variable

The following notation is used to access the CASL procedure associated with the

capability, the context condition, and the compatible behaviour of other agents:

 m(T1CAP).procedure = TaskProc

 m(T1CAP).context = ContextCond

 m(T1CAP).envProc = EnvProcessesSpec

A task capability can be used anywhere a task node can be used in i* diagrams. Figure

4.54 is an example of a task capability used as a subtask of another task.

 145

In Figure 4.54, we have the task capability STCAP as a subtask of ParentTask. It is

accompanied by the link annotation γ. The code for ParentTask is not different from the

CASL code that the task would map into if none of its subtasks were capabilities. Below

we show the part of the CASL procedure for ParentTask that involves the capability

STCAP (suppose that m(ParentTask) = ParentTaskProc):

proc ParentTaskProc

 m(γ)(m(STCAP).procedure);

 …
 endProc

;

...Means1 Meansn

α1 αn
γ

STCAP

SubTask

Parent
Task

Figure 4.54. Task capability used as a subtask.

Constructing Procedures for Task Capabilities

The CASL procedure that the task capability is mapped into, TaskProc, is constructed

just like a procedure for an ordinary task, taking into consideration the decomposition of

the main task of the capability, along with the corresponding composition and link

annotations. See Section 4.2.3 for details on the mapping of task decompositions into

CASL.

Task Procedure Constraints

The procedure of a task capability must be successfully executable whenever the context

condition holds at the time of its invocation and the actions by other agents in the

 146

environment are restricted to the ones specified by EnvProcessesSpec. The procedure

must also be epistemically feasible. Thus, the constraint that guarantees the successful

execution of the procedures of task capabilities is very similar to the constraint for goal

capabilities:

∀s.ContextCond(s) ⊃ AllDo(Subj(agt,TaskProc) || EnvProcessesSpec, s)

4.5.6 Discussion

Goal capabilities have to be able to achieve their goals whenever their context condition

holds at the time of invocation and provided that other agents in the environment are

executing actions compatible with the achievement procedure of the capability. Therefore

the designer needs to be careful in defining the goals of the capabilities, their context

conditions, and the specification of compatible processes in order to avoid the situations

where goal capabilities are supposed to achieve goals that are not, in fact, always

achievable with the available plans. For example, the capability of an agent to book a

meeting room might be conditional upon the availability of meeting rooms. Such goals

must be properly deidealized (relaxed to make them always achievable).

While the context condition of a capability specifies the restrictions on the starting

situation (where the capability is invoked), more research needs to be done on how to

formalize some assumptions on what activities can and cannot be performed by other

agents while the capability is running so as to avoid interference. However, our

formalization of capabilities seems to be compatible with many ways of specifying

allowable outside processes.

 147

Using capabilities

Generally, there are agents that are being created as part of the system-to-be and there are

agents that already exist in the organization or in the environment in which the system is

to be situated. Therefore, it is necessary for our analysis to model the environment where

our system is to be integrated. Capabilities provide a reasonable abstraction for

describing agents that are part of the environment. This environment may include legacy

systems that we want to interface with as well as human agents and we will need to

include the relevant agents from the environment into our models. We may have quite

detailed information about some of these agents, while having no information about the

internals of the others. Either way, capabilities seem to be an appropriate formalism to

model these agents. If we know that an agent that is part of some legacy system is able to

achieve a certain goal or perform a certain task, we can model that by putting a capability

box corresponding to the goal or the task inside the agent even if we don’t know the

internals of this capability. By doing this we state that we are confident that under certain

conditions these agents will be guaranteed to succeed in executing their capabilities.

For the agents that are being designed as part of the system-to-be, turning some

behaviours into capabilities requires the designer to be very careful in modeling those

behaviours. On the other hand, capabilities guarantee that they can be successfully

executed provided their context conditions hold at the time of invocation and no agent

executes actions incompatible with the capability. This could be viewed as an instance of

the Design by Contract principle [Meyer, 1997].

Capabilities as Components

The problem of software reuse is very important in software engineering. Software

components are currently in use in all sorts of applications, from consumer-oriented to

enterprise-level ones. The Internet opened the doors to an even wider use of component

 148

technologies (e.g., Enterprise JavaBeans [Sun Microsystems, 2002]). The domain of

open, dynamic multiagent systems with agents that adapt to changes in the environment

and switch their roles depending on their objectives is an ideal domain for

componentization. Capabilities are good candidates for the specification of components.

Agent capabilities seem to be at the right level of abstraction for the analysis of

multiagent systems and exploration of software reuse possibilities. Pluggable behaviours

could be analyzed and verified separately and building agents will involve loading

modules with the required behaviour. Components could also very naturally support

agents that change roles — the agents will just load the behaviours that correspond to the

new role and start using them.

Based on the above discussion, it is quite desirable to have a formal framework that can

support the notion of agent capability as a pluggable behaviour. The capabilities will then

have an interface that clearly identifies the goal that the capability is able to achieve, the

preconditions for the use of the capability, or the context of the capability. The

capabilities will essentially be plans that achieve certain goals or perform certain tasks,

possibly with their own local fluents and a fragment of the knowledge base in order to

isolate the modules as much as possible. The capabilities then become “black boxes” that

have precisely defined input and output and hide their internals. However, this is a

potential problem since in many applications it is important to optimize the agents’

activities, construct plans to achieve very high-level goals, and so on, which could be

hard without the ability to peek inside the plans the agents are executing as part of their

capabilities. It seems, therefore, that it makes sense to turn capabilities into “grey boxes”,

which reveal at least their high-level structure and can be tuned according to individual

agents’ demands. These are the topics that require further exploration.

 149

4.6 Synchronizing Procedural and Declarative Components
of CASL Agents

As discussed in Section 4.3.6, CASL agents have two components: the procedural

specification of their behaviour and the declarative specification of their mental states.

iASR diagrams represent the procedural component of CASL agents. Thus, the presence

of a goal node in an iASR diagram states that the agent is aware of the goal being in its

mental state and is prepared to deliberate on whether and how to achieve it. For the agent

to modify its behaviour in response to the changes to its mental state, it must synchronize

its procedural and declarative components.

Figure 4.55 is an overview of how the mental state and the process specification of a

CASL agent can be synchronized. The process specification can be used to acquire goals

and knowledge through the commit and the assume actions respectively. On the other

hand, in order to modify the behaviour of the agent based on the changes to its mental

state, one needs to use interrupts or guards.

request,

inform, etc.

Procedural

Declarative

commit,
assume

guard,
interrupt

CASL
Agent

Figure 4.55. Synchronizing procedural and declarative components of CASL agents.

 150

5 The Combined i*/CASL Methodology

In this chapter we describe our requirements engineering methodology that combines the

i* modeling framework [Yu, 1995] with the Cognitive Agents Specification Language

(CASL) [Shapiro and Lespérance, 2001]. The standard i* modelling framework with its

Strategic Dependency and Strategic Rationale diagrams is used first for the early phase

and some of the late phase of the requirements engineering process, while the Intentional

Annotated SR (iASR) diagrams are used for the late phase of RE. The iASR models are

then mapped into CASL and the CASL agent programming language is used for

validation and verification of the iASR models.

5.1 Introduction

i* is an informal graphical framework very well suited for both early and late

requirements analysis stages. It has powerful facilities for capturing the intentional and

strategic aspects of the operational environment of the system-to-be as well as for

describing the intentional aspects of the system-to-be itself. The network of inter-actor

dependencies produced by the i* approach is a tool for analyzing various (possibly

alternative) responsibility assignments in the system. i* supports reasoning about

functional and non-functional dependencies among actors as well as the analysis of goal

and softgoal decompositions aimed at finding the best alternative for achieving these

goals and softgoals. We think that CASL naturally complements i* since it is amenable

to formal analysis and supports reasoning about the goals and knowledge of the agents. It

provides agent-oriented verification and simulation environments that support the

intentional notions of i*, thus allowing us to incorporate these notions further in the

software engineering process.

 151

While a certain portion of the i* modeling framework has been formally represented in

the modeling language Telos [Mylopoulos et al., 1990], many aspects of i* models still

do not have precise semantics (e.g., a task decomposition). In the previous chapter, we

presented an approach that aims at disambiguating Strategic Rationale diagrams of i* and

increasing the detail level of the diagrams to the point that they can be straightforwardly

mapped into the corresponding CASL models. These models can then be formally

verified using the CASLve tool [Shapiro et al., 2002] in order to discover inconsistencies

within the requirements. The formal analysis of software requirements greatly increases

the chances that errors and inconsistencies in the requirements for software systems are

found and fixed, thus avoiding the need for costly software modifications that result from

these errors propagating into the design and implementation of the system.

The assumption that our requirements engineering methodology makes is that modeling

and analysis cannot be performed adequately in isolation from the organizational and

social context in which a new system will have to operate. Our proposal generally

follows the i* methodology for requirements engineering [Yu, 1995] and the i*-

ConGolog methodology [Wang, 2001], but includes several important enhancements.

There are two types of enhancements that we make to the standard i* approach. The

modeling improvements include, among other things, the use of self-dependencies,

capability nodes, the System agent, and, most importantly, the iASR diagrams and their

mapping into CASL models. This RE methodology can be integrated quite easily into the

Tropos agent-oriented development methodology [Castro et al., 2002]. Not unlike the

Tropos methodology, we are advocating the use of RE notions throughout the

development process. The emphasis of the methodology is on the phase of the

requirements engineering process that takes place before the formulation of the initial

requirements. Our goal here is to understand the “whys” of the requirements [Yu and

Mylopoulos, 1994]. We analyze why the system is needed, how the interests of the

stakeholders can be addressed, how the system would meet its organizational goals, what

the alternatives for the system are and how they affect the stakeholders [Yu, 1997]. Since

 152

stakeholder goals are the origin of requirements for the system-to-be, we see

requirements-driven software engineering as well as goal-based Requirements

Engineering as extremely promising approaches. We use the i* notation to capture the

intentions of stakeholders, the responsibilities of the system towards these stakeholders,

and some aspects of the architecture of the system. CASL is used for the formal analysis

of the system.

To illustrate the methodology we will use some generic examples as well as examples

from a system for scheduling meetings within an organization. It is a variation of the

system described in [Yu, 1995]. For each meeting request the system will try to find a

date from the preferred date range that satisfies all of the intended participants. Once such

date is found, the meeting is confirmed and an appropriate room for it is booked. The

system is presented in detail in Chapter 6 of this thesis. Below we present an overview of

the methodology.

5.1.1 Methodology Overview

Let us briefly survey the main elements of our methodology. We provide the details in

the rest of the chapter.

1. Early Requirements (Section 5.2). The analysis of the organizational environment for

the system-to-be is performed with the help of the i* notation. Stakeholders and their

goals are identified (Sections 5.2.1, 5.2.2) together with the intentional dependencies that

exist in the organization (Section 5.2.3). SD diagrams are used to help in collecting,

representing and analyzing this information. SR diagrams may also be used during the

early phase of RE, providing more details about individual stakeholders and their

relationships. The importance of non-functional requirements is stressed in Section 5.2.4.

New modeling elements, capability nodes, are proposed for use in both SD and SR

 153

models (Section 5.2.3). Additional organizational details can be added with the help of

the Serves and Trusts relationships, which are discussed in Section 5.2.5.

2. Late Requirements with SD Models (Section 5.3). The system-to-be is introduced into

SD models through one or more actors (Section 5.3.1). The intentional dependencies are

adjusted. The possible system-environment boundaries are analyzed. The use of the new

special System agent is proposed in Section 5.3.2.

3. Architectural Analysis (Section 5.4). Organizational architectural style is selected as in

[Fuxman et al., 2001a] and analyzed using the NFR framework [Chung et al., 2000]. The

system architecture is then analyzed. Agent may be decomposed into sub-agents to

reduce the load, improve the communication patterns, etc. Architectural patterns may also

be used as suggested in [Castro et al., 2002]. The agent-oriented system architecture may

be modified based on the feedback from the SR-level analysis.

4. Late Requirements Using SR Models (Section 5.5). Agents’ processes are analyzed. SR

diagrams are used to model the rationale for and motivation of individual agents.

Alternative process configurations are identified and analyzed based on their

contributions to softgoals. Intentional Annotated SR (iASR) diagrams are then produced

(Section 5.5.2). Annotations are added to the SR diagrams to provide more details and

precision and goal decompositions are modified (Section 5.5.6) for easy mapping into

CASL specifications. Goal dependencies are not abstracted out (Section 5.5.3), but

converted into the corresponding interactions between agents, while goals are deidealized

and softgoals are suppressed (Section 5.5.4). Agent interactions are then detailed (Section

5.5.5). The use of capability nodes is described in Section 5.5.7.

5. Requirements Verification Using CASL (Section 5.6). iASR diagrams are mapped into

CASL (Section 5.6.1) and analyzed using CASLve (Section 5.6.2) and possibly other

tools. Since the methodology supports requirements traceability quite well (Section

 154

5.6.3), problems found during the formal analysis of the CASL specifications can be used

to appropriately modify the SD and SR models.

5.2 Early Requirements: Understanding the Organizational
Setting

The first step in coming up with a correct, unambiguous, and precise requirements

document is to analyze the environment in which the system-to-be is intended to be

situated. The phase of the methodology during which these activities are performed is

called the early requirements phase.

In most software projects, the goal is to create a system that improves the processes in the

organization in some way or another. In order to create a system that achieves this

improvement and meets the expectations of its users, we need to understand the

environment of the proposed system, the existing processes, and the goals of the players

in the organization. Therefore, the first step is to analyze the relationships among the

stakeholders in the organizational environment as it exists before the introduction of the

system-to-be. The way we approach the problem of analyzing the environment of the

system as well as the system in its environment is through modeling. Modeling is the

process of constructing abstract descriptions, possibly formal, that are amenable to

interpretation. Modeling has many benefits. It facilitates in requirements elicitation by

guiding it and helping the requirements engineer look at the domain systematically.

Models can also be a measure of progress since usually the more complete the model is,

the more complete the elicitation is. Moreover, inconsistencies in the model are indicative

of conflicting or infeasible requirements, disagreements among stakeholders, or

confusion over terminology. Models are an invaluable tool for checking the

understanding of the environment/system by the requirements engineer. Formal models

can be tested to determine whether they have the desired properties and consequences

 155

and whether they are consistent; they can also be animated to help in validation of the

requirements. In this phase of the requirements engineering process, we use the i*’s

Strategic Dependency models to model the intentional aspects of the organization.

The early phase of requirements engineering deals with enterprise modeling. Here, we

model the organization in which the development takes place and/or in which the system

will operate. Enterprise modeling and analysis deals with understanding an organization’s

structure, “the business rules that affect its operation, the goals, tasks and responsibilities

of its constituent members, and the data that it needs, generates, and manipulates”

[Nuseibeh and Easterbrook, 2000].

5.2.1 Identifying Stakeholders

We first identify the stakeholders in the environment of the system-to-be. There are many

definitions of the term stakeholder in the literature. Nuseibeh and Easterbrook [Nuseibeh

and Easterbrook, 2000] define stakeholders as “individuals or organizations who stand to

gain or loose from the success or failure of the system”, while one of the definitions

presented in [Kotonya and Sommerville, 1998] states that “system stakeholders are

people or organizations who will be affected by the system and who have a direct or

indirect influence on the system requirements”.

In general, the stakeholders are customers who order the system, developers who design

the system, and users who interact with the system to achieve their goals. The

stakeholders are modeled as actors in the i* framework. The actors could be entities (i.e.,

people, software agents) or roles (e.g., “meeting participant”). The distinctions among an

agent, a role, and a position are discussed in Section 2.1.1.

The identification of stakeholders is an informal process, which is usually assumed to be

fairly straightforward and most requirements engineering methods (e.g., KAOS

 156

[Dardenne et al., 1993]) do not support the stakeholder identification activities per se.

However, in many cases coming up with a set of stakeholders is not a trivial task. [Sharp

et al., 1999] attempt to devise a domain-independent, effective, and pragmatic approach

to discovering the relevant stakeholders of a specific system. This problem is out of the

scope of this thesis, so we assume that an appropriate technique for discovering

stakeholders is used at this stage of the methodology.

In our meeting scheduler system, we identify the Meeting Initiator (MI), which is a role

within an organization. This means that many individual agents can play that role and

schedule meetings. The Meeting Initiator is the actor that is most interested in the

meetings taking place and thus will initiate the process of arranging a meeting. The

second stakeholder is the Meeting Participant (MP), a role played by agents that are

requested to participate in meetings by the Meeting Initiator. The third stakeholder is an

agent called the Meeting Room Booking System (MRBS). This represents a software

system that already exists in the organization and whose aim is to track the availability of

meeting rooms. Figure 5.1 shows the above stakeholders using the i* notation:

Figure 5.1. The stakeholders of the Meeting Scheduler System.

The MRBS agent in the above figure is an example of a legacy software system that we

model as a stakeholder in the organizational model. Depending on the application, it may

be useful to model legacy systems, people, and even hardware devices as stakeholders.

Generally, a person or an entity can be an actor in an i* Strategic Dependency model if it

 157

can be assigned responsibility for goals/subgoals of other actors in the environment of the

system-to-be or the system-to-be itself, or depends on these actors.

5.2.2 Discovering Stakeholder Goals

At this stage, we model the existing processes in the organization since analyzing the way

the current system/organization works is crucial in determining the requirements for the

system-to-be. Upon identifying the stakeholders in the system we can analyze each

stakeholder in terms of its goals. Whether the actors participating in the system are self-

interested or altruistic, they all have their objectives and strive to achieve these

objectives. Identifying the stakeholders’ goals is therefore an important step towards

understanding the system rationale. Eliciting goals focuses the RE engineer on the needs

of the stakeholders, rather than on the possible solutions satisfying these needs. Once we

have identified the stakeholders, we can start analyzing what each stakeholder brings to

the organization and what it expects from the other actors in the organization. This is

described in terms of the delegated goals/tasks/resources — the goals the actor wants

others in the organization to achieve for it, the tasks it wants performed, and the resources

it wants furnished.

In order to help the modeler gradually document the goals of the stakeholders we propose

the use of the following notation (Figure 5.2):

Figure 5.2. An actor, whose goals are not yet delegated to other actors.

Here, we have a stakeholder called Actor1 with three goals: Goal1, Goal2, and Goal3.

These goals have been identified by the modeler, but have not yet been made part of any

 158

intentional dependency. Upon finding the right actor to delegate a stakeholder goal to, the

modeler will draw an arrow from the goal node to another actor, thus completing the

dependency (note that here we are modeling the existing system, so finding the actor to

delegate a stakeholder goal to amounts to discovering the existing business processes

within the organization). This minor addition to the i* notation is useful in some of the

modeling activities. It can be used during the early requirements phase while discovering

the goals of stakeholders. We can also use the same notation later when the system-to-be

is introduced into the models. At that point, the dependencies in the organization are

changed to include the actors of the system-to-be. The notation of Figure 5.2 will help by

showing the goals of the actors graphically. Figure 5.3 shows the goals of Meeting

Initiator. It needs to schedule a meeting and also book a conference room for that

meeting.

Figure 5.3. The Meeting Initiator agent with two of its goals.

5.2.3 Discovering Intentional Dependencies among Actors

In i*, intentional dependencies are extremely important. When an actor cannot achieve

one of its goals or cannot achieve it as efficiently as some other actor in the organization,

it can choose to delegate the achievement of the goal to another actor capable of

achieving it. While this may be advantageous to the delegating actor, the actor becomes

vulnerable if the delegated actor fails to achieve this goal.

Dependencies represent such patterns of social relationships in the system. They act as

the “glue” that binds the system together. Without dependencies, the system does not

 159

exist as a whole. The absence of inter-actor dependencies in the system/organization

indicates that the actors are capable of achieving their goals, performing their tasks, and

providing the needed resources on their own, without any help from others. This means

that there is no cooperation, communication, coordination, etc. among the individuals.

But these notions are fundamental for human organizations. In the domain of human

organizations (and modern human society in general), no individual has all the

capabilities and resources to satisfy his needs, so he is forced to cooperate with others by

delegating some of his goals to other actors in the society while taking on responsibilities

to assist others with the achievement of their own goals. Thus, the dependencies (both

incoming and outgoing) are what makes an individual/organization/etc. part of the

society. Modeling inter-actor dependencies is therefore of foremost importance to a

requirements engineer.

The i* approach allows us to analyze the goals of the actors and their strategic

dependencies, thus capturing the intentional aspects of the system-to-be and its

organizational environment. i* has four types of dependencies among actors: a goal

dependency, where a depender delegates the achievement of a certain goal to a dependee,

a task dependency, where the execution of the task is delegated to a dependee, a resource

dependency, which indicates that the dependee is expected to provide a resource for the

depender, and a softgoal dependency, where the dependee achieves a goal that is

expressed qualitatively. As mentioned above, by depending on other actors an actor gains

the opportunity to achieve some of its goals that it cannot achieve otherwise, or to

achieve them goals more efficiently. At the same time the depender becomes vulnerable

if the dependee is unable/unwilling to provide the dependum (achieve the requested goal,

provide the resource, or perform the task).

At this stage, the modeler analyzes the organization (the environment for the system-to-

be) and determines what dependencies exist among the stakeholders. The Strategic

Dependency model of the organization is updated accordingly. To discover the

 160

intentional dependencies in an organization we analyze how the goals of the actors in the

organization are achieved through delegation to other actors. As already mentioned, the

network of intentional dependencies that exists in an organization represents the existing

business processes in that organization.

The figure below (Figure 5.4) is a modified version of Figure 5.2 where one of the goals

of Actor1 is delegated to Actor2. This diagram shows that the modeler has determined

that Actor1 depends on Actor2 for the fulfillment of the goal dependency Goal1, while

the dependencies involving the other two goals of Agent1 have not yet been modeled in

the diagram.

Figure 5.4. An actor with one goal delegated to another actor.

Self-dependencies are a useful addition to the i* notation, one which we think will help

modelers analyze intentional dependencies among the actors in the environment and later

reorganize them after the system-to-be is introduced. Self-dependencies indicate that a

stakeholder needs to achieve a certain goal, get a certain resource, or perform a certain

task, and that currently it is the stakeholder itself who is responsible for achieving the

goal, furnishing the resource, or performing the task. Figure 5.5 shows a possible model

of the environment of a meeting scheduling system. Meeting initiators need intended

meeting participants to attend meetings. Also, the initiators need to schedule their

meetings and book the conference rooms themselves.

Another addition to SD diagrams that we would like to propose is the use of capability

nodes (see Section 4.5 for a thorough discussion). Capabilities are meant to indicate that

 161

the agent can always achieve the goal or successfully execute the task specified within

the capability node, provided that certain context conditions hold. This is quite similar to

Design by Contract [Meyer, 1997] in the sense that if the depender makes sure that the

corresponding context condition holds, the dependee in turn guarantees to provide the

dependum. Thus, capabilities provide higher level of assurance to the depender than

regular goals or tasks. Capability nodes at the SD level are used primarily for specifying

the capabilities of the agents that are part of the environment of the system-to-be. These

could be humans, hardware devices, or legacy software systems. During the late

requirements stage one of the tasks of the modeler is to identify the actors of the system-

to-be and determine what their responsibilities are going to be. In contrast to this, the

actors that are part of the environment of the future system already have certain

behaviour built into them. This behaviour is most easily identified for hardware devices

and software systems. To model the capabilities of the environment-based agents it is

useful to use task or goal capability nodes (see Figure 5.6).

Figure 5.5. The model of the environment for the meeting scheduler system.

Figure 5.6 shows the actor Actor1, which has the capability to achieve Goal_1 and the

capability to perform Task_1. We use capabilities to describe the services of the

environment agents when we are sure that these services can always be delivered

provided certain specified context conditions hold. A good example of a capability is a

method that is part of the interface of some software component. Provided that certain

preconditions hold at the time this method is invoked, it is guaranteed (assuming the

 162

supplier of the component verified it properly) to deliver the expected result.

Alternatively, capabilities can be used with the agents of the system-to-be to specify the

goals/tasks that those agents must always be capable of achieving/executing.

Figure 5.6. The use of capability nodes in SD diagrams.

While a lot of the information in the early requirements phase can be modeled and

analyzed using just the SD diagrams, to get the complete understanding of the

organization modelers might need to use the Strategic Rationale diagrams for more

detailed look at the environment of the system-to-be. The SR models help in analyzing

individual actors, their rationale and their intentions, and can reveal previously

unidentified dependencies among the stakeholders. This information can be used to

update the corresponding SD diagrams.

5.2.4 Analyzing Non-Functional Dependencies

An important aspect of requirements engineering is the analysis of non-functional

requirements (NFRs). These are sometimes called quality requirements. i* supports

reasoning about non-functional requirements through the use of softgoals. There is no

clear-cut satisfaction condition for a softgoal. Softgoals are related to the notion of

satisficing [Simon, 1981]. Unlike regular goals, for softgoals one needs to find solutions

that are “good enough”, where softgoals are satisficed to a sufficient degree. High-level

non-functional requirements are abundant in organizations and quite frequently the

success of systems depends on the satisficing of their non-functional requirements. While

there are frameworks that deal exclusively with NFRs and allow their systematic

 163

treatment (e.g., the NFR-Framework [Chung et al., 2000]), i*’s support for the modeling

of NFRs and their effect on systems and organizations is quite strong. During the early

requirements engineering phase the modeler identifies the stakeholder goals that can be

either regular goals, which lead to functional requirements, or softgoals, which lead to

non-functional requirements.

Figure 5.7. Modeling Non-Functional Dependencies.

Figure 5.7 shows an example of a softgoal dependency among the actors in the

environment of the system-to-be. Here, the Meeting Participant actor wants the meeting,

which is being scheduled by the Meeting Initiator agent, to be convenient in terms of time

and place. Convenience is clearly a goal that can be achieved to various degrees. If one

has many softgoals with the same name (e.g., Accuracy) related to different processes, it

might be convenient to indicate which goal/task/resource the softgoal is related to (e.g.,

Accuracy(RoomBooked)).

At this stage, the objective of the modeler is to identify the softgoal dependencies among

the actors in the environment. These dependencies will remain in the model with the

introduction of the system-to-be. Softgoals, whose achievement is assigned to the system

later in the process, will naturally become non-functional requirements.

Generally, softgoals guide the modeler in the selection of different system configurations

or design/process alternatives. Softgoals will be either abstracted out at some point in the

 164

requirements engineering process having helped in such selection, or will be

operationalized into some set of regular goals (whose satisfaction is easy to monitor for)

and/or tasks, whose achievement/execution approximates the softgoal. i* supports

reasoning about non-functional requirements during the early and late requirements

phases through the use of softgoal dependencies in Strategic Dependency diagrams.

Strategic Rationale diagrams provide facilities to show positive or negative contributions

of various alternative configurations to the softgoals.

5.2.5 More Organizational Details: The Trusts and Serves Relationships

While most effort at the early requirements stage in our methodology is concentrated on

modeling stakeholders, their intentions, and the intentional dependencies in the

organization using the i* notation, modeling other organizational details could be useful

as well. There are many organizational and social aspects in an organization that may

influence the design, architectural, deployment, etc. choices for the system-to-be. A lot of

these aspects (e.g., security, efficiency, etc.) will give rise to non-functional requirements,

which we will talk about in the next section. Taking these aspects into consideration

during the design of the new system helps in building a system that matches the

organization as closely as possible and satisfies the needs of the stakeholders in the best

possible way. Some properties of organizations can be captured (albeit in a simplified

form) by models. In the previous chapter, we have introduced the Trusts (Section 4.4.4)

and Serves (Section 4.3.7.3) relationships. The use of these relationships was described in

conjunction with CASL models, where they can be used to address concerns such as

security. On the other hand, we believe that the Serves and Trusts relationships can come

into play earlier in the requirements engineering process, during early requirements

phase. The Serves relationship can be used to approximate the managerial structure of an

organization, while the Trusts relationship can be used to coarsely model some of the

privacy and information security policies of an organization. The Serves and Trusts

relationships are directed relations that could be represented as directed graphs. The

 165

Serves relationship specifies, for each actor, which other actors it is willing to help in the

achievement of their goals. Similarly, the Trusts relationship specifies, for each actor,

which actors in the organization it believes. While in the early requirements phase, the

Trusts and Serves relationships are intended as a rough approximation of the state of

affairs in the organization, much more detailed versions of these relationships could be

introduced later. The requirements engineer can start modeling by stating, for example,

that one particular actor named Actor1 generally trusts Actor2, or that Actor1 is generally

helpful to Actor3. The relationships can be refined when more details are needed: Actor1

trusts Actor2’s information if it related to some specific topic, and Actor1 is helpful to

Actor3 in achieving a certain set of goals. We do not insist on any particular modeling

notation to represent these relationships. For example, the figure below shows a graph

with three actors with arrows representing the Trusts or Serves relationships among them.

We can see that Actor1 is helpful to Actor2 and Actor2 and Actor3 are mutually helpful

to each other.

Figure 5.8. A possible graphical representation for the Trusts or Serves relationships.

This simple graphical representation for the Serves relationship applies only in the case of

actors being generally helpful to other actors. Representing more detailed relationships

among actors as described above requires more complex diagrams or multiple diagrams.

For example, one can have as many directed graphs as there are stakeholder or agent

goals. On the other hand, one can label the arrows in the graph with particular goal(s).

The same applies to the Trusts relationship: its general form can be easily represented by

a directed graph, while more detailed versions will require more complex notations. We

acknowledge that more work needs to be done to come up with a simple graphical

notation for representing the Serves and Trusts relationships, but this is outside of the

Actor2 Actor3 Actor1

 166

scope of this thesis. As we demonstrated in Sections 4.3.7.3 and 4.4.4, these

relationships, however detailed, can be easily mapped into CASL code to allow for more

detailed analysis of the CASL model of the system-to-be.

While modeling the Trusts/Serves relationships is optional, we feel that doing this early

on may allow the modeler to understand the organization better. The level of detail of the

models of these relationships can be adjusted to the modeler’s needs: they can be very

high-level during the early requirements phase and get more and more detailed as the RE

process moves closer to requirements validation.

5.3 Late Requirements Using SD Diagrams

While in the early requirements phase we concentrated on modeling the existing

system/organization, in the late requirements phase of the software engineering process

we essentially model the required future system. Nuseibeh and Easterbrook [Nuseibeh

and Easterbrook, 2000] note that the distinction between modeling an existing system,

and modeling a future system is an important one, and is often blurred by the use of the

same modeling technique for both. They also remind us that early structured analysis

methods suggested that one should start by modeling how the work is currently carried

out (the current physical system), analyze this to determine the essential functionality (the

current logical system), and finally build a model of how the new system shall operate

(the new logical system). While all three models are rarely built, we stress the importance

of distinguishing the model of the current state of the organization built in the early

requirements phase from the model of the future state of the organization, which is built

in the late requirements phase and incorporates the new system.

The output of late requirements analysis is the requirements specification, which

describes all the functional and non-functional requirements of the desired system [Castro

 167

et al., 2002]. In this phase of the requirements engineering process, the system-to-be is

introduced into our models as one or more actors that help in the achievement of

stakeholder goals.

5.3.1 Introducing the System-To-Be

At this point in the requirements engineering process, there is a model of the organization

or the environment of the system-to-be, which is agreed-upon by the stakeholders. As we

mentioned before, there must be a perceived need for improvement to the current state of

affairs in the organization as well as some room for such change or improvement. The

improvement will come from the introduction of the new system into the organization.

During this phase, we continue to use i*’s Strategic Dependency models.

The system-to-be can be introduced as either one actor or a collection of actors. This may

depend, among other things, on the level of understanding that the modeler has about the

new system: the structure of the system may or may not be already apparent to the

requirements engineer. Thus, the system is one or more actors who contribute to the

fulfillment of stakeholder goals [Castro et al., 2002]. In later analysis, the system-to-be

may be reorganized into a new set of actors.

Figure 5.9a. System environment with three actors.

 168

We use an example to illustrate how intentional dependencies in the environment can

change with the introduction of the system into an SD model. Figure 5.9a shows a model

for a system environment consisting of three actors, Env Actor1 through Env Actor3.

There are four goal dependencies among the agents as well as one softgoal dependency.

Figure 5.9b shows what might happen to the model after the actor representing the

system has been added to it. The reconfiguration of the intentional dependencies that

existed in the environment is the main activity at this stage. Some of the dependencies

among the stakeholders may disappear since these actors are now depending on the

system-to-be for the achievement of their goals, while other dependencies between the

pairs of stakeholders will remain intact. Moreover, the system-to-be can also depend on

the actors in the environment.

Env
Actor 1

Env
Actor 2

Env
Actor 3

Goal 3

Goal 2

Goal 1

Goal 4

Softgoal 1

system

Figure 5.9b. A system is introduced into the environment.

It is important to note that the boundary between the environment and the system is

floating during this phase of the RE process. This is one of the key ideas of the i*

approach since it allows the modeler to explore all the possible configurations of the

combined system consisting of the environment and the system-to-be to find the one

which satisfies stakeholder goals in the best possible way.

While analyzing the system and its environment, we must take into consideration the

point of view of the environment and the stakeholders as well as the point of view of the

 169

system. Putting too much functionality into the new system may make the agents in the

environment extremely vulnerable should the system fail to achieve their expectations.

On the other hand, expecting too much from the environment may be unrealistic [Yu,

1997]. The solution is to look at the opportunities that the system-to-be offers for the

stakeholders as well as the vulnerabilities that the stakeholders will expose themselves to

if they start depending on the new system, and try to find the configuration that utilizes

the most opportunities while mitigating against the vulnerabilities. Such analysis may

shift the boundary of the system and the environment and, in the words of [Yu, 1997],

“redistribute the pattern of intentionality”. When the redesigned network of inter-agent

dependencies is agreed upon, it will assign certain responsibilities to the agents of the

system-to-be and to the actors in the environment. The former will become the

requirements for the new system, while the latter will become the assumptions about the

environment.

At the later stages of the requirements engineering process, Strategic Rationale diagrams

are used to model the reasoning that the actors go through in achieving their goals as well

as the goals delegated to them by other actors. The goals are decomposed using means-

ends or task decompositions, or AND/OR goal refinements. As more details of the agent

processes are introduced, new inter-agent dependencies may appear. The network of

intentional dependencies may change due to the new understanding of the system-to-be

gained through the detailed SR analysis. Therefore coming up with the right network of

intentional dependencies in the system is an iterative process.

5.3.2 The System Agent

It is customary for the analyst using the i* framework to first introduce the system as a

single agent and then refine it into a collection agents. This way, the stakeholders are first

modeled as being dependent on a single system agent as illustrated by Figure 5.9b. Once

more system sub-agents are introduced, the intentional dependencies from the

 170

stakeholders to the system are adjusted to utilize these sub-agents. Figure 5.10a below

illustrates this.

Env
Actor 1

Env
Actor 2

Env
Actor 3

System
Actor 1

System
Actor 2

Goal 3
Goal 2

Goal 1

Goal 4

Softgoal 1

Figure 5.10a. The system is refined into several sub-agents.

This approach usually works, but frequently it is quite unnatural for a stakeholder to

depend on a system sub-agent. The reason is that the stakeholder depends on the system

as a whole and is not (or does not want to be) aware of the exact system architecture. For

example, the user of an automated meeting scheduling system depending on it for the

scheduling of the meetings and the booking of the appropriate conference rooms does not

know that the booking of the rooms might be the responsibility of a special system sub-

agent. This user depends on the system as a whole, not on its component, and it is the

system that in turn depends on its component for the booking of the rooms. Thus, having

a stakeholder depend on a sub-agent of the system-to-be may not be the correct modeling

of the situation.

We propose the use of a special agent called System. This agent represents the system as

a whole and can be used, among other things, to remedy the situation described above. In

such situations, it may be more natural to make the stakeholder depend on the System

agent and then let the System agent analyze the goal and delegate the subgoals/subtasks to

the system sub-agents. To illustrate this use of the System agent, we show the

modification of the example in Figure 5.10a below. Here, instead of depending directly

 171

on the sub-agents of the system, environment actors depend on the System agent. This

agent in turn delegates the goals to its sub-agents.

Env
Actor 1

Env
Actor 2

Env
Actor 3

System
Actor 1 System

Actor 2

Goal 3

Goal 2

Goal 1

Goal 4

Softgoal 1 System

Goal 2
Goal 1

Figure 5.10b. Using the System agent.

Similarly, the System agent can be employed when stakeholders depend on the system for

the achievement of goals that are very complex or too high-level to be assigned to an

individual sub-agent of the system-to-be. These goals can be assigned to the System agent

and decomposed into the low-level goals/tasks using the usual goal/task decompositions

of the Strategic Rationale diagrams. Once these goals and tasks are simple enough, they

can be assigned to the individual sub-agents of the system-to-be. In a sense, this is quite

similar to the goal decomposition and assignment process employed by KAOS [Dardenne

et al., 1993]: the System agent provides a place to decompose complex system goals

before assigning the simpler subgoals to the agents of the system-to-be (or of the

environment). The difference from the KAOS framework is that any goal, not just leaf-

level ones, can be assigned to agents. The System agent can be just an analysis tool and

may be removed from the system in subsequent phases of the software development

process. This allows the designer to simplify the SR/iASR models of the behaviour of the

agents of the system-to-be by offloading the goal/task decompositions to the System

agent. The modeler can still perform the necessary goal analysis and preserve

requirements traceability while the SR-level models for the system agents and the

subsequent implementation will become simpler. If the System agent is still present at

 172

runtime, it can act as a dispatcher/broker/manager and incorporate the intelligence to

guide the achievement of the goals that the system is responsible for by decomposing

those goals and creating a dynamic agent network of system and non-system agents for

achieving these goals at runtime. This approach avoids the hardcoding of the

decompositions of these complex goals into the model since such hardcoding may lead to

inflexible systems.

The System agent can also be assigned the goals that do not come from the immediate

stakeholders of the system, but rather from laws (including physical laws), regulations,

business rules, etc. The analyst may choose not to include stakeholders such as “the

government” into their models. In this case, these goals will become the goals of the

System agent since they are the responsibility of the system as a whole. The System agent

can also be used when the system needs special control over the achievement of the

stakeholder goals (e.g., adaptable and customizable systems).

Analysts can also use the Organization agent, which is quite similar to System and

represents the organization for which the system-to-be is being developed. Organization

can, for example, have the goals of the owner/management of the company, the

government (for the state-owned organizations), etc. This agent can be depended upon for

the achievement of high-level organizational goals such as “be profitable” and “efficient

management”. By in turn depending on actors that are part of the organization, this agent

can enforce these high-level organizational goals. One of the reasons for using the special

Organization agent in i* models is the fact that business goals are quite often extremely

complex and require cooperation of all of the members of an organization. One can

delegate these goals to Organization, decompose them within this agent using SR/iASR

models, and then delegate the subgoals to the appropriate members of the organization.

Also, a lot of business and organizational goals are meant to be achieved by the

organization as a whole. Thus, depending on the special Organization agent for the

 173

achievement of these high-level goals may be a better way of modeling certain aspects of

the domain.

5.4 Architectural Analysis

In the area of architectural analysis we mostly follow the Tropos approach. It allows us to

analyze the architecture of the system in several ways. Firstly, we can select the

architectural style [Kolp and Mylopoulos, 2001] that best match the organization being

investigated. This analysis is done from the point of view of organizational theory.

Secondly, we can analyze the architecture from the usual software engineering

standpoint.

5.4.1 Organizational Architecture

Architectural analysis performed in the usual software development process focuses on

modules, subsystems, communication protocols and other technical details of the system.

It does not normally take into consideration the business processes in the organization

and non-functional requirements. Fuxman et al. [Fuxman et al., 2001a] defined a number

of organizational architectural styles to remedy the situation — flat structure, pyramid,

joint venture, structure-in-5, etc. These architectural styles are intended to guide the

design of the system architecture for cooperative, dynamic, and distributed applications,

and are naturally applicable to multiagent systems. The styles come not from the

literature on software engineering, but from organization theory, the theory of the firm,

etc.

The selection of the most appropriate organizational architectural style is done as follows.

The relative importance of software quality attributes such as security, adaptability,

modularity, etc. is identified for the desired software architecture. These qualities are

 174

used as criteria for the selection of the organizational architecture. The architectural

styles mentioned above were evaluated [Fuxman et al., 2001a] with respect to the

following nine software quality attributes: security, adaptability, coordinability,

cooperativity, availability, integrity, modularity, aggregability. The selection of the

appropriate architecture is made through an analysis done with the help of the NFR

framework [Chung et al., 2000] (some of the quality attributes are decomposed further to

allow for more detailed evaluations).

5.4.2 The System Architecture

While the appropriate organizational style allows the designer to select the high-level

architecture that best suits the needs of the organization, there are still a lot of details that

need to be worked out. A thoroughly selected organizational architectural style is just the

first step in coming up with the complete software architecture for the system-to-be.

It is well known in the software engineering practice that large unstructured systems are

hard to develop, deploy, and maintain. They are usually hard to scale up, inefficient, and

expensive. Good software architectures are instrumental in developing flexible, scalable,

and easily maintainable software systems. In our approach, the modelers are expected to

use common software engineering principles in coming up with the software architecture

for the system. In agent-oriented software engineering, architectural analysis is used to

determine which agents are going to be developed as part of the system, what

responsibilities are going to be assigned to these agents, and what interdependencies will

exist among them. During this phase, the high-level architecture of the system is explored

and requirements for all the system’s sub-agents are specified. The papers on the Tropos

methodology (e.g., [Castro et al., 2002]) suggest using lower-level patterns such as

broker, matchmaker, monitor, etc. within the framework set by the enterprise-level

patterns such as joint venture.

 175

We do not anticipate that modelers will devise the system architecture right away using

SD models. One of the reasons for this is that the modeling of the details of agent

processes and inter-agent interactions is done using the Strategic Rationale diagrams,

which focus on finer aspects of the system. The details revealed during the SR-level

analysis very often influence the high-level system architecture. Therefore, the number

and configuration of system agents cannot be fixed at the end of the SD modeling phase.

It is expected that new agent configurations, which are better architecturally, will emerge

as more details about agent interactions and agent responsibilities are identified. During

this early analysis or, more likely, during the SR-level analysis, it may become clear that

some agents should be replaced with subsystems of agents to be able to handle their

responsibilities better. The analysis of agent processes performed with the help of

SR/iASR diagrams may reveal other problems, whose solutions require architectural

changes. Thus, in our approach, the development of multiagent system architectures is an

iterative process. We start off with Strategic Dependency models for the environment and

the system with its environment. We then explore using SR diagrams the reasoning each

agent goes through in order to achieve its goals and fulfill its responsibilities. We do not

abandon SD diagrams that were developed earlier. Rather, we update them using the

information obtained from analyzing the detailed agent interactions.

5.5 Late Requirements Using SR Diagrams

Strategic Dependency diagrams allow the designer to model intentional dependencies

among the agents to see how the agents of the environment and system agents cooperate

in achieving their goals. These diagrams provide a high-level, architectural view of

systems and their environments. This view is external to the agents. Strategic Rationale

diagrams, on the other hand, allow the modeler to analyze goals, plans, and inter-agent

dependencies from the point of view of each actor. These diagrams are used to specify

the reasoning each agent goes through in order to achieve its goals and help other agents

 176

depending on it in achieving their goals. The intentional elements such as goals,

softgoals, tasks, and resources appear both as dependencies external to the agents and as

modeling elements inside the agents. Strategic Rationale diagrams help in exploring the

motivations of the agents and rationale behind their decisions.

In our approach, the SR-level analysis is done in two phases. We use the standard i*

Strategic Rationale diagrams first. The next step is to provide more details by adding the

necessary annotations to the SR diagrams as well as adjusting these diagrams for an easy

mapping into CASL models according to the rules specified in Chapter 4, thus producing

iASR diagrams.

5.5.1 Building Strategic Rationale Diagrams

The way we use the standard Strategic Rationale diagrams is no different from the usual

i* process (e.g., [Yu, 1995]). Therefore, we will not get into details about how these

diagrams are used. Having said that, we must note that in our methodology the standard

SR diagrams are the first of two SR-level types of diagrams that the modeler is supposed

to produce, along with the iASR diagrams. Therefore, SR diagrams are intended as first

approximations of the agent process models.

 As usual, to model the reasoning each agent (or the designer for that agent) goes through

while attempting to achieve its goals and the goals that have been delegated to it by other

agents, the modeler has means-ends relationships and task decompositions available to

him. Means-ends analysis is mainly used to specify alternative means of achieving goals,

while task decompositions are used to decompose complex tasks into more manageable

ones. In the standard SR diagrams, task decompositions may include goals as well. Figure

5.11 presents a small SR diagram.

 177

The task/goal decomposition stops when all the leaf tasks are sufficiently simple to be

easily implemented. During the goal decomposition process, the designer will specify

various means of achieving agent goals. Some alternatives for achieving a certain goal

will involve delegating the goal or some of its subgoals to other agents in the system or

the environment, while others will not involve obtaining any outside help.

Figure 5.11. An SR diagram showing softgoals and softgoal contributions.

AND/OR decompositions [Giunchiglia et al., 2003] can be helpful in decomposing goals

into more manageable subgoals. These decompositions define the parent goals in terms of

conjunctions or disjunctions of other (presumably simpler) goals. While modelers can use

AND/OR decompositions early in their models, we do not directly support them in iASR

diagrams. A mapping from AND/OR goal decompositions to the iASR diagrams is

proposed in Section 4.3.2.

Figure 5.12 presents a small AND/OR goal decomposition. The top level goal is Email

Somebody. To achieve it one needs to achieve the subgoals Select Recipient, Prepare

Content, and Send. Since these are related through AND-decomposition, they all need to

be achieved for their parent goal, Email Somebody, to be achieved. Alternatives in the

MeetingOrganized

MIBehaviour

MeetingScheduled

LowEffort Speed

OrganizeMeeting

Request
Participation

Manually
Schedule
Meeting

Meeting
Initiator

Let Meeting
Scheduler
Schedule
Meeting

 178

way goals are achieved are introduced through OR-decompositions. For example, one

can either type in the email address of the recipient, or select the address from an address

book.

Figure 5.12. An example AND/OR goal decomposition.

Using Softgoals

SR diagrams provide ways to show how various process alternatives contribute

(positively or negatively) to the satisficing of the softgoals that the agents have.

Certainly, requirements engineers should not ignore non-functional requirements and

must strive to select the alternatives that contribute positively to the agents’ softgoals.

Thus, softgoals together with their contribution links document the selection of

alternatives. In our approach, it is in producing standard SR diagrams that the modeler

analyzes non-functional requirements and evaluates process alternatives with respect to

their contribution to the softgoals.

In Figure 5.11, we have an SR diagram for the Meeting Initiator agent with the

alternative ways to achieve the goal MeetingScheduled being analyzed. There are two

alternative ways to schedule a meeting: to schedule it manually or to use a meeting

scheduler. Two softgoals are identified: Quick and LowEffort with the appropriate

contribution links going from the alternatives to these softgoals.

 179

5.5.2 Building iASR Diagrams: Adding Annotations

Intentional Annotated SR (iASR) diagrams are designed to add precision to the standard

SR diagrams by providing link annotations, composition annotations, and applicability

conditions, as well as to streamline the diagrams for an easy mapping into CASL models.

The standard i* SR diagrams can be quite ambiguous. For instance, SR diagrams do not

provide any information on whether the subtasks in task decompositions are supposed to

be executed sequentially or concurrently and whether all the subtasks are to be executed

unconditionally or only under certain circumstances. Similar questions apply to means-

ends links linking several means to achieve a certain goal with that goal. There is no way

to tell whether all these means are applicable at all times or not.

While it could be argued that the level of detail provided by the regular SR models is

enough to analyze the intentional aspects of agents’ behaviour, we feel that more detailed

specifications of agent processes help modelers understand the requirements better.

Besides, quite often the sequencing of the subgoals in a goal decomposition is a property

of the environment of the system (e.g., one must go to the airport, then go to the gate, and

then finally board the plane). Also, adding annotations to SR models brings them to the

level of detail required for successfully mapping these models into CASL.

There are three annotation types available to the modeler. Firstly, there are composition

annotations that are mostly used with task/goal decompositions and specify whether the

subtasks/subgoals are to be performed sequentially (“;”), concurrently (“||”), with

prioritized concurrency (“>>”), or are alternatives (“|”). The default composition

annotation is sequence. Secondly, there are link annotations that are attached to

decomposition and means-ends links to specify under which conditions and how the

subtasks/subgoals (for decomposition links) and means (for means-ends links) are to be

executed by the agent. There are six link annotations (see Section 4.1.3 for details): while

loop, for loop, pick, if, interrupt, and guard. The default is no link annotation — this

 180

means that the subgoals/subtasks are executed unconditionally. The third type of

annotations is the applicability condition (see Section 4.3.3). These annotations

accompany means-ends links and specify under what conditions each means to achieve a

certain goal can be attempted. They are used to filter out the ways to achieve goals that

are not feasible/efficient/etc. All of these annotations can be added gradually: at some

point in time, it may be the case that the details of the agent processes in one part of the

diagram have been fully specified, while more analysis is required in other parts of the

model.

5.5.3 Building iASR Diagrams: Keeping Goal Dependencies

Quite a few of the agents’ goals can be operationalized, i.e., replaced with

tasks/procedures that achieve them. This is a standard practice since most software

development processes and programming languages do not support goals. Therefore,

goals are abstracted out before the late RE phase is over. Similarly, softgoals are

frequently metricized [Davis, 1993] for easy evaluation. For example, suppose an agent

has the goal “communicate message A to agent B”. An operationalization of this goal

will most likely involve choosing a communication protocol, the format of the messages,

etc. The problem with this approach is that the details of the operationalization of the

goals as well as the underlying assumptions are frozen into the requirements of the

system-to-be. This replacement of goals with procedures (agent plans) that achieve them

compromises the evolvability of the system and makes it more fragile [Castro et al.,

2002].

In contrast, one of the key ideas of the i* process is to leave many goals and goal

dependencies around. This is a new feature of i* compared to the other notations. Goals

in i* diagrams indicate that it is up to the agent (or the designer for the agent) to select the

best way to achieve them. It is important to document these as goals and keep them

around during the software engineering process since they indicate the places in the

 181

system where evolution is most likely to happen. Goal nodes could be viewed as

specifying alternatives in the way the system functions. It is conceivable that new ways to

achieve goals may become available at some point in the life of the system. Thus, clearly

documenting (and possibly implementing) agent goals as such will make the system more

flexible. Whether the process alternatives are chosen at design-time by the designer or at

runtime by the agents themselves (if the implementation is agent-oriented) is dictated

mostly by the development platform chosen and therefore is irrelevant for the RE

process. The position that we take in this thesis is similar to the position of the i*

modeling framework and the Tropos methodology: the implementation platform should

not influence the methods used in RE. It is quite the opposite: the intentional concepts

from Requirements Engineering should be pushed farther in the software development

process. This will result in more flexible systems, which meet their requirements better.

In addition, this thesis proposes the use self-acquired goals (see Section 4.3.8) that

modelers can employ to allow the agents to reason about various ways of achieving their

goals, which do not come from inter-agent dependencies, but from the designer of the

agent. Thanks to the CASL’s support for agent goals, we can go further than before in

avoiding early operationalization of agent goals. The designer now has the tools to

formally verify the models containing intentional elements such as agent goals and

knowledge.

Self-acquired goals and the support of CASL for reasoning about these goals provide the

analyst with an interesting new ability — the SR-level goal decompositions can now

become a runtime tool, as opposed to being just a design-time facility available to

modelers. SR goal decompositions are used to decompose high-level goals into simpler

goals and/or tasks. In some cases, the intermediate goals are only used to discover the

lower-level goals and tasks and can be abstracted out before goal decompositions are

translated to some formal notation for verification and/or animation. Using self-acquired

goals one can map the whole goal decomposition tree or a part of it (it could either be a

standard SR goal decomposition or an AND/OR decomposition) into CASL (see Figure

 182

4.32). In this way, the agents in the corresponding CASL model will be able to follow the

reasoning that the analyst did while creating the goal decomposition. Their mental states

will be appropriately updated. This makes the agents more aware of their processes and

could allow them to make important decisions, which previously had to be made at

design-time by the modeler, at runtime. Since the agents are able to retrace the goal

decompositions at runtime, they will make the choices based on the current context,

which can make them more adaptable to the changing environment.

5.5.4 Building iASR Diagrams: Deidealizing Goals and Suppressing
Softgoals

Below we will identify several important steps that one has to go through while

developing iASR diagrams for the system-to-be. These steps are similar to the ones

proposed in [Wang, 2001] and are intended to help the modeler in simplifying Strategic

Rationale diagrams and adding details to the agent processes. The steps that we outline in

this section are intended to be done before the diagrams are converted into iASR form.

5.5.4.1 Suppressing Softgoals

Our approach does not provide tools for formal analysis of softgoals. Therefore, softgoals

and softgoal dependencies are only used to help in the evaluation of process alternatives

and software architectures. They must be abstracted out from SR diagrams before

annotations are introduced. The softgoal nodes will be dropped from the diagrams along

with the accompanying contribution links. Also, alternative ways of achieving agent

goals — the ones that were found to contribute less to the softgoals than the best

alternative — can be removed (see Figures 5.11 and 5.13a). Alternatively, some softgoals

may be metricized (i.e., turned into regular goals) so as to have some quantitative

approximation of these softgoals in the model for further analysis. An analysis tool could

provide support for these types of simplifications.

 183

We use Figures 5.13a and 5.13b to illustrate some of the ideas presented in several

preceding sections. The figures show two possible diagrams for the Meeting Scheduler’s

task OrganizeMeeting after all the softgoals (see Figure 5.11) have been removed. The

first diagram (Figure 5.13a) illustrates the operationalization of goals. Here, the least

promising alternative for achieving OrganizeMeeting has been removed together with

the goal MeetingScheduled. This decision is now built in the diagram. Suppose that the

underlying assumption was that the number of meeting participants was going to be quite

large, so scheduling meetings manually would be slow and would require high effort

from the meeting organizer (see the softgoal contributions in Fugure 5.11). This

assumption is now also frozen into the model. On the other hand, one can keep the goal

in the model to indicate that there are alternative ways of achieving that goal (Figure

5.13b). This has all the benefits described in Section 5.5.3. The applicability condition

documents that if the number of meeting participants is up to 3, it makes sense to

schedule meetings manually, otherwise it should be better to let the Meeting Scheduler

schedule meetings.

Figure 5.13a. OrganizeMeeting with
the second alternative removed.

Figure 5.13b. OrganizeMeeting with the
goal dependency and the two alternatives.

5.5.4.2 Deidealizing Goals

Very frequently, initial goals are too ideal. They are not achievable by the system and

need to be deidealized [van Lamsweerde et al., 1995] to become achievable. One

 184

possibility is to weaken goals that cannot always be achieved. For example, suppose that

the Meeting Scheduler agent has the goal ArrangeMeeting. This goal may be too ideal

since the intended meeting participants may not have any common available dates for the

meeting, making the scheduling of the meeting impossible. Therefore, the goal must be

weakened to account for that possibility. It is important to think about the achievability of

agent goals early on since the reformulation of a goal will most likely lead to changes in

the means of achieving it. Of course, the achievability of goals is most easily verified if

one has formal definitions of these goals available. The formal analysis of agent goals

using CASL models later in the process may uncover more unachievable goals compared

to the informal analysis done at this stage of the methodology. Nevertheless, thinking

about the achievability of goals throughout the RE activities is very helpful since the

necessary changes may be introduced much earlier.

5.5.5 Building iASR Diagrams: Adding Agent Interaction Details

In i*, intentional dependencies are extremely important. These dependencies become

agent interactions in an agent-oriented setting. Speech act-based communication in a

multiagent system is quite different from remote method invocation-style communication

among software components. For example, in order for an agent to use the services of

other agents, these services must be requested (usually with the “request” performative).

The requested agents may acknowledge the request and, if they are helpful, perform the

requested service. While attempting to supply the dependum, the dependee may request

additional information, thus making the interactions more complex. Once the service is

performed, the requesting agent will either be notified of that fact or will have to monitor

for the successful rendering of the service.

i* usually abstracts over modeling detailed agent interactions. Since specifying detailed

interactions among cooperating agents in a multiagent system is essential and since our

goal is to animate and verify i* models using the CASL agent programming language, we

 185

require much more detailed specification of agent interactions than the usual i* process

provides. Section 4.3.7 provides all the details on how to deal with dependency-based

goals in iASR diagrams. It shows how agents can delegate goals and tasks to other agents

and also notes that a resource dependency must be converted to either a goal or a task one

depending on the level of freedom the dependee has in providing the required resource

for the depender.

For instance, when providing details for inter-agent communication that takes place when

one agent is requesting the services of another, the modeler needs to update the iASR

diagram for the depending agent with the tasks that request these services for the

depender. On the other hand, the iASR diagrams for the dependees will be updated with

the goal nodes with appropriate interrupt annotations to model the acquisition of goals.

Figure 4.41 illustrates this.

Since CASL supports reasoning about knowledge, analysts can model information

exchanges in their iASR diagrams and these interactions can be formally analyzed.

Information dependencies are discussed in Section 4.4.3.

Careful analysis of inter-agent dependencies may reveal that new sub-dependencies are

needed. For example, a dependee may need to request some additional information or

clarification from the depender. Also, some complex interaction protocols may be needed

to replace certain dependencies. For instance, finding the best price for a product may

require the buyer (the depender) and sellers (the dependees) to use the Contract Net

protocol [Smith and Davis, 1981], which involves more interactions than a simple

request. Additional notations can be used to carefully specify agent interaction. Designers

may wish to use protocol diagrams, which are part of Agent UML (AUML) [Odell et al.,

2000] to specify all the details of the interactions (this may be more appropriate for the

later phases of the software development process).

 186

We note that some communication exchanges do not have to be modeled (e.g., one agent

asking again for some information it did not receive the first time). This could be handled

at the implementation level. CASL models are quite idealistic in that many of the usual

communication-related problems such as missed messages, etc. are not dealt with. What

we are interested in is high-level message exchanges. Since the dependencies are not

mapped into CASL per se, the only way to establish the dependencies is for dependers to

send requests to dependees and for dependees to monitor for these requests. These details

must be provided on iASR diagrams.

5.5.6 Building iASR Diagrams: iASR-style Goal Decompositions

As described in Section 4.3.2, Intentional Annotated SR diagrams differ from SR

diagrams, besides having various annotations, in the use of goal nodes and means-ends

links. Since goal nodes are intended to be utilized as means of exploring alternatives in

models, they are used only with means-ends links, which specify alternative ways of

achieving these goals (thus, they are available with the alternative composition annotation

only). Moreover, means-ends links are used only with goal nodes and these goal nodes

must be accompanied by the interrupt link annotations. Additionally, the means for

achieving goals can only be task/capability nodes, which streamlines the mapping of

iASR diagrams into CASL models. We discussed why this is required in Section 4.3.2.

This means that SR diagrams where some of the means for achieving goals are goals

themselves must be modified to comply with the above rule by utilizing self-acquired

goals (see Figures 4.19 and 4.32).

5.5.7 Using Capability Nodes in iASR diagrams

Capability nodes (Section 4.5) are a new modeling concept introduced into the i*

modeling framework in this thesis. Modelers can use task and goal capability nodes in

iASR diagrams to indicate that agents have epistemically feasible plans that guarantee the

 187

successful achievement of the corresponding goals or the execution of the corresponding

tasks provided that their context conditions hold when they are invoked and there is no

outside interference while they are executing. Capabilities can be a part of the interface of

an agent — that is, they can be used as means of achieving the goals or performing the

tasks at the requests of other agents. On the other hand, capabilities can be used internally

by an agent itself. We expect that capabilities will be used by the agents, among other

things, as means of fulfilling critical dependencies as well as for the internal processes

where failure cannot be tolerated.

There are two forms of capability nodes: the first one shows only the goal that the

capability achieves or the task that it performs, while the more detailed view of

capabilities shows the details of how the goals are achieved or the tasks are performed.

Abbreviated capability nodes can be used in both SD (see Section 5.2.3) and SR-level

diagrams, while the detailed view is only allowed in the SR-level diagrams (see Figure

4.47).

5.6 Requirements Verification Using CASL

5.6.1 Mapping iASR Diagrams into CASL

Once all the necessary details have been introduced into an iASR diagram, it can be

mapped into the corresponding CASL model. This model provides the formal semantics

for the otherwise informal i* model, thus making iASR diagrams amenable to formal

analysis.

CASL is a much closer match for the i* models that specify multiagent systems and their

environments than ConGolog, which was used in conjunction with i* in [Wang, 2001].

The key here is the support of CASL for reasoning about agents’ mental states, goals and

 188

knowledge. This, among other things, allows for much more thorough analysis of inter-

agent communication. Modelers can also use CASL to reason about epistemic feasibility

of agent plans as well as about trust and privacy issues. The process of adding details to

the SR diagrams and their subsequent mapping into CASL could be considered

exploratory prototyping.

The mapping process will map every element (with the exception of dependencies) of

iASR diagrams into CASL as described in Chapter 4. Specifically, leaf-level tasks will be

mapped into CASL procedures or primitive actions, and task decompositions will be

mapped into procedures taking into consideration all the annotations used with these

decompositions. Goals will be formally defined by CASL formulae and associated with

CASL procedures encoding the ways the goals can be achieved. Capabilities are

associated with epistemically feasible procedures; their context conditions are formally

defined. The agents are mapped into CASL procedures that describe their behaviour.

Dependencies are not mapped into CASL per se. The dependencies at CASL level are

established by the agent procedures that request services from other agents as well as by

agents monitoring for such requests. Data is passed around mostly through procedure

parameters. Additional auxiliary CASL code may need to be added to the model to

describe the initial situation, initial knowledge of agents, some properties of the

environment, etc.

5.6.2 Verifying the System with CASLve

CASL is a formal specification language and coupled with the appropriate tools provides

powerful facilities for the formal analysis of CASL models. CASLve [Shapiro et al.,

2002] is a verification environment for CASL based on the PVS theorem prover [Owre et

al., 1996]. CASLve defines an encoding of CASL programs in the input language of

PVS. The verification environment also provides a library of proof methods for proving

various types of results. One can use CASLve to prove properties such as liveness,

 189

safety, and termination. In general, many interesting properties of multiagent systems

specified in CASL can be analyzed using CASLve. If expected properties of the system

are not entailed by the CASL model, it means that the model is incorrect and needs to be

fixed. The source of an error found during verification can usually be traced to a portion

of the CASL code for the system and/or to some part of its iASR diagram. After the

necessary changes have been made, the verification can be repeated, thus making the

process iterative. As outlined in the next section, we believe that our approach has a high

level of requirements traceability support. Therefore, it is quite easy to change the CASL

code for the system in attempt to fix an error and then synchronize the code and the

corresponding iASR diagram. Changing the iASR diagram first and then mapping it to

CASL to get the updated version of the CASL model is also possible. In both cases, the

changes are easily localized so that the complete remapping from iASR to CASL or from

CASL back to iASR is not necessary. A model editing tool could support this

synchronization.

5.6.3 Supporting Requirements Traceability

The requirements engineering process is aimed at identifying the needs of stakeholders,

coming up with system requirements that refine these needs, resolving conflicts among

requirements, and specifying these requirements in an easily understandable form that is

the basis of the system design and implementation [Castro et al., 2003]. Therefore, it is

important to keep track of which stakeholder goals give rise to which requirements and

what the origins of all the requirements in the system are. In addition, as Ramesh and

Jarke [Ramesh and Jarke, 2001] note, it is very important to keep track of bi-directional

relationships between requirements and the development process artefacts in order to

facilitate the maintenance and verification of the system.

Castro et al. [Castro et al., 2003] state that a requirement is traceable if one can discover

its origin, why it exists, what other requirements relate to it, and how that requirement

 190

relates to systems designs, implementations and user documentation. Consequently,

requirements traceability refers to the ability to follow the lifecycle of a requirement in

both forward and backward directions — i.e., from its origins, through its specification

and development, to its subsequent deployment and use, and through periods of ongoing

refinement and iteration [Gotel and Finkelstein, 1994]. Since our work mainly deals with

requirements engineering phase of the software development process and does not go

beyond high-level design, our concern is the traceability in the early requirements, the

late requirements, and the high-level design phases of software development process. In

particular, we would like to show that our approach supports tracing a requirement from

its origin as a stakeholder goal through various i*-provided analysis steps (i.e., strategic

dependencies, softgoal analysis, and goal decompositions) to the corresponding CASL

code and back.

i* allows the requirements engineer to capture the goals of stakeholders — the origins of

system requirements. These goals are achieved through the network of inter-agent

dependencies and/or goal and task decompositions. The achievement of a stakeholder

goal may or may not involve a delegation of the goal or some of its subgoals to the actor

that is a part of the system-to-be. In any case, following goal/task decomposition links

and inter-agent dependencies allows us to see how high-level stakeholder goals are being

achieved by the system-to-be and its environment. If a change is introduced to some

nodes in the model, the affected nodes are easily identified — they are the modified

nodes’ successors in the graph of goal/task decompositions. The successors may also

include the nodes related to the modified ones through inter-agent dependencies. On the

other hand, by examining decomposition and dependency links going up the goal/task

decomposition graph from a certain goal or task node, we can easily see why the task has

to be performed or the goal has to be achieved (as well as all the conditions under which

this particular iASR diagram node becomes active). Therefore, it is easy to trace

requirements back and forth within annotated i* diagrams.

 191

The next step of the method, after the iASR diagrams have been developed, is to map

them into the corresponding CASL models. The modeler is required to define a mapping

m from a completed iASR model into CASL code as outlined in Chapter 4. This allows

for formal analysis of the i* model. The mapping m is itself a very important source of

traceability information as it bridges between the i* and CASL models. It maps every

element of an iASR diagram into CASL. Every agent/position/role, every goal and task

node, every annotation and applicability condition, and every goal and task

decomposition is mapped, thus giving the ability to trace requirements from iASR models

to CASL code. Intentional dependencies are mapped into the corresponding agent

interactions defined using performatives. Tracing from the CASL code back to the

corresponding iASR models is quite easy as well, since we expect that most of the CASL

code is produced by mapping elements of the iASR diagrams, and this is documented by

the mapping m, which is defined by the modeler. If the modeler is using Trusts/Serves

relationships in the models (Section 5.2.5), then the directed graphs or other, more

complex models used to represent these relationships, could be easily mapped into the

associated CASL fluents (see Sections 4.3.7.3 and 4.4.4). There could be some auxiliary

CASL code to help with the animation of the CASL model or formal analysis of the

requirements. This CASL code is part of the needed CASL infrastructure and is not

directly related to the elements of iASR diagrams. It cannot, therefore be traced back to

requirements. It is imperative, however, that this code be appropriately documented for

ease of use and modifiability.

5.8 Automating the Mapping into CASL

Given the mapping rules presented in Chapter 4, the mapping between iASR diagrams

and the procedural components of the corresponding CASL agents must be very close.

The code for CASL procedures that iASR goals, capabilities, and non-leaf-level tasks

map into is completely determined by these tasks’ decompositions in iASR diagrams and

 192

by the composition and link annotations used in these decompositions. The flow of

control in the procedural component of a CASL specification is based on the link and

composition annotations used by the modeler in the corresponding iASR models (see the

mapping of the model in Figure 4.14). Therefore, most of the code for the procedural

component of a CASL agent can be produced directly from the agent’s iASR diagram.

A modeling tool can be used to facilitate the mapping of iASR diagrams into CASL

specifications. As discussed above, most of the mapping is quite routine and can be

automated. In this thesis, we allow leaf-level task nodes to be mapped into either

primitive actions or CASL procedures. In this way, the modeler can decide to reduce the

size of iASR diagrams by not decomposing agent processes all the way to primitive

actions. On the other hand, forcing the modeler to fully decompose agent tasks (i.e., by

requiring that leaf-level tasks be mapped only into primitive actions with the same name

and parameters) will help a modeling tool map iASR diagrams into CASL by

automatically constructing CASL procedures from primitive actions and composition and

link annotations.

The following changes to the mapping process can be made to allow for more automated

mapping of iASR diagrams into CASL:

• Goals must be mapped into defined fluents with the same name.

• Achievement procedures for goals must be labeled GoalNameProc, where

GoalName is the label for the goal. The same applies to capabilities.

• Conditions in annotations must have descriptive names and must be mapped into

defined fluents with the same name.

• Goal and task parameters must be fully specified in iASR diagrams.

The modeler will have to define the fluents that goals/annotation conditions are mapped

into as well as the context conditions and the allowable process specifications for agent

 193

capabilities. Also, action preconditions and successor state axioms for fluents must be

defined by the modeler. In addition, specifications for individual CASL agents must be

combined together to produce the specification for the whole system – concurrent

composition is mostly used for this. Then, CASL specifications can be constructed from

the corresponding iASR diagrams.

 194

6 The Meeting Scheduling Process Case
Study

In this chapter, we examine the approach proposed in the thesis through the use of a case

study. We apply our methodology to the process of scheduling meetings in an

organization. This is a simple case study that, nevertheless, allows us to demonstrate most

of the features of our approach. The meeting scheduling scenario was previously

explored and modeled using i* [Yu, 1995] and Wang’s i*-ConGolog approach [Wang,

2001].

6.1 Introduction

In the case study discussed in this chapter we model the process of scheduling meetings

in some organization. In the context of the i* modeling framework the process was first

analyzed in [Yu, 1997]. The initial requirements for the process were stated as “For each

meeting request, to determine a meeting date and location so that most of the intended

participants will be able to effectively participate” [Yu, 1997]. We will modify the

scenario in several ways as well as make certain assumptions about the process and the

stakeholders involved in it in order to make our models more manageable and to better

illustrate our methodology.

In our view of the meeting scheduling process, for every meeting we have a single person

initiating the meeting scheduling process. We take the length of the meetings to be the

whole day. We do this to simplify our model and note that this model can be easily

extended to handle multiple meetings per day. The meeting can be successfully scheduled

if for all the intended participants there is a date that fits their schedule. We also assume

 195

that in the environment of the system-to-be there is a legacy software system called the

Meeting Room Booking System that handles the booking of meeting rooms.

In the scenario that we study in this chapter, the possibility of introducing an automated

meeting scheduling system is explored and compared (at a high level) to the current

manual meeting scheduling process. The automated meeting scheduling system is then

explored in great detail using iASR diagrams. Finally, the iASR model of the system is

formalized by mapping it into CASL using the mapping process proposed in this thesis.

6.2 Early Requirements Analysis

The first step in the requirements engineering methodology presented in Chapter 5 is to

analyze the environment of the system-to-be, the stakeholders, and the current processes.

This analysis helps in determining the needs of the stakeholders and the relationships

among them, which is crucial in understanding why the new system is needed and how it

can improve the current situation.

6.2.1 Identifying Stakeholders

We first identify stakeholders in the current meeting scheduling system. In the words of

Nuseibeh and Easterbrook [Nuseibeh and Easterbrook, 2000], stakeholders are

“individuals or organizations who stand to gain or loose from the success or failure of the

system”. In the meeting scheduling scenario, the process of stakeholder identification is

quite easy. However, there may be cases where this step of the methodology is not trivial.

Using the i* terminology we call stakeholders actors. The following actors are

participating in the process of scheduling meetings:

 196

• the Meeting Initiator (MI), who initiates the scheduling of a meeting;

• the Meeting Participant (MP), an actor who is requested to participate in

meetings;

• the Meeting Room Booking System (MRBS), a legacy software system that is used

to reserve meeting rooms.

These are the actors that are part of the meeting scheduling process. However, we can

identify another actor — we will call it Disruptor — that arranges meetings with meeting

participants (thus changing their schedules) outside of the process modeled here. The

reason we need this actor is that not all meetings are managed by the organization’s

meeting scheduling process. For example, while we assume that everybody within the

organization is using the meeting scheduling process, arranging meetings with people that

are not part of the organization takes place outside of the current scheduling process.

MRBS
Meeting
Initiator

Agent Role Position

Legend: Actors

Meeting
Participant Disruptor

Figure 6.1. The stakeholders in the meeting scheduling process.

Most of the stakeholders shown above can be classified as roles in i*. Naturally, the roles

of Meeting Initiator, Meeting Participant, and Disruptor can be played by many different

agents. However, since the MRBS represents a concrete legacy system, we consider it an

agent in the i* sense.

 197

6.2.2 Identifying Stakeholder Goals and Intentional Dependencies

We can describe the current meeting scheduling process in the organization in terms of

the newly identified stakeholders and their relationships. This will help in identifying the

goals and the needs of the stakeholders, and their rationale for being part of the meeting

scheduling process. We can describe the current process as follows. The MI schedules

meetings by contacting each Meeting Participant and getting the list of its available dates.

It then chooses a date that is convenient for all meeting participants (including the

Meeting Initiator) and attempts to book the meeting on that date. The Meeting Initiator

then uses the MRBS to book a room for the meeting. At the same time, the Disruptor can

also arrange meetings with Meeting Participants outside of this meeting scheduling

process. We can now start modeling the meeting scheduling process using Strategic

Dependency (SD) models. The first step in modeling the current processes in an

organization is to identify the intentions/goals of the stakeholders and to discover the

intentional dependencies that exist among these stakeholders.

Let us look at the Meeting Initiator actor. It is the driving force behind the meeting

scheduling process, so the intentional dependencies that help in achieving the Meeting

Initiator’s goals make up the core of the process. The Meeting Initiator needs to schedule

a meeting with meeting participants, to book a room for the meeting, and it also needs the

participants’ presence at the meeting. Figure 6.2 below shows these goals using the

notation proposed in Section 5.2.2:

Figure 6.2. Meeting Initiator with three unassigned goals.

 198

The above figure presents the Meeting Initiator actor with three (yet unassigned) goals.

For now we will not concern ourselves with the goal parameters. By looking at the

current process in the organization, we can determine how the goals of Meeting Initiator

are presently handled, whether they become part of some intentional dependencies or are

achieved by the actor itself. The booking of the meeting rooms is handled by the MRBS

software system, so we can add the goal dependency RoomBooked to our SD diagram that

models the scheduling process (see Figure 6.3). Note that we also add a goal capability

node RoomBookedCap to the MRBS agent. The MRBS is a good actor to model with

capabilities since it is a legacy software system and always provides the expected results

when it is used properly and not being interfered with. AtMeeting represents the Meeting

Initiator’s goal of having the intended participants present at the meeting. This goal is

delegated to the Meeting Participant through a goal dependency. As for the goal

MeetingScheduled, it is presently handled by the Meeting Initiator itself. We can,

therefore, add a goal self-dependency MeetingScheduled to the model. We note here

that RoomBooked, AtMeeting and MeetingScheduled are goal dependencies (as opposed

task dependencies). This means that the depender does not prescribe a specific course of

action to the dependee, but instead gives the dependee the freedom to choose the right

means for the achievement of the goal.

Meeting
Scheduled

Room
Booked

At Meeting Meeting
Participant

MRBS
Meeting
Initiator

CAP

RoomBooked
Cap

Figure 6.3. Delegating the Meeting Initiator’s goals

Figure 6.3 shows the core intentional dependencies for the Meeting Initiator, which are

exercised during meeting setup. By looking at the current meeting scheduling process we

can add details to the above diagram by further analyzing the goals and needs of the

 199

stakeholders and their relationships. First, we consider the Meeting Initiator actor again.

In order to be able to schedule meetings it needs the list of available dates from each of

the intended participants. We can model this relationship using an i* resource

dependency. The subject of this dependency is the information resource

AvailableDates. Also, the MI needs to know which room was booked for the meeting

by the MRBS agent, so it depends on the MRBS for that information, thus giving rise to

another resource dependency with the dependum being the information about the room

number of the booked room. The MP, on the other hand, needs to know whether and

when the meeting is scheduled. This is another information resource dependency that we

add to the model (see Figure 6.4). We also add the Disruptor actor to the SD model of the

meeting scheduling process. Not unlike the Meeting Initiator, it depends on the Meeting

Participant for attending meetings. We model this with the goal dependency AtMeeting.

Figure 6.4. Adding details to SD model.

6.2.3 Modeling Additional Organizational Details

Section 5.2.5 proposed to model additional organizational details using the Serves and

Trusts relationships. The Serves and Trusts relationships could be represented as directed

graphs. The Serves relationship specifies, for each actor, which other actors it is willing

 200

to help in the achievement of their goals. Similarly, the Trusts relationship specifies, for

each actor, which actors in the organization it believes. We will now sketch how the

relationships can be modeled in case of the meeting scheduling process.

Most of the actors in our SD model of the process are roles, which can be played by

many different agents. The Serves relationship can be used to effectively limit the agents

that can play the role of the Meeting Initiator. Suppose that one of the constraints that

exist in the organization is that only managers or team leaders are allowed to schedule

meetings and book meeting rooms. One way to model that constraint with the Serves

relationship is to declare that the MRBS agent representing the room booking system is

only available to a restricted set of agents (managers and team leaders). If the directed

labelled graph notation is used (see Figure 5.8), then we can use Figure 6.5 below to

specify that only the agents playing the role of a Manager or a Team Lead can use the

MRBS system to book meeting rooms:

Figure 6.5. Using the Serves relationship.

We can similarly use the Serves relationship to define the actors that can request

information about available dates from the Meeting Participants. Note that we are not

proposing any particular notation for the Serves and Trusts relationships.

 201

6.2.4 Modeling Non-Functional Dependencies

Modeling non-functional requirements during requirements analysis is very important.

Non-functional requirements are sometimes called quality requirements and address such

concerns as efficiency, ease of use, security, quality, etc. In the i* terminology, non-

functional requirements are called softgoals. There is no clear-cut satisfaction condition

for a softgoal, instead softgoals are satisficed [Simon, 1981] — achieved to an acceptable

degree. In our approach, softgoals are used as selection criteria for choosing the best

alternatives among multiple process configurations. In i*, softgoals can be the subjects of

intentional dependencies where the depending actor delegates the satisficing of a softgoal

to a dependee actor.

Figure 6.6. Modeling softgoal dependencies.

In our meeting scheduling process model, we can identify a number of different softgoal

dependencies. In this chapter, we will model a few of them. For example, the Meeting

Initiator has a couple of non-functional requirements related to the process of scheduling

meetings. The first non-functional requirement is the convenience of the scheduling

process. It is modeled by the softgoal Convenience. Also, the Meeting Initiator wants the

scheduling process not to be very time consuming. This is modeled by the softgoal

Speed. Since in the current meeting scheduling process the MI is responsible for

 202

scheduling meetings, we model the softgoal dependencies Speed and Convenience as

self-dependencies involving the Meeting Initiator. Figure 6.6 shows the core

dependencies of the meeting scheduling process with the newly introduced softgoal

dependencies.

6.3 Late Requirements with SD Diagrams

In this section, the new automated meeting scheduling system is introduced into an

organization. As this system is introduced, the existing processes in the organization will

change. This will result in the reconfiguration of intentional dependencies in the model.

6.3.1 Introducing the System-To-Be

After exploring the organization, the processes within this organization, the stakeholders

and their needs, we have a good understanding of the environment where the new

automated meeting scheduling system will be introduced. Thus, the next step in the

analysis of the meeting scheduling process is to bring the system-to-be into its

organizational environment and analyze how the combined system (comprised of the

environment and the system-to-be) is going to change. The system is represented by one

agent (concrete actor) called the Meeting Scheduler (MS). It may be the case that the

system is decomposed into several sub-agents at a later stage of the requirements

engineering process.

With the introduction of the Meeting Scheduler agent, the network of intentional

dependencies in the system changes significantly (see Figure 6.7). The Meeting Initiator

now depends on the Meeting Scheduler for scheduling meetings. The initiator also needs

to know whether the meeting is scheduled, when it is scheduled, and which room it is

going to be held in. Since the Meeting Scheduler is scheduling meetings, it must have this

information. Therefore, there is an information resource dependency MeetingInfo going

 203

from the Meeting Initiator to the Meeting Scheduler. It is now the responsibility of the

Meeting Scheduler agent to book meeting rooms, so it depends on the MRBS for the

achievement of the goal RoomBooked. The scheduler is now the depender of the

information resource dependency Room#, which is, as previously, fulfilled by the MRBS.

Disruptor

AtMeeting

Meeting
Initiator

Meeting
ParticipantMeeting

Scheduler

MRBS

Meeting
Scheduled

Meeting
Info

AtMeeting
Room

Booked

Available
Dates

CAP

RoomBooked
Cap

Room#

Meeting
Info

Figure 6.7. Introducing the system-to-be.

The figure above also shows that there are significant changes in the Meeting

Participant’s dependencies. Since the Meeting Scheduler agent is responsible for

scheduling meetings, the dependencies MeetingInfo, AtMeeting, and AvailableDates

now involve the Meeting Participant and the Meeting Scheduler. The only unchanged

intentional dependency in the model is the goal dependency AtMeeting from the

Disruptor to the MP. The dependency remains the same since the Disruptor actor is not

using the organization’s meeting scheduling process and therefore is not affected by any

changes in this process.

6.3.2 Introducing the System Agent

The System agent was introduced in Section 5.3.2 as a tool that can be used, among other

things, to collect the goals that come not from the stakeholders in the organization, but

 204

from regulations, laws, etc. In order to demonstrate the use of the System agent in our

case study we will assume that in the organization that we are modeling there exists a

regulation requiring that no meetings be scheduled on weekends. This regulation could

come from a company policy or a labour regulation. The exact source of this regulation is

not important. What is important is the fact that it comes from the outside of the meeting

scheduling process that we are modeling.

Figure 6.8. The System agent in introduced into the model.

We can capture requirements coming from this kind of regulations by assigning them to

the System agent. The System agent represents the combined system as a whole and its

goals are thought of as the goals the whole system must strive to achieve. The modeler

can then look at the goals of the System agent, and decompose them if necessary, up to

the point where the subgoals can be handled by single agents, and then assign these

subgoals to the selected agents, thus distributing the responsibilities for the achievement

of its goals throughout the system. By assigning the goal NoMeetingsOnWeekends to the

System agent we declare that the new automated meeting scheduling system as well as its

environment must make sure that no meetings are scheduled on weekends. The next step

 205

is to analyze this goal and see whether it needs to be decomposed into simpler subgoals to

be assigned to the actors in our model. In our methodology, Strategic Rationale (SR) and

Intentional Annotated Strategic Rationale (iASR) diagrams are used to handle goal and

task refinement. Thus, in order to refine the goals of the System agent one needs to use

SR/iASR diagrams. However, in our case the goal NoMeetingsOnWeekends can easily be

assigned to the Meeting Scheduler agent since that agent is responsible for scheduling

meetings and it can make sure that no meetings are scheduled on weekends. This

assignment of responsibility for the system goal is modeled by the goal dependency

NoMeetingsOnWeekends from the System agent to the Meeting Scheduler (see Figure

6.8).

6.3.3 The System’s Architecture

In this chapter, we will not discuss the architectural analysis of the system since the

meeting scheduling system we are modeling is quite simple and is of the right size to be

modeled by just one agent, the Meeting Scheduler. The need to split the system up into

several sub-agents could arise if there was a requirement, for example, to schedule

meetings for hundreds of people. In this case, the system could be split into a variable

number of agents handling communication with meeting participants (e.g., one agent per

100 participants) as well as the agent responsible for communicating with the initiator

and selecting potential meeting dates. This would improve the system’s scalability.

6.4 Late Requirements with SR Diagrams

Once we have identified the intentional dependencies among the actors in the

environment of the system-to-be and the system-to-be itself, we can look “inside” the

environment actors and the system agents and model their internal processes. This step of

the methodology gives the modeler a great insight into the way the actors behave, the

 206

choices they face, their intentions, etc. New, more fine-grained intentional dependencies

are frequently discovered during SR/iASR analysis. In this section, we will use the SR

notation to model the internals of the actors that are part of the meeting scheduling

process. These are the initial high-level SR diagrams that will be refined later and turned

into iASR diagrams for mapping into CASL.

6.4.1 Modeling the Meeting Initiator: Using Softgoals for Alternative
Selection

One very important investigation that designers can do using SR/iASR models is the

analysis of various alternatives using their contributions to softgoals. In Section 6.2.4, we

modeled several non-functional requirements (NFRs), Convenience and Speed, that exist

in the meeting scheduling system. These NFRs are modeled as softgoal self-dependencies

of the Meeting Initiator. We do not require that all the choices in terms of alternative

process configurations be made at the requirements analysis stage. In fact, we suggest

quite the opposite — keeping goals and alternative means of achieving them around until

(and during) the design phase of the software development process. However, in order to

concentrate on the modeling of the automated meeting scheduler and to keep the model

simple, we will immediately use the softgoal analysis to select the best alternative and

remove other alternatives.

The way that alternative process configurations are related to softgoals (NFRs) is through

softgoal contributions. The analyst identifies the elements of the model that affect

(positively or negatively) the softgoals of the actors and models these influences using

softgoal contribution links. Figure 6.9 is the SR diagram for the Meeting Initiator with

two alternative ways of scheduling meetings. One way to do it is to use the old manual

scheduling process. The other way is to use the new Meeting Scheduler agent, which is

under development.

 207

Figure 6.9. Modeling the softgoal contributions.

The two non-functional requirements identified for the Meeting Initiator are used to rank

these two alternatives. The task UseMeetingScheduler naturally represents the

alternative that uses the new MS agent to schedule meetings. Since all the work to

schedule meetings is offloaded to an automated scheduling system, it contributes

positively to the softgoal Convenience. Therefore, we add a positive softgoal

contribution from UseMeetingScheduler to Convenience. Also, the automated system

is going to be faster than the current manual process, so we add another positive

contribution from UseMeetingScheduler to the softgoal Speed. On the other hand, the

analysis of the manual meeting scheduling process with respect to the two non-functional

requirements shows that the manual process contributes negatively to both NFRs. This is

modeled by the negative softgoal contributions from the task ScheduleManually. To

concentrate on modeling the system using the automated scheduler we assume that at this

point a decision is made to abandon the manual scheduling process in favour of using the

Meeting Scheduler agent.

 208

One of the requirements on the iASR models before one can map them into the

corresponding CASL specifications is the absence of softgoals, softgoal dependencies,

and softgoal contribution links. Softgoals can be used as above to select the best

alternative and then be abstracted out. Alternatively, softgoals can be approximated with

hard goals. In any case, they must be removed before the mapping to CASL is done.

Let us look at the SR model for the Meeting Initiator actor after the removal of the

softgoals and softgoal contributions (see the Figure 6.10). The model presents a high-

level view of the internal process for the actor using goals, tasks, resources, and

intentional dependencies.

Figure 6.10. The SR diagram for Meeting Initiator.

The top-level node in the diagram is the task MIBehaviour, which models the overall

behaviour of the actor. While the SR diagram notation does not require this, we always

have a task as the top node in every actor’s SR diagram in order to simplify the

conversion of SR diagrams into iASR diagrams. The task MIBehaviour has one subgoal,

 209

MeetingSetup. This is the main goal of the Meeting Initiator. The goal has one means of

achieving it. In order to achieve the goal MeetingSetup, the MI must execute the task

SetupMeeting, which is in turn decomposed into a subgoal and a subtask. Setting up

meetings involves scheduling them (including the booking of meeting rooms). This is

modeled by the goal MeetingScheduled. As per the discussion in the previous section,

the scheduling of meetings is done by delegating it to the Meeting Scheduler. Thus, the

only means to achieve the goal MeetingScheduled is to request help from the automated

scheduler. At this stage, we model this as the task UseMeetingScheduler. The details of

the request will be provided in iASR models. After delegating the scheduling of a

meeting to the Meeting Scheduler, the initiator must know the outcome of the scheduling

process: whether the meeting was scheduled, when it was scheduled, and in what room it

is going to be held. The Meeting Initiator must get this information from the Meeting

Scheduler. This is modeled by the task GetMeetingInfo. This task requests the needed

information from the Meeting Scheduler agent. Thus, there is a resource dependency

from the MI to the MS with the dependum MeetingInfo.

6.4.2 Developing an SR Model for the MRBS

As mentioned before, the Meeting Room Booking System is a legacy software system

that is used in the current manual meeting scheduling process. This system is deemed

adequate for the new automated scheduling system, so it is going to be used in

conjunction with the Meeting Scheduler agent. Therefore, it is represented as an actor in

our diagrams and we need to model its behaviour, dependencies, etc. Since it is a legacy

system, it is useful to model the services that the MRBS provides as capabilities. The

purpose of the MRBS system is to manage the booking of meeting rooms and we have all

the confidence that if the system is used properly and not interfered with, it can

successfully book rooms. Therefore, a goal capability RoomBookedCap can be used to

represent the service of the agent as illustrated in the SD diagrams in the previous

sections (e.g., Figure 6.8). At this stage of the requirements engineering process, our goal

 210

is to model the processes inside the MRBS agent. While modeling legacy systems,

hardware devices, etc. one needs to concentrate on the incoming and outgoing intentional

dependencies/interactions and on approximating the internal system processes.

MRBS
Behaviour

RoomBooked RoomNumber
Known

CAP

RoomBooked
Cap

InformIfKnown

MRBS Meeting
Scheduler

Room
Booked

Room#

+/-

Task Decomposition

Means-Ends Link

Softgoal Contribution

Actor Boundary

Task

Goal

Softgoal

Figure 6.11. Modeling the MRBS agent.

Figure 6.11 is a high-level SR model of the MRBS system. There are two incoming

dependencies from the Meeting Scheduler (the MS is the only actor now using the

services of the booking system), the goal dependency RoomBooked and the resource

dependency Room#. The top-level task of the MRBS agent is MRBSBehaviour, which

models the overall behaviour of the agent. It is decomposed into two goals: RoomBooked

and RoomNumberKnown. These goals represent the services that the MRBS agent provides:

it can book rooms and notify its user whether it was successful and which room was

booked for a meeting. The means of achieving the goal RoomBooked is a goal capability

with the name RoomBookedCap, while the task InformIfKnown is a means to achieve the

goal RoomNumberKnown.

 211

6.4.3 Developing an SR Model for the Meeting Participant

We assume that the Meeting Participant is a role played by the personal agents of the

employees in the organization. They are participating in the meeting scheduling process

on behalf of their owners. It can be seen from Figure 6.8 that the Meeting Participant

actor depends on/is depended upon by the Meeting Scheduler, and by the actor called the

Disruptor, which represents the outside forces that make the members of the organization

block their calendars with external meetings. Let us analyze the Meeting Participant actor

more closely. We start by developing a high-level SR diagram for it (see Figure 6.12).

The top-level task representing the overall behaviour of the actor is called

ParticipantBehaviour. It is decomposed into subgoals and subtasks that take care of

incoming and outgoing dependencies of the actor. These dependencies are the same as in

the SD diagram in Figure 6.8. The first subgoal the task is decomposed into is called

MSInformedOfAvailableDates. This goal exists because of the incoming resource

dependency AvailableDates. Here, the MS needs to know which dates on the schedule

of this Meeting Participant are still available for meetings. Unlike goal and task

dependencies, which specify the degree of freedom the dependee has in providing their

dependums, resource dependencies do not specify that information. Therefore, in dealing

with resource dependencies, one needs to determine whether the process of providing a

particular resource is better modeled with goals or tasks. In fact, in our approach, all

resource dependencies are eventually replaced with goal or task ones. In case of the

resource dependency AvailableDates, we are inclined to treat it as a goal from the point

of view of the Meeting Participant — there may be many possible ways of letting the MS

know about available dates. For example, participants can inform the scheduler directly

or they can upload their available dates to some secure shared storage. Therefore, the

dependency AvailableDates is connected to the goal node

MSInformedOfAvailableDates. This goal has one means of achieving it. It is the task

InformMS, which represents the process of sending the list of available dates directly to

the scheduler. Later, other means could be identified and added to the model.

 212

The second subgoal in the task decomposition of ParticipantBehaviour is the goal

AtMeeting (see Figure 6.12). Two actors depend on the MP for the achievement of this

goal — the Meeting Scheduler and the Disruptor. To achieve this goal the participant

must attend the meeting, so the means of achieving the goal in the model below is the

task AttendMeeting.

InformMS

MS Informed of
Available Dates

AtMeeting Get Meeting Info

Participant
Behaviour

Attend
Meeting Meeting

Participant

Meeting
Scheduler

AtMeeting Meeting
Info

Available
Dates

Disruptor

AtMeeting

Figure 6.12. The SR model for the Meeting Participant.

The MP needs to know the details (date, room, etc.) of the meetings that it is supposed to

participate in after they have been scheduled. This is modeled by the resource

dependency MeetingInfo in the SD diagram in Figure 6.8 with the MS being the

dependee and the MP being the depender. In the SR model above, we must identify the

origin of this dependency inside the participant. This origin is the task GetMeetingInfo.

It specifies how to get the information about the meeting. GetMeetingInfo can be

replaced by a goal (e.g., MeetingInfoKnown), for which several achievement alternatives

(e.g., asking the scheduler or looking up the info on a message board) can be identified.

We will stay with the task GetMeetingInfo to simplify the model.

 213

6.4.4 Developing an SR Model for the Disruptor

As mentioned before, the Disruptor actor represents the agents outside of the organization

that want to arrange meetings with members of the organization. This actor creates

obstacles for the meeting scheduling process by making the meeting participants occupy

their schedules, thus reducing the number of available dates and making it more difficult

to schedule meetings among the members of the organization.

Figure 6.13. The SR model for the Disruptor.

The initial SR model for the actor is very simple. It has just one objective, the objective

of requesting the Meeting Participant to attend a meeting with the Disruptor. In the

diagram above (Figure 6.13), it is modeled by the goal ParticipationRequested. The

goal is achieved by the task RequestMP, which requests that the Meeting Participant

attend the meeting with the Disruptor, thus establishing the goal dependency AtMeeting.

6.4.5 Modeling the Meeting Scheduler

The Meeting Scheduler agent is the centerpiece of the new automated meeting scheduling

system. This agent is involved in many dependencies and interacts with most of the

actors in the system. Let us look inside this agent (see Figure 6.14). The top-level task

that models the overall behaviour of the agent is called MSBehaviour. It is decomposed

into a subgoal and a subtask. They represent the activities that the MS does in order to

 214

provide the dependums for two of its incoming dependencies. These dependencies come

from the Meeting Initiator, which triggers the meeting scheduling process. The

dependency MeetingScheduled ends inside the MS at the goal node

MeetingScheduled. The way the MS agent fulfills the resource dependency

MeetingInfo is by executing the task SendMeetingInfoToMI.

Schedule
Meeting and
Book Room

Get Rid Of
Weekend

Dates

AvailableDates
Known

Ask
Participants

Book
Available

Date

Request
Meeting

Participation

Participant

Send Meeting
Info to MI

Book Room

MS
Behaviour

MeetingScheduled

MRBF

GetSuggested
Dates

Find
Agreeable

Date

Ask
MRBS

GetRoom
#

Send
Meeting
InfoTo

MP

Meeting
Scheduler

Meeting
Initiator

Get
Participants

System

Meeting
Scheduled

Suggested
Dates

Participants

Meeting
Info

No Meetings
On Weekends

Available
Dates AtMeeting

Meeting
Info Room

Booked

Room#

Figure 6.14. The initial SR diagram for the Meeting Scheduler.

 215

The goal MeetingScheduled has one means of achieving it, the task

ScheduleMeetingAndBookRoom. This task represents the main activity of the scheduler.

It must schedule the meeting with all the participants as well as book a room for the

meeting. We use task decomposition links to decompose the task into a number of

subtasks and a subgoal. First, in order to be able to schedule a meeting the MS needs to

know the identities of the meeting participants and the dates suggested by the Meeting

Initiator. For this information the MS agent depends on the Meeting Initiator. The tasks

GetParticipants and GetSuggestedDates model the activities needed to request that

information from the initiator. These tasks are the origins of the two new resource

dependencies, Participants and SuggestedDates. A deeper look at the meeting

scheduling process inside the MS agent made the analyst realize the need for these two

dependencies (they were not modeled in the initial SD diagram in Figure 6.8). The

corresponding modifications to the SR diagram for the Meeting Initiator are discussed in

the next section.

After receiving the list of the intended meeting participants from the Meeting Initiator,

the MS needs to get available dates from all these participants in order to find a mutually

unoccupied time slot for the meeting. This is represented by the goal

AvailableDatesKnown, which is a subgoal of the task ScheduleMeetingAndBookRoom.

Only one means for achieving this goal is modeled for now, the task AskParticipants.

It may be the case that in the future the scheduler could get access to securely stored

schedules of all the participants and get the information on available dates from there. So,

we model AvailableDatesKnown as a goal and keep it as such through the rest of the RE

process in attempt to make the system more flexible/adaptable later on. The task

AskParticipants represents the activity of requesting the information on available dates

from participants. It is, therefore, the origin of the information resource dependency

AvailableDates.

 216

After available dates are known, the task is to find a common date that is free for all of

the participants and is one of the dates suggested by the initiator. The task

FindAgreeableDate, also a subtask of ScheduleMeetingAndBookRoom, models this

activity. Upon finding an agreeable date the Meeting Scheduler requests a meeting on

that date and books a meeting room. This is modeled by the task BookAvailableDate,

which is decomposed into subtasks RequestMeetingParticipation and BookRoom. By

requesting participation from meeting participants the MS delegates the achievement of

the goal AtMeeting to the MPs. Thus, the task RequestMeetingParticipation is the

origin of the goal dependency AtMeeting. The booking of a meeting room is modeled by

the task BookRoom, which is the origin of the goal dependency RoomBooked that goes

from the scheduler to the MRBS. The MS also needs to know which room the MRBS

books for the meeting, so the next subtask in the task decomposition of BookRoom is

GetRoom#. It again requests this information from the MRBS, thus giving rise to the

resource dependency Room#. Once all of the details of the scheduled meeting are known,

the MS provides this information to the participants.

Let us take a look at the System agent with its goal dependency NoMeetingsOnWeekends.

As it was decided in Section 6.3.2, the best way to achieve this goal is to delegate it to the

Meeting Scheduler agent since it is responsible for scheduling meetings and therefore can

be made to avoid scheduling them on weekends. In the SR model of the MS agent

(Figure 6.14), the goal dependency NoMeetingsOnWeekends ends at the task

GetRidOfWeekendDates, which throws away the dates suggested by the initiator that fall

on weekends. This ensures that no meeting is going to be scheduled on one of those

dates.

6.5 Toward iASR Diagrams

In this section, we look at how the some of the more complex SR diagrams developed

above are refined and how the details are filled in to set the stage for their conversion into

 217

iASR diagrams. This involves adding parameters to goal and task nodes, adding details to

interactions, replacing resource dependencies with goal/task ones, as well as refining

goal/task decompositions. The simpler SR models are directly turned into iASR diagrams

in Section 6.6.

6.5.1 Refining the Meeting Initiator Model

Our goal is to gradually refine the SR model for the Meeting Initiator so that it becomes

detailed enough to be easily mapped into a formal CASL specification. Process details

are added to the model at this stage. Some changes resulting from a more thorough

analysis of the MI process are also introduced into the goal/task decompositions. The

second version of the SR diagram for the MI in Figure 6.15, therefore, brings it closer to

the iASR model.

When thinking about agent process specification, it is helpful to identify the

context/subject of the goals/tasks/resources in SR models. This subject can be expressed

with parameters. Adding parameters to goals and tasks is a way to increase the precision

of the model. This precision is necessary for the formal analysis of the model using

CASL. For example, instead of having a goal MeetingSetup (as in Figure 6.10), we add

the parameter mid to the goal label and it becomes MeetingSetup(mid). mid stands for

“meeting ID”, a unique identifier for a meeting. It allows the modeler to distinguish

instances of the process that refer to different meetings. Parameters are also a way to pass

information around. Therefore, the introduction of parameters for goals and tasks makes

the analyst think about what data is needed for successfully executing a task or for

achieving a goal. In the model below (Figure 6.15), once the goal MeetingSetup(mid) is

identified, all the nodes that appear further down in the decomposition tree are passed this

parameter to indicate that they refer to the same meeting.

 218

SetupMeeting(mid)

MI Behaviour

MeetingSetup(mid)

Meeting
Scheduled(mid)

Initiator
Informed(mi, mid)

request(ms,
Initiator

Informed(mi,mid))

request(ms,
MeetingScheduled

(mid))

Let MS
Schedule

Meeting(mid)

ProvideDatesAnd
Participants(mid)

InformDates
(mid)

Inform
Participants(

mid)

Meeting
Initiator

Meeting
Scheduler

Inform
Participants(

mid)

Meeting
Scheduled(mid)

Initiator
Informed(mi,

mid)

InformDates
(mid)

Figure 6.15. The second version of the SR model for the Meeting Initiator.

Some changes to the goal/task decompositions inside the MI actor were also made in new

the SR model above. The new information resource dependencies that were discovered

during the initial SR-level analysis of the Meeting Scheduler (Section 6.4.5) are included

in the diagram above. Since the MS needs the information on the meeting participants as

well as the list of suggested meeting dates from the initiator, the goal MeetingScheduled

is now decomposed differently (see Figure 6.15). The means to achieve the goal is the

task LetMSScheduleMeeting, which includes the subtask

ProvideDatesAndParticipants. Two subtasks of ProvideDatesAndParticipants,

 219

InformDates and InformParticipants, are used to inform the MS about the dates and

participants respectively.

The task GetMeetingInfo from the first version of the SR diagram for the MI actor (it

was a subtask of SetupMeeting, see Figure 6.10) is replaced with the goal

InitiatorInformed. This change in the diagram is done in order to improve the

flexibility of the process specification. The task GetMeetingInfo was to ask the Meeting

Scheduler for the information on scheduled meetings. Since we anticipate that there will

potentially be other means of getting this information (e.g., from a message board or

through an announcement), it is better to replace the task with the goal

InitiatorInformed because the goal models the intention of the initiator to acquire the

information and the task that is asking the MS agent for this information is just a means

of doing so.

Another addition to the model is the introduction of the task nodes that model the

requests/informs that the MI performs. As discussed in Section 5.5.5, agent interactions

are very important in multiagent systems. They are the primary means of goal/task

delegation and information exchange in these systems. High-level agent interactions are

also well supported by CASL. In order to be easily mapped into a formal CASL model,

agent interactions must be specified in detail in iASR diagrams. One needs, for example,

to specify the tasks that request a service or information, the tasks that provide the

information, etc. When appropriate, we use suitable communicative actions of CASL to

label the tasks that delegate goals and tasks to other actors or provide information to other

actors. In particular, in the model in Figure 6.15, LetMSScheduleMeeting has a subtask

labelled request(ms,MeetingScheduled(mid,mi)). This task delegates the

achievement of the goal MeetingScheduled to the Meeting Scheduler.

request(fromAgt,toAgt,someGoal) is a primitive action in CASL that results in the

agent toAgt acquiring someGoal. Similarly, the means of achieving the goal

InitiatorInformed is the task request(ms,InitiatorInformed(mi,mid)). Notice

 220

that for achievement goals in CASL one needs to request that Eventually(φ). Since all

of our goals in the case study are achievement goals, we leave out Eventually in the

goal/task labels. Also, the fromAgt parameter (the requesting actor) is known from the

context, so we do not specify it in the diagrams. Not all of the requests can be replaced

with simple communicative actions. For example, the tasks InformDates and

InformParticipants that inform the Meeting Scheduler of the meeting participants and

preferred meeting dates are more complex and each simply cannot be replaced by an

inform. We will eventually map them into CASL procedures.

As discussed in Section 4.3.7.2, all resource dependencies in iASR diagrams are replaced

with either goal or task ones depending on the degree of freedom that the depender gives

the dependee. In the first version of the SR model for the initiator we had three

information resource dependencies. First, the MI depended on the scheduler for

MeetingInfo (see Figure 6.10). This dependency has been replaced with a goal

dependency InitiatorInformed reflecting the freedom that the MS agent has in

choosing the means to provide this information. On the other hand, the two resource

dependencies from the MS to the initiator that were identified in the initial SR model for

the scheduler in Figure 6.14 are replaced with task dependencies InformDates and

InformParticipants. This means that the scheduler does not give the initiator the

freedom to choose how to communicate the required information; specific tasks must be

instead executed.

6.5.2 Refining the SR Model for the Meeting Scheduler

In this section, we discuss the second version of the SR model for the Meeting Scheduler

agent. First, as we have done in the previous section, we add parameters to the goal/task

labels that specify the subject of goals/tasks. Since the activities of the meeting scheduler

have to do with the scheduling of meetings, most goals and tasks in the diagram in Figure

6.16 now have the parameter mid, which represents the unique ID of the meeting. This

 221

indicates that the goals are achieved and the tasks are performed in the context of a

particular meeting. The task BookAvailableDate and its subtasks have an additional

parameter called date. The task represents the activities that the MS agent must go

through to organize a meeting on a date that is available for all the participants. This

additional parameter specifies that date.

After more detailed analysis of the meeting scheduling process, the decomposition of the

task BookAvailableDate is modified to account for the possibility that meeting

participants may not adopt the goal of attending a meeting on an available date if that

date has since been allocated/occupied due to some external meeting request (through the

Disruptor actor) while the meeting was being scheduled by the MS. Our first attempt to

deal with this problem is to add a subtask to BookAvailableDate called

GetConfirmation(mid,date), which will request confirmation from all the participants

that they are in fact intending to attend the meeting. This task becomes the origin of the

new dependency AttendanceConfirmed(mid,date) where the MS depends on the

participants for confirmation of attendance (see Figure 6.16). A more complex solution is

introduced in the iASR diagram for the Meeting Scheduler in Section 6.6.5.

In the SR model in Figure 6.16, we also replaced all resource dependencies with goal/task

ones depending on the level of freedom that the depender gives the dependee in fulfilling

the dependency. Figure 6.14, the first version of the SR diagram for the MS agent,

featured six resource dependencies. Let us review these dependencies. Once it got a

meeting request, the MS depended on the initiator for the information on the meeting

participants as well as on the suggested meeting dates. These were initially modeled as

resource dependencies. As already discussed in Section 6.5.1, the two dependencies are

then replaced with task dependencies InformParticipants and InformDates. These are

complex tasks that communicate the list of intended meeting participants and the list of

suggested meeting dates to the MS. Because of this complexity, the MS is not willing to

give the initiator the freedom to provide the information as it sees fit, but rather the MS

 222

agent instructs the Meeting Initiator to perform the tasks that provide the necessary

information to it.

Schedule Meeting
and Book

Room(mid,mi)

Get Rid Of
Weekend

Dates(mid)

AvailableDates
Known(mid)

Ask
Participants(

mid)

Book
Available
Date(mid,

date)

RequestAll
Participants(

mid, date)

Participant

Book
Room(mid,

date)

MS Behaviour

MeetingScheduled(mid,mi)

MRBF

request(mi,
(

InformDates(
mid)))

Find
Agreeable
Date(mid)

request(mrbs,
RoomBooked(mid,

date,r))

request(mrbs,
RoomKnown(
ms, Room#))

Send
Meeting
InfoTo

MPs(mid,
date)

Meeting
Scheduler

Meeting
Initiator

request(mi,
(Inform

Participants(
mid)))

System

Meeting
Scheduled(mid,mi)

No Meetings
On Weekends

AtMeeting(mid,
date)

Room
Booked(mid,

date, r)

Get
Confirmation(

mid, date)

Initiator
Informed(mi, mid)

Initiator
Informed(mi, mid)

Inform
Dates(mid)

Inform
Participants(mid)

InformWhenKnown
(mi, mid)

RoomKnown(ms,
Room#)

MeetingInfo
Known(mid,

date)

Available
DatesKnown

(mid)
Attendance

Confirmed(mid,
date)

Figure 6.16. The second version of the SR diagram for the Meeting Scheduler.

 223

The resource dependency MeetingInfo from the initiator to the scheduler in Figure 6.14

is now replaced with the goal dependency InitiatorInformed. Here, the Meeting

Initiator depends on the scheduler to be informed of the outcome of the meeting

scheduling process. The MS is free to choose a means to achieve this goal. The

parameter, mi, is the name of a particular meeting initiator. The rest of the resource

dependencies from Figure 6.14 are replaced with corresponding goal dependencies:

AvailableDates, MeetingInfo, and Room# are replaced by AvailableDatesKnown,

MeetingInfoKnown, and RoomKnown respectively.

The initial version of the Meeting Scheduler’s SR diagram (Figure 6.14) already provides

a lot of details about interactions among actors. For example, it has tasks that represent

requests for information or services from other actors and tasks that provide information

to other actors. In order to increase the precision of the diagram, in the second version of

the SR model for the Meeting Scheduler these tasks are labelled (where appropriate) with

the corresponding CASL communicative actions. For example, requests to the MRBS

agent for booking a meeting room on an available date and for information on which

room is booked are modeled by two request actions that are subtasks of

BookAvailableDate. Also, the requests that the Meeting Initiator execute the procedures

InformParticipants and InformDates are modeled by the tasks labelled by

request(mi,DoAL(InformParticipants(mid))) and request(mi,

DoAL(InformDates(mid)) (the parameter corresponding to the requesting agent, ms, is

omitted for brevity). Here, DoAL (see Section 4.3.7.1) is an abbreviation that means that

the task must be executed by the requested agent but that other concurrent activities are

allowed. In our approach, this is a standard way to request an execution of a specific

procedure. Thus, requests with DoAL are used to establish task dependencies among

actors.

However, there are a lot of tasks that request or provide services that are still too complex

to label with individual CASL communicative actions. For example, the task

 224

AskParticipants is used to model the request for information on available dates from

all the participants. It, therefore, must send requests to all the participants. This complex

request cannot be replaced with a single request action. Similarly, the tasks

RequestAllParticipants (modeling requests for meeting participation),

GetConfirmation (that models requests for confirmation of meeting attendance),

SendMeetingInfoToMPs (informing all the participants of the meeting details), and

InformWhenKnown (that informs the initiator about the meeting details once they are

known) are also too complex to express with a single communicative action and remain

as they are until the next version (iASR) of the diagram. They will be easier to specify at

that stage, where iteration and other control structures will be available.

6.6 Developing iASR Models

In this section, we look at how the SR diagrams developed in the previous sections are

refined to get the corresponding iASR diagrams for all of the actors in the combined

system. The process of evolving existing SR diagrams into iASR ones involves adding

annotations and goal/task parameters, specifying interactions in details, deidealizing

goals, replacing resource dependencies with goal/task ones, adding self-acquired goals,

etc. Some of these activities (i.e., adding parameters, replacing resource dependencies,

and providing details on agent interactions) have already been done for the more complex

diagrams in the previous section.

Note that quite a few annotations (e.g., the sequencing of tasks) in the iASR diagrams

presented below come from the environment, so while a lot of the activities at this stage

of the methodology could be attributed to high-level design, considerable amount of work

done during the creation of iASR diagrams is spent on creating a more detailed model of

the environment and the requirements for the system-to-be.

 225

6.6.1 Developing the iASR Model for the Meeting Initiator

In this section, we show how the SR model for the Meeting Initiator is turned into an

iASR model (see Figure 6.17). Here, we add composition and link annotations as well as

handle self-acquired goals in detail. We will now go over the changes to the model.

We start by observing that the MI actor must be capable of initiating many meetings. This

was noted during the development of the second version of the SR diagram for the actor

and the mid parameter, which uniquely identifies the meeting, was added to all the goals

and tasks in the model. The goal MeetingSetup is the main goal of the MI and represents

the need to schedule a specific meeting. In order for the MI to be able to acquire instances

of that goal repeatedly we add an interrupt link annotation to the goal node

MeetingSetup (see Figure 6.17). The interrupt label reads

whenever(Goal(MeetingSetup(mid),sD). It will fire whenever the MI has an

unachieved goal that MeetingSetup(mid) for some binding of the parameter mid in its

mental state. We omit some parameters in the annotations for brevity (e.g., the parameter

that indicates which agent has the goal). The cancellation condition sD stands for

SystemDone, which remains false as long as the system is running, thus making the

interrupt fire a potentially unlimited number of times during a run of the system. Since in

our approach we only handle achievement goals of the form

Eventually(Goal(agt,φ)), we omit Eventually in the annotations.

In the analysis of the meeting scheduling process, it was determined that the initiator’s

goal MeetingScheduled is not always achievable. There may be situations when, for

example, the intended meeting participants do not have any common available dates.

Therefore, MeetingScheduled is an example of a goal that is too ideal. The modeler

must then decide on how to relax this goal to make it always achievable or change the

process model so that it can handle failure to achieve the goal. Formal goal definitions

can substantially help in determining whether a goal is achievable and in relaxing a goal

 226

to make it achievable — this is called goal deidealization. However, at this point in the

methodology, formal goal definitions are not always available, so the analyst can just re-

label the goal node to show that is not always achievable. Here, we rename the goal node

MeetingScheduled with MeetingScheduledIfPossible.

In the previous SR model of Figure 6.15, the task SetupMeeting was decomposed into

two subgoals, MeetingScheduled and InitiatorInformed. These are examples of self-

acquired goals that do not come from inter-agent dependencies, but are used to enhance

the models. Models with self-acquired goals must be modified to show the goal

acquisition explicitly (see Section 4.3.8 for details). The acquisition of the goal is done by

the execution of the commit action, whose effect is the addition of the goal to the mental

state of the agent. It is followed by a goal node annotated with the guard link annotation

labelled by the goal. This allows the agent to recognize the presence of the goal in its

mental state and modify its behaviour accordingly. Thus, the goal node

MeetingScheduledIfPossible is preceded by the task commit(

MeetingScheduledIfPossible(mid)) that acquires the goal for the agent. The goal

node now has a guard link annotation guard(
Goal(MeetingScheduledIfPossible(mid))).

A similar transformation applies to the goal InitiatorInformed. The corresponding

goal node now has a guard link annotation and is preceded by the appropriate commit

task. Note that the commit tasks must precede the goal nodes since they have to be

executed before the process blocks while waiting for the guard condition to become true.

Since the default composition annotation is sequence, it is enough to order the tasks/goals

in the correct sequential order left to right. Note that the means for achieving the goal

InitiatorInformed is a request action that asks the Meeting Scheduler to achieve the

goal PartricipantInformed(mi,mid). We make this change to the model since it was

determined that the information the initiator requires is the same information that the

 227

meeting participants need. Thus, we can simplify the model for the MS and provide the

information uniformly for all the interested parties (see Section 6.6.5).

guard((Meeting
Scheduled

IfPossible(mid)))

Meeting
Scheduler

Inform
Participants(

mid)

MeetingScheduled
IfPossible(mid,mi)

Participant
Informed(mi,

mid)

InformDates
(mid)

SetupMeeting(mid)

MI Behaviour

MeetingSetup(mid)

commit(Meeting
Scheduled

IfPossible(mid))

Get
Meeting
Info(mid)

Meeting
Scheduled

IfPossible(mid)

Schedule
Meeting(mid)

whenever((MeetingSetup(mid)),sD)

commit(Initiator
Informed(mi,mid))

Initiator
Informed(mi, mid)

request(ms,
Participant

Informed(mi,mid))

guard((Initiator
Informed(mid)))

request(ms,
MeetingScheduled
IfPossible(mid,mi))

Let MS
Schedule

Meeting(mid)

ProvideDatesAnd
Participants(mid)

InformDates
(mid)

Inform
Participants(

mid)

||

Meeting
Initiator

guard(((InformDates(mid)))

guard(((InformParticipants(
mid)))

Figure 6.17. The iASR diagram for the Meeting Initiator.

The task LetMSScheduleMeeting is the means for achieving the goal

MeetingScheduled. It is decomposed into two subtasks that request the meeting to be

 228

scheduled by the MS and provide the information on the intended participants and the

suggested meeting dates. The second subtask is ProvideDatesAndParticipants. It is

decomposed into two subtasks that provide the MS agent with the suggested dates and

intended participants. These subtasks, InformDates and InformParticipants are

executed in parallel (note the concurrency link annotation). These tasks are executed

when the MI agent acquires the goals to execute them. This is done with the appropriate

guard annotations, guard(Goal(DoAL(InformDates(mid)))) and guard(Goal(DoAL(

InformParticipants(mid)))), that block the execution until the goals are in the MI’s

mental state. Guard annotations are used instead of interrupts, since the procedures must

be executed just once for each meeting.

6.6.2 Developing the iASR Model for the MRBS

In this section, we develop a detailed iASR model that represents the legacy MRBS

system. We add parameters to tasks/goals, show the internals of the RoomBookedCap goal

capability, and add link and composition annotations.

In order to label the tasks that communicate with other actors with the appropriate CASL

communication actions and provide the necessary link annotations that describe

conditions under which the task are to be executed and the goals are to be achieved, one

needs to incorporate certain elements of the formal domain model such as predicate and

functional fluents that model domain properties. Therefore, the formalization of the i*

process model in our approach, in fact, starts before the iASR model is mapped into the

corresponding CASL specification. It starts during the development of iASR diagrams:

the modeler needs to develop the formal model (or at least some parts of it) while

introducing annotations, specifying interactions, etc.

There are two high-level services that the MRBS agent is capable of providing. Both of

them are means of supporting intentional dependencies coming from the Meeting

 229

Scheduler agent. The first dependency makes the MRBS agent acquire the goal

RoomBooked(mid,d), see Figure 6.18. Here, the second argument denotes the date on

which the scheduler wants the room booked for the meeting mid. This goal is a subgoal

of the task MRBSBehaviour that models the behaviour of this agent. In the SR diagram of

Figure 6.11 we also had a resource dependency Room# where the MS agent depended on

the MRBS for the information on whether a room was booked for a particular meeting

and which room it was. This dependency is now replaced with a task dependency labelled

ConfirmRoom(ms,mid,d), see Figure 6.18. The task ConfirmRoom is executed whenever

requested by the MS agent.

guard(DoneBooking(
mid))

if((
Room(mid,d,r))

RoomBookedCap(mid,d)

MRBS
Behaviour

whenever((Room
Booked(mid,d), sD) ||

commit(
RoomBooked(

mid,d))

RoomBooked(
mid, d)

guard((Room
Booked(mid,d)))

if(¬ (Room
Booked(mid,d)))

π(r, AvailableRoom(r,d))

MRBS

RoomBooked(
mid,d)

Meeting
Scheduler

Room
Booked(mid, d)

ConfirmRoom
(ms,mid,d)

ConfirmRoom
(ms,mid,d)

informRef(ms,
Room(mid,d,r))

informWhether(
Room

Booked(mid,d))

bookRooom(mid,d,r)

setDone
Booking(

mid)

SendConfirmation(
ms,mid,d)

PickRoom(mid,d)

if(Existsr.AvailableRoom(r,d)) Book
RoomProc(mid,d)

RoomBookedProc
(mid,d)

whenever(((Confirm
Room(ms,mid,d))), sD)

Figure 6.18. The iASR model for the MRBS agent.

The main goal and task are executed in parallel and each is accompanied by the

appropriate interrupt link annotation that fires when the associated goal becomes part of

 230

the mental state of the agent. For the task dependency the goal that is acquired is

DoAL(ConfirmRoom(ms,mid,d)). It is adopted as a result of a request to the MRBS to

execute the specified task. The cancellation condition for both interrupts is SystemDone,

which means that the interrupts will be firing until the system is terminated.

The only means for achieving the goal RoomBooked is the goal capability with the name

RoomBookedCap. Unlike Figure 6.11, where the capability was shown in its abbreviated

form, here it is presented in full detail. The top-level task of the capability is

RoomBookedProc(mid,d), which books a meeting room on the day d for a meeting with

the meeting ID mid. It is decomposed into a task and a goal. The task is the commit action

that acquires the goal RoomBooked for the requested parameter bindings (see Section

4.5.1 for a discussion of capabilities and how they are modeled). The commit action must

be executed only if the required goal is not already in the mental state of the agent,

therefore the task is used with a conditional link annotation. This is done so that a goal

capability can be used anywhere a task can be used in an iASR diagram. The way it is

used in the model for the MRBS, the commit action is not going to be executed since the

goal is acquired through an intentional dependency. The subgoal RoomBooked is used

with the guard annotation that unblocks when the agent has the goal RoomBooked in its

mental state. The means of achieving the goal is the task BookRoomProc(mid,d). This

task is further decomposed into two tasks: PickRoom(mid,d), which is executed if there

is an available room to schedule the meeting mid on the date d, and the task

setDoneBooking(mid), which sets the flag DoneBooking(mid) to true after the MRBS

attempts to book a room for the meeting mid. PickRoom has one subtask,

bookRoom(mid,d,r), which is used with a pick annotation (π) that non-deterministically

selects a room r that is available on the day d (AvailableRoom(r,d) must hold).

The task ConfirmRoom has one subtask. When the MRBS tries booking a room for the

meeting mid (note that the guard condition is DoneBooking(mid)), the task

SendConfirmation is executed. It first informs the MS agent whether a room was

 231

booked for the meeting mid on the date d. This is true if the fluent RoomBooked(mid,d)

holds. The CASL communicative action informWhether is used to send this information

to the scheduler. The second subtask is executed conditionally. If the MRBS knows

which room was booked for the meeting, it will send this information to the MS.

We note here that while the goal of the capability is called RoomBooked and the capability

itself is called RoomBookedCap, the goal RoomBooked has, in fact, been deidealized. Since

the supply of meeting rooms is limited, the MRBS cannot guarantee a successful booking

at all times if it wants to maintain a consistent booking schedule. Therefore, if it cannot

book a room, it will reply accordingly during the execution of the task ConfirmRoom.

6.6.3 Developing the iASR Model for the Meeting Participant

In this section, we provide the iASR model for the Meeting Participant actor. The

diagram was reworked to reflect the presence of a new dependency where the scheduler

needs a confirmation of meeting attendance from the participant; see Figure 6.19. The

earlier SR diagram was in Figure 6.12.

The task ParticipantBehaviour is decomposed into a subtask and two subgoals

corresponding to the main services provided by the participant. We added a concurrency

annotation to this decomposition to show that the goals are to be achieved concurrently

and with equal priority. The first task is InformAvailableDates. It is acquired from the

MS through a task dependency. The task node is accompanied by the interrupt annotation

that monitors for requests to execute the task InformAvailableDates and has a

cancellation condition SystemDone. The task informs the scheduler about participants’

availability. It first sends the availability of the participant for all the dates to the MS and

then tells the scheduler that the participant has finished sending the requested

information.

 232

The first subgoal of ParticipantBehaviour is the goal AtMeeting. Participants are

requested to participate in meetings by the MS agent as well as by the Disruptor actor.

Note that in Figure 6.12 the only means of achieving the goal AtMeeting was the task

AttendMeeting. Since we are mainly interested in the scheduling of meetings, we

decided not to model the actual meeting attendance. We assume that once the participant

has the goal AtMeeting(mid,date) for a particular meeting on a particular date, it will

honour this commitment and attend the meeting. Thus, we could have omitted it from the

diagram. However, we kept it there to illustrate that the goal dependency AtMeeting still

exists. In order to respect the mapping rules for goal nodes, which require the presence of

an achievement procedure, we added an empty procedure (no_op) as a means of

achieving this goal.

The second subgoal of ParticipantBehaviour is the goal

InformedIfAttending(ms,mid,date), which is acquired from the MS and represents

the need of the Meeting Scheduler to know whether the participant has, in fact, adopted

the goal of attending the meeting mid on the date date. The means of achieving this goal

is the task InformAttendingAndKnowIfScheduled. This task is responsible for

informing the scheduler whether the participant intends to attend the meeting and also for

finding out the details of the meeting from the MS. The task is decomposed into two

subtasks. The first one is a communicative action informWhether that is used to inform

the MS agent about the truth value of the expression

Goal(AtMeeting(self,mid,date)), which means that the goal AtMeeting for a

particular meeting ID and date is in the mental state of the agent. The second subtask is

called KnowWhenScheduled. It is executed only if the participant is going to attend the

meeting — note the if link annotation with the condition being the presence of the goal

AtMeeting in the mental state of the agent. The self-acquired goal

ParticipantInformed(self,mid) models the need of the participant for the meeting

details. As a self-acquired goal, it is accompanied by the corresponding commit action.

 233

The means of achieving the goal is to delegate it to the Meeting Scheduler agent through

an appropriate request communication.

Figure 6.19. The iASR model for the Meeting Participant.

6.6.4 Developing the iASR Model for the Disruptor

In this section, we develop the iASR diagram for the Disruptor actor, see Figure 6.20. Its

process specification is very simple and the Disruptor’s iASR diagram does not differ

much from the SR one in Figure 6.13. Here, we add goal/task parameters, annotations, as

well as provide details of the Disruptor’s communication with the Meeting Participant.

 234

whenever((Participation
Requested(self,part,mid,date)),sD)

Disruptor
Benaviour

Participation
Requested(self,
part, mid,date)

requestEnc(part,
AtMeeting(part,

mid,date))

Disruptor
Meeting

Participant

AtMeeting(part,
mid,date)

Figure 6.20. The iASR model for the Disruptor.

The top-level task, DisruptorBehaviour, has one subgoal —

ParticipationRequested(ptcp,mid,date), which models the need of the Disruptor to

invite the participant ptcp to the meeting mid on the date date. The goal node is

accompanied by the interrupt link annotation that fires whenever there is a goal

ParticipationRequested in the mental state of the Disruptor for some binding of the

parameters. The means to achieve the goal is the task that delegates the goal AtMeeting

to the Meeting Participant. Here, we label the task with the CASL communicative action

requestEnc, an encrypted request, as introduced in [Shapiro and Lespérance, 2001]. We

cannot use an ordinary request because in the formalization for the communicative

actions of CASL all agents are aware of all actions; see [Shapiro et al., 1998]. For

simplicity, the communicative actions that we use in this case study are not encrypted,

which means that all agents are aware of all the requests and know all the information

that is being transmitted. However, in order to model the actions of the Disruptor

correctly, i.e., the MS must be unaware of the fact that previously available dates have

been booked by the Disruptor, we use requestEnc for an encrypted request. Only the

sender and the receiver of the encrypted requests know the content of the message. We

use this communicative action to make sure that only the meeting participant who is

invited to attend a meeting by the Disruptor knows about it.

 235

6.6.5 Developing the iASR Model for the Meeting Scheduler

This section presents the iASR diagram for the Meeting Scheduler. In this version of the

model, we modify the process to make it more robust. This includes the use of a locking

mechanism to avoid attempting to schedule several meetings on the same date and the

handling of failures to find a meeting date and to book a meeting room.

Note that compared to the SR model in Figure 6.16 we are much less idealistic in

specifying the iASR model for the Meeting Scheduler. In Figure 6.16, once an agreeable

date was found, the meeting participants were requested to meet on that date and a

meeting room was booked for that date. In the iASR diagram in Figure 6.21, on the other

hand, we modify the model of the process to handle several types of possible failures.

The kinds of failures that the new process is able to handle are the absence of common

agreeable dates, the absence of available meeting rooms, and the participants refusing to

commit to attending meetings. Also, we model the effects of the Disruptor actor more

carefully. The Disruptor makes the meeting participants occupy their free time slots with

meetings, thus reducing the number of such slots available for meetings organized by the

Meeting Scheduler. Because of encrypted requests from the Disruptor (see Section 6.6.4),

the MS is not aware of the changes to the participants’ availability due to the actions of

the Disruptor. It may be the case that after the participant had informed the MS about its

availability on a particular date, the date became occupied by a meeting booked by the

Disruptor. The scheduler may try to schedule a meeting on that date since it is unaware of

the change. Since we assume that the participants’ meeting slots are allocated on a first

come, first serve basis, the participant with the date already occupied by the Disruptor’s

meeting will be unable to accept a new meeting on that same date. This is why the MS

must ask for meeting confirmation after requesting meeting participation from

participants. The MPs that had the date occupied by the Disruptor will reply negatively,

thus making the date unavailable for the meeting. In this case, the scheduler will have to

cancel the meeting on that date and try another common agreeable date. Similarly, if all

 236

the participants accepted the meeting date, but no meeting room can be found by the

MRBS on that date, the meeting must also be cancelled and another date must be tried.

The Meeting Scheduler could be scheduling multiple meetings involving some of the

same participants concurrently. In order not to attempt to schedule two meetings on the

same date for the same participant, we use a simple locking mechanism. When the MS

tries to schedule some meeting on a particular date, it is locked for all the participants of

that meeting so that the scheduler does not attempt to schedule another meeting on that

date for the same participants.

Let us take a look at the iASR diagram for the Meeting Scheduler (see Figure 6.21). The

top-level task is still MSBehaviour, which represents the overall process executed by the

MS. It is decomposed into two subgoals that model the major services that the agent

provides. Both subgoals’ nodes are accompanied by the usual interrupt annotations that

fire when the goals are in the mental state of the scheduler. The cancellation condition for

both interrupts is SystemDone. The two goals are to be achieved in parallel.

The first subgoal is MeetingScheduledIfPossible. This is a change from the previous

diagram for the MS, which had the goal MeetingScheduled (see Figure 6.16). Here, we

deidealized the goal MeetingScheduled after realizing that it cannot always be achieved.

The means that achieve the new goal will attempt to schedule meetings, but it is also

acceptable if they fail due to the absence of common time slots in participants’ schedules

or due to the absence of meeting rooms on the day of the meeting. The formal definition

of this deidealized goal is presented during the mapping of the iASR model into CASL.

The means of achieving the goal MeetingScheduledIfPossible is the task

TryToScheduleMeetingsAndBookRoom. This task models the bulk of the Meeting

Scheduler’s process. Let us now look at how the task is decomposed. First, the MS needs

to get the dates that the initiator is willing to meet on as well as the list of the meeting

participants. To get that information, the MS asks the MI to execute the tasks

 237

informDates and informParticipants respectively. Thus, we have two task nodes

labelled with request communicative actions that request the execution of these specific

tasks (note the use of DoAL inside the requests).

Then the task GetRidOfWeekendDates(mid) is executed. This task is present in the

decomposition since the MS is responsible for making sure that no meeting is scheduled

on a weekend date. The reason for this is the goal dependency NoMeetingsOnWeekends

from the System agent. In order not to schedule a particular meeting on a weekend, the

scheduler can remove weekend dates from the list of suggested dates for a meeting. Thus,

the task GetRidOfWeekendDates is decomposed into the task

removeWeekendDate(mid,d), which is accompanied by a for loop link annotation that

iterates through the list of suggested dates and picks the ones that fall on weekends.

Next, the agent acquires the goal AvailableDatesKnown(mid), which models the need

of the MS to know the dates on which the intended meeting participants are available. A

self-acquired goal is used here for flexibility. The commit action for the goal is executed

once the MS knows all the participants of the meeting mid. The acquisition of the goal

makes the condition of the guard annotation that accompanies the goal node

AvailableDatesKnown true. The model specifies one means for the achievement of the

goal. In order to know about the availability of the meeting participants, the MS asks

each of the participants (note the for loop annotation) to execute the task

InformAvailableDates that informs the scheduler about the availability of every date

according to the participant’s schedule. Thus, the request is the origin of the task

dependency InformAvailableDates.

The next step in the meeting scheduling process is to determine the agreeable dates for

the meeting. These are the dates on which all of the meeting participants and the meeting

initiator are available. It is determined that the computation of available dates can be

easily done declaratively through the use of the defined fluent

 238

AgreeableDate(mid,d,s), which holds if in the situation s the date d is available for all

the participants and the initiator of the meeting mid (according to the MS’s information).

The formal definition of this fluent is presented in Section 6.7.5. Therefore, there is no

explicit task for this step.

The next subtask in the task decomposition of TryToScheduleMeetingAndBookRoom is

the task TryAgreeableDates, which is executed as soon as the MS has been informed

about the availability of all the meeting participants (note the guard link annotation). This

task is further decomposed into two subtasks. The first one, TryDates(mid,d), is

executed in a for loop iterating through all of the agreeable dates, while the second one,

ProcessFailure(mid), is executed when the meeting mid has not been scheduled after

going through all of the agreeable dates. Here, the task is used with the conditional

annotation if(¬SuccessfullyScheduled(mid)). SuccessfullyScheduled(mid) is a

defined predicate fluent that holds if a meeting was successfully scheduled on some date

and a room was booked for the meeting on that date (the situation argument is omitted

here; see the definition of the fluent in Section 6.7.5).

The task TryDates has one subtask, TryOneDate, used with the conditional annotation

if(¬SuccessfullyScheduled(mid)). This annotation prevents the scheduler from

trying more agreeable dates for the meeting mid when the meeting has already been

successfully scheduled. In that case, the fluent SuccessfullyScheduled(mid) holds and

the task TryOneDate is not executed. The reason we need the two tasks, TryDates and

TryOneDate, is that we only allow one link annotation per task/goal node. Therefore, if

one wants a task to be executed in a loop and under a certain condition, one needs to use

two task nodes, one being a supertask and another being a subtask, to be accompanied by

a for loop and a conditional annotations respectively.

 239

if((ms,
¬Room
Booked(
mid,d)))

guard(ForEveryp.Ptcp(mid,p)=>
(ms, Goal(p,

AtMeeting(p,mid,d))))

if(¬Successfully
Scheduled(mid))

if(¬Successfully
Scheduled(mid)) if(Know(

Room
Booked(mid,

d)))

guard(AvailableDates
Known (mid))

whenever((Participant
Informed(part,mid)),sD)

for(d,
Agreeable

Date(mid,d))

if((ms,
RoomBooked(mid,d)))

guard(Done
Scheduling(mid))

||

InformWhether(part,
Successfully

Scheduled(mid))

InformRef(part,
Room(mid,d,r)

request(mrbs,
RoomBooked(mid,d))

request(p,
InformedIfAttending(

p,self,mid,d))

request(p,
AtMeeting(p,mid,d))

TryToSchedule
MeetingAndBook

Room(mid,mi)

commit(Available
DatesKnown(mid))

AvailableDates
Known(mid)

request(p, (Inform
AvailableDates(mid,ms,p))

Try Agreeable
Dates(mid,mi)

Try One
Date(mid,d,mi)

guard((AvailableDates
Known(mid)))

Contact
Participant(

mid,d,p)

Meeting
Participant

Process
Replies(
mid,d,mi)

Cancel
MeetingFor

Date(mid,d,mi)

cancelRequest(p,
AtMeeting(p,mid,d))

Try
Dates(mid,d,mi)

Ask For
Confirmation(

mid,d)

Process
Reply(mid,d,mi)

guard((ms,
RoomBooked(mid,d)))

FailedTo
BookRoom
(mid,d,mi)

ReserveRoom
forDate(mid,d,

mi)

Participant
Informed(part, mid)

Inform
Participant(part,mid)

setDone
Scheduling(mid)

SendStatus
andRoom(part,

mid)

MS
Behaviour

MeetingScheduled
IfPossible(mid,mi)

request(mrbs,
(ConfirmRoom(

self,mid,d))

MRBS

request((mi,
informParticipants(

mid)))

for(p,Ptcp(mid,p))

for(p,Ptcp(mid,p))

for(p,Ptcp(mid,p))

if(AllAccepted(mid,d))

if(SomeoneDeclined(mid,d))

request((mi,
informDates(mid)))

lock
Date(p,d)

unLock
Date(p,d)

for(p,Ptcp(mid,p))

unLock
Date(p,d)

MeetingScheduled
IfPossible(mid)

Participant
Informed(part, mid)

Participant
Informed(part, mid)

inform
Participants

(mid)

inform
Dates(mid)

Meeting
Initiator Meeting

Participant

Confirm
Room(ms,

mid,d)

Room
Booked(mid,d)

cancel(
AtMeeting(

mid,d))

InformedIf
Attending(p,
ms,mid,d),

AtMeeting(
mid,d)

Inform
Available

Dates(mid,
ms)

guard(KnowAllPtcp(mid))

GetRidOf
WeekendDates(mid)

guard(
AllDates(mid))

remove
Weekend

Date(mid,d)

System

NoMeetings
OnWeekends

setDone
Scheduling(mid)

cancelRequest(p,
AtMeeting(p,mid,d))

cancel(
AtMeeting(

mid,d))

unLock
Date(mi,d)

Lock
Date(mi,d)

unLock
Date(mi,d)

whenever((MeetingScheduled
IfPossible(mid)), sD)

for(d,Weekend(d)
AND Suggested

Date(mid,d))

Figure 6.21. The iASR model for the Meeting Scheduler.

 240

The task TryOneDate is decomposed as follows (see Figure 6.21). The first subtask locks

the date d for the Meeting Initiator, while the second one, which is executed in a for loop

iterating through the meeting participants and is labelled lockDate(p,d), locks the date

d for the participant p (see above for the discussion). Once the date is locked for all the

participants, they are contacted by the Meeting Scheduler. This is represented by the task

ContactParticipant(mid,d), which is also executed for each of the participants of the

meeting mid. It has two subtasks. The first requests that the participant p acquire the goal

AtMeeting(p,mid,d), thus agreeing to attend the meeting mid on the date d. This is a

simple request, so we label the task node with the appropriate request communicative

action. The second subtask of ContactParticipant queries the participant as to whether

he/she has in fact adopted the goal. This task is also labelled with the request action that

makes each participant acquire the goal InformedIfAttending(ms,mid,d).

Once the participants have been asked to send their meeting participation confirmations,

the Meeting Scheduler can process their replies. To make sure that the scheduler has all

the replies, the task ProcessReplies(mid,d) is only executed once its guard condition,

which states that for all the participants of the meeting mid the MS knows whether they

have adopted the goal to be at that meeting, is true. The task ProcessReplies has two

subtasks, CancelMeetingForDate(mid,d) and ReserveRoomForDate(mid,d), that are

used to handle the situation where some participants declined the meeting and where all

participants accepted the meeting respectively. The fluents SomeoneDeclined(mid,d)

and AllAccepted(mid,d) are used in the conditional annotations that accompany the

tasks. They are defined in Section 6.7.5. When some participant declines to meet on some

date d, the Meeting Scheduler unlocks the date d for all the meeting participants and then

cancels its requests to meet on that date (see the decomposition of

CancelMeetingForDate in Figure 6.21).

If all meeting participants agree to meet on some date, the MS attempts to book a room

for that meeting. This is modeled by the task node ReserveRoomForDate. The task is

 241

decomposed into three subtasks. The first one asks the MRBS agent to book a room for

the meeting (we use the request action to make the MRBS adopt the goal

RoomBooked(mid,d)), the second subtask requests confirmation from the MRBS of the

room booking. Here, the scheduler asks the legacy system to execute the task

ConfirmRoom, a procedure which sends information to the MS on whether the room was

booked as well as the number of the booked room. The third subtask of

ReserveRoomForDate, the task ProcessReply, is executed when the MS has the

information on whether the room was booked (the guard link annotation with the

condition KWhether(ms,RoomBooked(mid,d)) is used). ProcessReply has two subtasks

for handling the positive and negative replies about the room booking. If a room is

booked, then the task setDoneScheduling(mid) is executed. If the MS is executing this

task, it means that the meeting mid has been successfully scheduled on some date. This

task is responsible for setting the flag DoneScheduling(mid) to true. The fluent

DoneScheduling(mid), when true, denotes that the scheduling process has been

completed for the meeting mid (with either positive or negative result).

On the other hand, if the MRBS has been unsuccessful in booking a room, the scheduler

executes the task FailedToBookRoom(mid,d) which unlocks the date d for all the

participants (note the for loop annotation) and the initiator of the meeting mid and cancels

its requests to meet on the date d since no room is available on that date. The fluent

SuccessfullyScheduled(mid) remains false and the MS must either try another date or

give up scheduling this meeting if there are no more agreeable dates left. This fluent

(defined in Section 6.7.5) holds if the meeting is scheduled successfully and there is a

room booked for it.

Now that we have explored the process of trying to schedule a meeting on a particular

date, we show what happens if the meeting is not scheduled by the time the scheduler

runs out of agreeable dates for the meeting mid. This is modeled by the task

ProcessFailure(mid), which is a subtask of TryAvailableDates and is executed on

 242

condition that the fluent SuccessfullyScheduled(mid) is false. If

setDoneScheduling(mid) is executed in this place of the process, it means that the

Meeting Scheduler has tried all agreeable dates and failed to schedule the meeting mid.

Here, the fluent DoneScheduling(mid) must be set to true since the scheduling process

is complete. This concludes the description of the process for achieving the goal

MeetingScheduledIfPossible.

The second top-level goal of the MS, besides the goal MeetingScheduledIfPossible, is

the goal ParticipantInformed(ptcp,mid), which is acquired through intentional

dependencies from the Meeting Initiator and the Meeting Participant. Here, the MS needs

to inform the interested parties of the result of the meeting scheduling process. Thus, the

means of achieving the goal is the task InformParticipants. It has one subtask called

SendStatusAndRoom(ptcp,mid). The scheduler informs the meeting participants

whether the meeting was successfully scheduled and what room was booked for the

meeting. However, we want this information sent only when the outcome of the process

is known. So, the task SendStatusAndRoom is executed only when the MS has completed

the scheduling process — it is accompanied by the annotation guard(

DoneScheduling(mid)). When the MS successfully completes the scheduling of a

meeting or when there is no chance of meeting being scheduled (no agreeable dates or all

such dates have been tried), the fluent DoneScheduling(mid) is set to true. Only then

can the MS inform the participants about the result of the scheduling. The task

SendStatusAndRoom is decomposed into two subtasks. The first one informs participants

about whether the meeting was scheduled (we use the CASL communicative action

informWhether here). The truth value of the fluent SuccessfullyScheduled(mid) is

sent to the participants (including the meeting initiator). The second subtask of

SendStatusAndRoom informs the requesting participant which room was booked for the

meeting. The task is executed on condition that the room is booked — it is accompanied

by the annotation if(KRef(ms,RoomBooked(mid,d))), which holds if the MS knows

that a room was booked for the meeting mid on the date d.

 243

6.7 Mapping iASR Diagrams into CASL

In this section, we show how the iASR diagrams developed in the previous sections are

mapped into the corresponding formal CASL specification. First, we look at the basic

domain model specified in CASL. Then we show how the iASR diagram for the Meeting

Initiator (Figure 6.17) is mapped into CASL in detail. Most of the iASR diagrams for

other agents are mapped in a similar fashion, so the mapping of these diagrams is

presented in Appendix A. The rest of the section concentrates on showing the mapping of

the MRBS’ goal capability and on discussing the aspects of the formal CASL model for

the system that involve new issues such as the definitions of goals, conditions, etc.

6.7.1 Specifying the Basic Domain Model

Here, we specify the foundation of the formal model for the meeting scheduler domain.

We present the predicates used to model dates, participants, etc., some primitive and

defined fluents that model certain aspects of the domain, formal definitions of agent

goals, as well as the primitive actions executed by the agents in the system together with

their preconditions and effects.

6.7.1.1 Modeling Meeting Dates

First, we describe the predicates that represent some of the most basic entities in the

model — the meeting dates. They do not change their value and therefore are modeled as

non-fluents.

• IsDate(d) specifies that d is a date. This means that it can potentially be used for

scheduling meetings.

• Weekend(d) specifies that d is a weekend date. In the current meeting scheduling

process, the MS cannot schedule meetings on such dates.

 244

6.7.1.2 Meeting Participants and Suggested Meeting Dates

The next two predicate fluents represent meeting participants and meeting dates

suggested by the initiator for each meeting.

• Ptcp(mid,p,s) specifies that the agent p is an intended participant of the meeting

mid in situation s.

• SuggestedDate(mid,d,s) specifies that d is one of the suggested meeting dates

for the meeting mid in situation s.

In the current model, we assume that these fluents are set by the appropriate initial state

axioms. The fluent Ptcp(mid,p,s) does not change throughout the execution of the

system. Note that it must nonetheless be made a fluent because its extension is not known

by the MS initially:

Ptcp(mid,p,do(a,s)) ≡ Ptcp(mid,p,s)

The predicate fluent SuggestedDate(mid,d,s) can only be changed by the primitive

action removeWeekendDate(agt,mid,d), which is used to remove the MI-suggested

meeting dates that fall on weekends:

SuggestedDate(mid,d,do(a,s)) ≡ SuggestedDate(mid,d,s)

∧ ∃agt[a≠removeWeekendDate(agt,mid,d)]

These predicates are extensively used in the meeting scheduling process for selecting

meeting participants and meeting dates.

 245

The task removeWeekendDate(agt,mid,d) can be executed only if the date d is one of

the suggested meeting dates for the meeting mid and it is also a weekend date. It can only

be executed by the Meeting Scheduler:

Poss(removeWeekendDate(agt,mid,d),s) ≡

SuggestedDate(mid,d,s) ∧ Weekend(d) ∧ agt = MS

Note that in all the primitive actions in our model the first argument is the agent

performing the action. We indicate that using the following axiom (we omit these axioms

for other primitive actions):

Agent(removeWeekendDate(agt,mid,d)) = agt

6.7.1.3 Flags for Managing the Scheduling Process

The following predicate fluents are used as flags in the meeting scheduling process. Their

values are changed manually by the MS agent.

• DoneScheduling(mid,s). When it holds, DoneScheduling indicates that the

scheduling process for the meeting mid has been completed by the Meeting

Scheduler in situation s.

• Locked(ptcp,d,s) indicates whether the date d is locked for the participant ptcp

in situation s. If the value of this fluent is true for some date and some agent, it

means that the scheduler is currently trying to schedule a meeting that requires the

agent’s participation on the specified date and no scheduling of another meeting

should be attempted on that date until it is unlocked.

Let us now look at the primitive actions executed by the MS agent that change the values

of the above fluents. First, we look at the action setDoneScheduling(agt,mid), which

 246

is used by the MS agent to set the fluent DoneScheduling(mid,s) to true. Below are the

precondition axiom for the action as well as the successor state axiom for the fluent. The

action setDoneScheduling can only be executed by the MS:

Poss(setDoneScheduling(agt,mid),s) ≡ agt = MS

The predicate fluent DoneScheduling(mid,s) is only affected by the action

setDoneScheduling. The axiom below says that DoneScheduling(mid) is true after

executing some action a in the situation s if the action is setDoneScheduling(agt,mid)

or the fluent was true before the execution of the action:

DoneScheduling(mid,do(a,s))≡

∃agt[a=setDoneScheduling(agt,mid)] ∨ DoneScheduling(mid,s)

The fluent Locked(ptcp,date,s) indicates whether a date is locked for a particular

participant. There are two primitive actions executed by the MS agent that lock and

unlock dates. Here are the precondition axioms for the actions:

Poss(lockDate(agt,ptcp,date),s) ≡ ¬Locked(ptcp,date,s) ∧ agt = MS

Poss(unlockDate(agt,ptcp,date),s) ≡ Locked(ptcp,date,s) ∧ agt = MS

It is possible to lock a date for some participant if it is not already locked. Similarly, it is

possible to unlock a date if it is locked. The successor state axiom for the fluent

Locked(ptcp,date,s) shows that the fluent can only be changed by the above actions:

Locked(ptcp,date,do(a,s)) ≡ ∃agt[a=lockDate(agt,ptcp,date)] ∨

(Locked(ptcp,date,s) ∧ ∀agt[a≠unlockDate(agt,ptcp,date)])

 247

This successor state axioms states that for the fluent Locked for some participant ptcp

and date date to be true after the execution of some action either the action was

lockDate for ptcp and date or the fluent was already true for ptcp and date before the

execution of the action and the action was not the unlockDate action for that participant

and date.

6.7.1.4 Managing Participants’ Schedules

The key primitive fluent used to manage the schedules of meeting participants is

AtMeeting(ptcp,mid,date,s). This fluent indicates that a meeting participant ptcp

participates in the meeting mid on the date date. We are not modelling meeting

attendance, so there are no actions that change this fluent’s value and the successor state

axiom for this fluent states that it never changes. It must nonetheless be a fluent since its

value is not known to all agents:

AtMeeting(ptcp,mid,date,do(a,s)) ≡ AtMeeting(ptcp,mid,date,s)

When scheduling meetings, the MS is interested in the participants’ commitment to

attend meetings. The presence of a goal that AtMeeting(p,mid,d,s) in the mental state

of the participant p indicates such commitment. The assumption is that once committed to

attending a meeting, a participant will honour this commitment. As mentioned earlier, the

actual meeting attendance is out of the scope of the meeting scheduling system and

therefore is not modeled. See [Shapiro et al., 1998] on how to model this.

In order to maintain consistency of the participants’ schedules we have the following

axiom for the Meeting Participant:

∀agt[Know(agt,∀p,mid1,mid2,date[AtMeeting(p,mid1,date,now) ∧

 AtMeeting(p,mid2,date,now) ⊃ mid1=mid2],S0)]

 248

This axiom states that there could only be one meeting per participant per day in the

initial situation. This axiom prevents participants from acquiring goals to participate in

more than one meeting per day, thus maintaining the consistency of their schedules.

Another axiom makes sure that no meeting can span more than one date:

∀agt[Know(agt,∀p,mid,date1,date2[AtMeeting(p,mid,date1,now) ∧

AtMeeting(p,mid,date2,now) ⊃ date1=date2],S0)]

Since there are no actions to change the fluent AtMeeting, the schedules retain these

properties. We define the availability of a participant on a particular date as the absence

of any meeting commitments:

 AvailableDate(p,d,s) =

def
 ¬∃mid[Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)]

The above formula states that the date d is available for scheduling meetings for the

participant p if there are no meetings that the participant is already committed to attend

on date d.

6.7.1.5 Booking Rooms

In order to distinguish entities that are rooms from other entities, we introduce the

predicate Rooms(r) that specifies that r is a meeting room. To model rooms being

booked for meetings, we have the predicate fluent Room(mid,d,r,s), which holds if the

room r is booked on the date d for the meeting mid.

Rooms are booked by the MRBS agent using the action

bookRoom(agt,mid,date,room), which is executed inside its goal capability

RoomBookedCap. To insure consistency of booking rooms, the precondition of the action

 249

bookRoom that books the room r for the meeting mid on the date d states that the room

must not already be booked for another meeting on the same date:

Poss(bookRoom(agt,mid,d,r),s) ≡

¬∃mid2[Room(mid2,d,r,s)] ∧ agt = MRBS

The primitive fluent Room can only be changed by the execution of the action bookRoom:

Room(mid,d,r,do(a,s)) ≡ Room(mid,d,r,s) ∨ ∃agt(a=bookRoom(agt,mid,d,r))

The MRBS sets the predicate fluent DoneBooking(mid,s) to true once it is done booking

a room for the meeting mid. It uses the action setDoneBooking(agt,mid) to do that. The

action can only be executed by the MS. The successor state axiom for this fluent is

presented below. It says that after executing some action a the fluent holds if it held in the

previous situation or the action executed was the setDoneBooking action:

DoneBooking(mid,do(a,s)) ≡

DoneBooking(a,s) ∨ ∃agt(a=setDoneBooking(agt,mid))

In order to create an instance of the system, one needs to specify what dates are available

for the scheduling of meetings using the predicate IsDate(d), which dates fall on

weekends using Weekend(d), and what rooms are available for holding meetings using

the predicate Rooms(r). For each meeting to be scheduled, its participants and the list of

suggested dates for it must be specified using the fluents Ptcp(mid,p,S0) and

SuggestedDate(mid,d,S0) respectively (note that the situation parameter refers to the

initial situation). To make the instance more interesting, one can block certain dates in

participants’ schedules using the fluents AtMeeting(p,mid,date,S0).

 250

Note that the System agent is not being mapped into CASL since the Meeting Scheduler

takes responsibility for making sure that no meetings are scheduled on weekends.

6.7.2 Creating the CASL Model for the Meeting Initiator

In this section, we map the iASR diagram for the Meeting Initiator (Figure 6.17) into the

corresponding CASL model. At this point, the modeler needs to map the entities in the

iASR diagram for the MI into the elements of the formal CASL model using the mapping

rules presented in Chapter 4 of this thesis.

We remind here that composition annotations are mapped into the corresponding CASL

operators — we mostly use the default annotation that maps into the sequence operator

and the concurrency annotation that maps into the concurrency with equal priority

operator. Link annotations are mapped into the corresponding CASL programming

constructs; the conditions featured in the link annotations are mapped into CASL

formulae. Each goal node is mapped into a CASL formula and an achievement

procedure. Task nodes are mapped into CASL procedures or primitive actions. The

mapping of a task decomposition must take into account the composition and link

annotations.

Let us look at the mapping of the top-most task in the MI’s iASR diagram in Figure 6.17.

Since the Meeting Initiator is a role, the CASL procedure that the task node is mapped

into needs to have a parameter for the agent that is playing the role of the Meeting

Initiator. We call this parameter mi. Also, as mentioned in the previous sections, only the

most important parameters were added to the goal and task labels in the iASR diagrams.

In the CASL code, on the other hand, we are not only concerned with specifying, for

example, what meeting the task is used for scheduling (the mid parameter in iASR

diagrams), but also with making sure that all the goals/tasks have all the necessary

information passed to them through parameters. Here, we worry not only about the

 251

information needed for a particular task, but also about the information needed for the

tasks/goals that this task is decomposed into. That is why the number of parameters in the

CASL procedures/formulae may increase with respect to the corresponding iASR

task/goal nodes (see, for example, the fluent MeetingSetup in the code for

MeetingInitiatorBehaviour below). In our model, we assume that the names of the

Meeting Scheduler and the MRBS agent are constants, so they do not have to be passed

as procedure and action parameters.

As can be seen from Figure 6.17, the task MeetingInitiatorBehaviour has one subgoal

accompanied by the interrupt link annotation — MeetingSetup. In order to map this part

of the iASR diagram into CASL, we need to provide the mapping for the goal

MeetingSetup. Based on the mapping rules presented in Section 4.3.9.2, a goal node is

mapped into a CASL formula and an achievement procedure. The goal node

MeetingSetup is therefore mapped as follows:

m(MeetingSetup(mid))=<MeetingSetup(mid,mi),AchieveMeetingSetup(mid,mi)>,

where MeetingSetup(mid,mi,ms) is the formal definition of the goal (we omit the

situation parameter here), a defined fluent, and AchieveMeetingSetup(mid,mi,ms) is

the achievement procedure for the goal. Therefore, using the mapping function m (see

Section 4.3.9.2), we can now show the code for the MeetingInitiatorBehaviour

procedure, composed as required by the mapping rules:

proc MeetingInitiatorBehaviour(mi)

<mid: Goal(mi,Eventually(m(MeetingSetup(mid)).formula(mid,mi))) ∧

Know(mi,¬m(MeetingSetup(mid)).formula(mid,mi)) →

 m(MeetingSetup(mid)).achieve(mid,mi)

 until SystemDone>

endProc

 252

We can then substitute expressions involving the mapping function m with the CASL

formula MeetingSetup(mid,mi), which expresses the goal MeetingSetup formally, and

with the achievement procedure for this goal, which is the procedure

AchieveMeetingSetup(mid,mi):

proc MeetingInitiatorBehaviour(mi)

<mid: Goal(mi,Eventually(MeetingSetup(mid,mi))) ∧

Know(mi,¬MeetingSetup(mid,mi)) →

 AchieveMeetingSetup(mid,mi),
 until SystemDone>

endProc

Therefore, as per the mapping rules for goal nodes presented in Section 4.3.9.2, the

CASL code for the task involves an interrupt, which is triggered when for some binding

of the meeting ID mid there is a goal MeetingSetup(mid,mi) that the initiator knows has

not yet been achieved. When the MI has such a goal, the interrupt fires and the

achievement procedure for the goal MeetingSetup is executed for the newly bound

parameter mid.

Let us now look at the procedure AchieveMeetingSetup. It encodes the way the goal

MeetingSetup can be achieved. In the model in Figure 6.17, there is just one means for

achieving that goal, the task SetupMeeting. So, the procedure AchieveMeetingSetup is

quite simple:

proc AchieveMeetingSetup(mid,mi)

 m(SetupMeeting(mid))(mid,mi)

endProc

 253

Here, we use the mapping function m to map the task node labelled SetupMeeting(mid)

into the corresponding CASL procedure and supply the meeting ID and initiator

parameters to it. As mentioned in Section 4.2.1, iASR task nodes are either mapped into

procedures or primitive actions. Non-leaf task nodes are always mapped into procedures

since they must be further decomposed. We map the task node SetupMeeting into a

CASL procedure with the same name. Substituting the actual procedure name for

m(SetupMeeting(mid)) we get the following:

proc AchieveMeetingSetup(mid,mi)

 SetupMeeting(mid,mi)
endProc

Let us see what CASL formula the goal node MeetingSetup is mapped into. By

comparing the decomposition of the task SetupMeeting with the decomposition of the

task Means_1 in Figure 4.32 that shows a generic iASR diagram with AND-

decomposition of goals, one can see that the modeler AND-decomposed the goal

MeetingSetup into the goals MeetingScheduledIfPossible and InitiatorInformed.

So, formally the goal MeetingSetup is a conjunction of the two goals:

MeetingSetup(mid,mi,s) =
def MeetingScheduledIfPossible(mid,mi,s) ∧

 InitiatorInformed(mid,mi,s)

From here on, we will map iASR diagrams directly into CASL code, without going

through intermediate steps as shown above. The mapping details are fully discussed in

Chapter 4. All the task nodes will be mapped into CASL procedures/primitive actions

with the same name (the number of parameters may increase as per the discussion

above).

 254

As can be seen in Figure 6.17, the task SetupMeeting is decomposed into two subtasks,

ScheduleMeeting and GetMeetingInfo. Here is how the procedure SetupMeeting

looks like in CASL (the two procedure calls in the above code are executed in sequence,

note the “;” operator):

proc SetupMeeting(mid,mi)

 ScheduleMeeting(mid,mi);

 GetMeetingInfo(mid,mi)
endProc

The CASL procedure corresponding to the task ScheduleMeeting is more complex since

the task decomposition involves the self-acquired goal MeetingScheduledIfPossible.

The goal is acquired using the commit action (see Figure 6.17). The achievement

procedure for the goal is executed once the goal is in the mental state of the initiator.

proc ScheduleMeeting(mid,mi)

 commit(mi,Eventually(MeetingScheduledIfPossible(mid,mi)));

 guard Goal(mi,Eventually(MeetingScheduledIfPossible(mid,mi))) do

 AchieveMeetingScheduledIfPossible(mid,mi)
 endGuard

endProc

The procedure for the task GetMeetingInfo is quite similar to the above procedure.

Here, the initiator acquires the goal InitiatorInformed and then executes its

achievement procedure:

 255

proc GetMeetingInfo(mid,mi)

 commit(mi,Eventually(InitiatorInformed(mid,mi)));

 guard Goal(mi,Eventually(InitiatorInformed(mid,mi))) do

 AchieveInitiatorInformed(mid,mi)
 endGuard

endProc

The goal MeetingScheduledIfPossible has just one means that achieves it (see Figure

6.17), so its achievement procedure is also simple (note that the name of the Meeting

Scheduler, MS, is a constant):

proc AchieveMeetingScheduledIfPossible(mid,mi)

 LetMSScheduleMeeting(mid,mi,MS)
endProc

The goal InitiatorInformed has one means for achieving it as well — the Meeting

Initiator asks the MS agent to schedule the meeting for it. Here, we use the

communicative action request:

proc AchieveInitiatorInformed(mid,mi)

 request(mi,MS,Eventually(ParticipantInformed(mi,mid)))

endProc

Note that the MI requests that the MS adopt the goal ParticipantInformed as the

information required by the initiator is the same as for any participant. The achievement

of the latter goal will automatically achieve the former. The formal definitions of the

goals ParticipantInformed and MeetingScheduledIfPossible will be presented in

Section 6.7.5.

 256

The task LetMSScheduleMeeting, which is the means for achieving the goal

MeetingScheduledIfPossible, is decomposed into a task that requests the achievement

of the goal and a task that informs the MS about suggested meeting dates and meeting

participants:

proc LetMSScheduleMeeting(mid,mi)

 request(mi,MS,Eventually(MeetingScheduledIfPossible(mid,mi)));

 ProvideDatesAndParticipants(mid,mi)
endProc

The task ProvideDatesAndParticipants is mapped into a procedure with the same

name, which is responsible for monitoring for requests from the MS to execute the tasks

InformParticipants(mid,mi,MS) and InformDates(mid,mi,MS) and for executing

these tasks when such requests are received. Because of the presence of the concurrency

annotation in Figure 6.17, the two tasks are executed in parallel:

proc ProvideDatesAndParticipants(mid,mi)

 guard Goal(mi,DoAL(mi,InformDates(mid,mi,MS))) do

 InformDates(mid,mi,MS)
 endGuard

 ||
 guard Goal(mi,DoAL(mi,InformParticipants(mid,mi,MS))) do

 InformParticipants(mid,mi,MS)
 endGuard

endProc

The tasks InformDates and InformParticipants are leaf-level tasks in the iASR

diagram in Figure 6.17. The modeler chose not to decompose them further. However, full

details must be provided in the CASL model for the Meeting Initiator. The procedure that

 257

the task InformDates is mapped into first sends to the MS the suggested meeting dates

and then informs the scheduler that it now knows all the suggested dates for a particular

meeting:

proc InformDates(mi,mid,ms)

 for d: SuggestedDate(mid,d) do

 inform(mi,ms,SuggestedDate(mid,d))
 endFor;

inform(mi,ms,∀d.SuggestedDates(mid,d) ⊃
Know(ms,SuggestedDate(mid,d)))

endProc

In the above procedure, the for loop iterates through all the suggested dates executing the

inform action for each of them. After that, another inform action is executed telling the

MS that for each suggested date the scheduler knows that it is a suggested date. Thus, if

the MS does not know that some date is a SuggestedDate, then it is not.

The procedure that the task InformParticipants maps into is very similar to

InformDates and we will not discuss it:

proc InformParticipants(mi,mid,ms)

 for p: Ptcp(mid,d) do

 inform(mi,ms,Ptcp(mid,d))
 endFor;

 inform(mi,ms,∀d.Ptcp(mid,d) ⊃ Know(ms,Ptcp(mid,d)))

endProc

 258

This concludes the mapping process for the Meeting Initiator. Note that the agent is

modeled as being very much aware of what it is doing: the agent’s goals and knowledge

are set and updated appropriately and trigger the relevant behaviour.

We also have to specify the goals and the knowledge that the agent has in the initial

situation. Since the Meeting Initiator is the driving force behind the meeting scheduling

process, it needs to initiate it by trying to achieve its goals. The top-level goal of the MI is

the goal MeetingSetup(mid,mi,s). In order to indicate which meetings it will try to

schedule, we will specify the initial goals of the Meeting Initiator as follows:

Goal(mi,Eventually(MeetingSetup(MID_1,mi,now),now,then),S0)

...
Goal(mi,Eventually(MeetingSetup(MID_n,mi,now),now,then),S0)

This says that in the initial situation, the initiator has the goals to schedule n meetings

with meeting IDs of MID_1 to MID_n. The participants and suggested dates for these

meetings must be specified using the fluents Ptcp and SuggestedDate.

6.7.3 Creating the CASL Model for the MRBS

In this section, we show how the mapping of a capability node into a CASL model differs

from the mapping of other types of nodes. The rest of the model for the MRBS can be

found in Appendix A.1.

Based on the mapping rules for capabilities presented in Section 4.5.4, a goal capability is

mapped into a CASL formula/fluent, a CASL procedure that acquires and achieves the

goal of the capability, a specification of the processes that may occur in the environment

without affecting the success of the capability, and a context condition for the capability

 259

under which it is guaranteed to succeed. Let us see how the goal capability

RoomBookedCap (see Figure 6.18) is mapped into CASL.

Since the capability achieves the goal RoomBooked, it maps into is the defined fluent

RoomBooked:

m(RoomBookedCap).formula = RoomBooked(mid,date,s)

The defined fluent RoomBooked(mid,d,s) tells whether a room has been booked for the

meeting mid on the date d. It is a fluent that is defined in terms of the fluents Room and

AvailableRoom. The goal RoomBooked that is delegated to the MRBS by the scheduler

also maps into this fluent:

RoomBooked(mid,date,s) =
def

∃r[Rooms(r) ∧ Room(mid,date,r,s)] ∨

∀r[Rooms(r) ⊃ ¬AvailableRoom(r,date,s)]

This is the deidealized definition of the goal RoomBooked. This fluent holds if there a

room was booked for the meeting mid on the date or if there is no available room on that

date. AvailableRoom is defined as a room that is not booked:

AvailableRoom(room,date,s) =

def
¬∃mid[Room(mid,date,room,s)]

The specification for the allowable processes in the environment that guarantees that the

capability succeeds in achieving its goal (booking a meeting room if there is one

available while maintaining the consistency of the booking schedule) states that all the

actions are allowed except for the action bookRoom. Effectively, the specification bans

other agents from executing this action (note the non-deterministic iteration operator):

RoomBookedCap.envProc = (π act[(act ≠ bookRoom)?; act])≤k

 260

The context condition for the capability states that in order for the capability to be

successful in booking rooms the MRBS must know initially about the availability of all

rooms on all dates:

RoomBookedCap.context = ∀r,d[(Rooms(r) ∧ IsDate(d)) ⊃
KWhether(MRBS,∃mid.Room(mid,d,r,now),S0)]

The achievement procedure for the capability is the procedure RoomBookedProc.

RoomBookedCap.achieve = RoomBookedProc

At this point, we have the complete mapping of the goal capability RoomBookedCap. The

complete CASL code is presented in Appendix A.1. In Section 4.5.4 we presented a

constraint on the achievement procedures for goal capabilities. It states that in all

situations satisfying the context condition every subjective execution of the achievement

procedure of a capability by the agent in an environment in which processes specified by

envProc may occur terminates with the goal being achieved. In case of RoomBookedCap,

the constraint states that if the MRBS knows the status of all rooms initially and no other

agent is booking rooms, then after the procedure RoomBookedProc(mid,d) is executed

for some meeting ID, either a room is booked for the meeting mid on the date d or there is

no available room on that date. Since the MRBS is personally maintaining the status of

all the meeting rooms, it always has enough information to know whether a room is

available or not and thus will be able to achieve the deidealized goal RoomBooked.

When creating an instance of the system, one needs to make sure that the context

condition of the RoomBookedCap capability holds. Therefore, RoomBookedCap.context

must hold in the initial situation. This means that the agent must know for every room

and every date whether the room is occupied by some meeting on that date. For example,

 261

one can specify that the MRBS knows that the room r1 is booked for the meeting mid1

on the date d1:

Know(MRBS,Room(mid1,d1,r1,now),S0)

Also, the modeler can say that the MRBS knows that no meeting is taking place in the

room r1 on the date d1:

∀mid[Know(MRBS,¬Room(mid,d1,r1,now),S0)]

6.7.4 Creating the CASL Model for the Meeting Participant

In this section we discuss selected aspects of the formal CASL model for the Meeting

Participant actor. The complete CASL specification for the MP is presented in Appendix

A.2. Note that the goal node AtMeeting is not mapped into CASL as per discussion in

Section 6.6.3.

The Meeting Participant actor acquires some goals from intentional dependencies (see

Figure 6.19). The formal definition of the goal AtMeeting was discussed in Section 6.7.1.

Another dependency-acquired goal of the MP is InformedIfAttending(ms,mid,d).

Here, the Meeting Scheduler wants to know whether the participant p is going to attend

the meeting mid. This amounts to checking whether the goal AtMeeting(p,mid,d) is in

the mental state of the participant p. Therefore, the goal InformedIfAttending maps

into the following defined fluent with the same name:

InformedIfAttending(p,ms,mid,d) =
def

KWhether(ms,Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),now),s)

 262

Let us now look at how the MP informs the scheduler about its available dates. As can be

seen from Figure 6.19, the task InformAvailableDates first iterates through all the

dates and reports their status to the MS. It then informs the MS that the participant is

done by using the fluent DoneInforming(mid,p,s). This fluent is defined as follows:

DoneInforming(mid,ptcp,s) =
def

∀d[IsDate(d) ⊃ InformedAvailable(mid,ptcp,d,s)]

DoneInforming is true for some meeting mid and participant ptcp if for all dates it is

true that InformedAvailable(mid,ptcp,d,s). The fluent

InformedAvailable(mid,ptcp,d,s) is true for a particular date d if after receiving a

request from the MS to send available dates for scheduling the meeting mid, the

participant ptcp has sent his/her availability status for the date d to the scheduler. The

participant is finished informing the MS when it has sent the status of all the dates to the

scheduler. The formal definition of InformedAvailable is as follows:

InformedAvailable(mid,p,d,s) =
def

∃s′,s″[S0 ≤ do(request(ms,p,DoAL(

InformAvailableDates(mid,MS,p),now,then)),s′) ≤

do(informWhether(p,MS,Available(p,d,now)),s″) ≤ s]

Here, we want to make sure that when scheduling the meeting mid, the MS has some

recent availability information — the information sent by the participants after they

received the request to execute the task InformAvailableDates for the meeting mid.

 263

6.7.5 Creating the CASL Model for the Meeting Scheduler

In this section, we list all the definitions for goals and conditions found in the iASR

diagram for the Meeting Scheduler (Figure 6.21). The complete CASL specification for

this agent is presented in Appendix A.4.

After requesting the Meeting Initiator to provide the list of suggested meeting dates and

the list of meeting participants for some meeting mid, the MS needs to make sure that it

has that information before proceeding to scheduling the meeting. We have two guard

link annotations with conditions KnowAllDates(mid) and KnowAllPtcp(mid) that make

the program block until the all the suggested dates and participants (respectively) are

known. These conditions are defined as follows:

KnowAllDates(mid,s) =
def Know(MS,∀p[SuggestedDate(mid,p,now) ⊃

Know(MS,SuggestedDate(mid,p,now),now)],s)

KnowAllPtcp(mid,s) =
def Know(MS,∀p[Ptcp(mid,p,now) ⊃

Know(MS,Ptcp(mid,p,now),now)],s)

The self-acquired goal AvailableDatesKnown is mapped into the defined fluent with the

same name that holds when all the participants have informed the MS of their available

dates since it requested that information during the scheduling of the meeting mid (see the

definition of DoneInforming in Section 6.7.4):

AvailableDatesKnown(mid,s) =

def
∀p[Ptcp(mid,p,s) ⊃ DoneInforming(mid,p,s)]

After all the participants, suggested dates, and available dates are known to the Meeting

Scheduler for some meeting mid, it can start the meeting scheduling process. First, it

must determine which dates are good for scheduling meetings. We call these agreeable

dates. These dates must be on the list of suggested dates sent by the Initiator, they must

 264

be known by the scheduler to be available (since the Disruptor can at any time request

participants to attend meetings outside of the organization, this knowledge may not be

entirely accurate), and they must not be locked for any participant of the meeting

(meaning that the MS is not currently trying to schedule other meetings on those dates).

Hence, the definition of the fluent AgreeableDate is as follows:

AgreeableDate(mid,d,s) =
def

SuggestedDate(mid,d,s) ∧

∀p[Ptcp(mid,p,s) ⊃ LastInformedAvailable(p,d,s)] ∧

∀p[Ptcp(mid,p,s) ⊃ ¬Locked(p,d,s)]

As mentioned above, the presence of the Disruptor with its encrypted meeting requests

may invalidate the information the MS has about the availability of the participants.

Therefore, the scheduler cannot just check the truth value of the fluent

Available(ptcp,date,s) for some participant and some date to make sure that

participant is available on that date — it does not know the value of that fluent at the

current time (in the situation s). Instead, it must refer to the time it got that information

from the participant ptcp. So, we formally define the dates that the MS thinks (to the best

of its knowledge) are available as the dates for which the MS was last informed that they

were available and has not since been informed otherwise:

LastInformedAvailable(p,d,s) =
def

 ∃s′.S0 ≤ do(inform(p,MS,Available(p,d,now)),s′) ≤ s ∧

 ¬∃s″.s′ ≤ do(inform(p,MS,¬Available(p,d,now)),s″) ≤ s

The next two definitions allow the Meeting Scheduler to determine whether all the

intended meeting participants agreed to meet on the proposed date or whether some

declined. It is the case that everybody accepted to meet on the date d if they have the

corresponding AtMeeting goal in their mental state:

 265

AllAccepted(mid,d,s) =
def

∀p[Ptcp(mid,p,s)⊃
Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)]

Someone declined to meet on the date d if there is an intended meeting participant

without the goal in its mental state:

SomeoneDeclined(mid,d,s) =
def

∃p[Ptcp(mid,p,s) ∧
¬Goal(p,Eventually(AtMeeting(p,mid,d,now),now,then),s)]

If everybody accepted to hold the meeting mid on the date d, the MS goes ahead and tries

to book a room for the meeting on that date. It delegates the goal RoomBooked(mid,d) to

the MRBS and requests confirmation of the booking. If a room is booked, this means that

the MS has successfully scheduled the meeting mid:

SuccessfullyScheduled(mid,s) =
def

∃d[AgreeableDate(mid,d,s) ∧ AllAccepted(mid,d,s) ∧

RoomBooked(mid,d,s)]

At this point, we can provide the formal definition of the goal ParticipantInformed.

First, the MS must have gone through the scheduling process, so we require that the

fluent DoneScheduling(mid) hold. After the scheduling process is complete, the

participants (including the Meeting Initiator) need to know whether the meeting was

scheduled (the truth value of the fluent SuccessfullyScheduled(mid)) and if the

meeting was, in fact, scheduled successfully, which room was booked for it (the value of

the fluent Room):

 266

ParticipantInformed(p,mid,s) =
def

 DoneScheduling(mid,s) ∧

 (
[Know(p,SuccessfullyScheduled(mid,now),s) ∧

KRef(p,Room(mid,date,r,now),s)] ∨

Know(p,¬SuccessfullyScheduled(mid,now),s)

)

The last definition that we discuss in this section is that of the goal

MeetingScheduledIfPossible. After it has been deidealized, there are four possibilities

to achieve the goal. They are labeled 1 through 4 and are accompanied by comments in

the formal definition below:

MeetingScheduledIfPossible(mid,s) =
def

{1. The meeting has been scheduled}

 SuccessfullyScheduled(mid,s) ∨

{2. No agreeable dates}

 ∀d[IsDate(d) ⊃ ¬AgreeableDate(mid,d,s)] ∨

{3. Some participants cannot attend on all potential dates}

∀d[AgreeableDate(mid,d,s) ⊃ SomeoneDeclined(mid,d,s)] ∨

{4. No rooms available on all the dates that were accepted by the participants}

∀d[SuggestedDate(mid,d,s) ⊃ [AllAccepted(mid,d,s) ⊃

¬RoomBooked(mid,date,s)]]

The first case is when the meeting is successfully scheduled, so the fluent

SuccessfullyScheduled holds. The second case is when there are no agreeable dates.

This means that there is no common slot among the participants to schedule the meeting.

The third case is when there are agreeable dates, but when the MS tries to schedule the

meeting on those dates, some participant always declines. This could be happening if the

 267

participants’ schedules are filling with outside appointments through the Disruptor’s

requests. The fourth possibility is that there are no rooms available for any of the dates

that the participants are willing to meet on.

6.7.6 Creating the CASL Model for the Disruptor

In this section, we list the definition the goal ParticipationRequested found in the

iASR diagram for the Disruptor (Figure 6.20). If sometime in the past the Disruptor

requested that the participant part be at the meeting mid on the date date, then the goal

ParticipationRequested(disruptor,part,mid,date) is achieved:

ParticipationRequested(disruptor,part,mid,date,s) =
def

∃s′[S0 ≤ do(requestEnc(disruptor,part,AtMeeting(part,mid,date)),s′) ≤ s]

To create an instance of the system, the modeler needs to specify the initial goals of the

Disruptor actor. An initial goal for the Disruptor can be specified as follows:

 Goal(Disr1,Eventually(

ParticipationRequested(Disr1,p1,mid1,d1,now),now,then),S0),

which says that the Disruptor Disr1 wants the participant p1 to participate in the meeting

mid1 on the date d1. The complete CASL specification for the Disruptor is presented in

Appendix A.3.

6.7.7 Formal Verification

Formal verification of the CASL model for the meeting scheduling process is left for

future work. After the iASR diagrams for all the actors in the system have been mapped

into a formal CASL specification, a CASL verification tool can be used with great

 268

benefits to the modeler. With such a tool, a specification can be checked to see if it

satisfies certain requirements (e.g., “no meetings on weekends”), the achievability of

goals can be confirmed, and formal goal deidealization and decomposition can also be

verified. In addition, the epistemic feasibility of agent processes — whether agents have

enough knowledge to successfully execute their plans — can be checked. One such tool,

CASLve [Shapiro et al., 2002], has been used to verify a smaller version of the meeting

scheduling system. Verifying systems of the size of the one presented in this chapter

using theorem proving techniques is a large and complex job. Nevertheless, we expect

that with further development the CASLve tool will be able to handle the verification of

our system. The improvement of CASLve seems to be the best approach for obtaining a

solid tool for verifying CASL specifications. Other avenues could be explored as well,

for instance, simulation and model checking. However, most tools based on these

techniques work with much less expressive languages than CASL. Therefore, CASL

specifications must be simplified before these methods can be used on them. For

example, mental states would have to be operationalized and an approach would have to

be found to deal with incomplete information in CASL specifications.

However, even without a verification environment capable of formal verification of an

example of this size, we found that creating iASR diagrams for the system and their

mapping into CASL is extremely beneficial for the modeler. Our methodology requires

the analyst to look more systematically at the domain, take goal decompositions more

seriously, think about the achievability of goals and the epistemic feasibility of agent

processes. This results in better understanding of the system requirements and leads to

higher quality system analysis and design.

 269

6.8 Discussion

In this chapter, we showed how our agent-oriented requirements engineering

methodology is applied to the meeting scheduling case study. The meeting scheduling

system discussed in this chapter has no account of time and a very simplistic treatment of

meeting periods. This was done to simplify the model and both problems can be quite

easily solved. The system can be modified to handle many meetings per day by, for

example, replacing the predicate IsDate(d) with Period(date,hour) and modifying

the rest of the model accordingly, which would give each meeting a one hour slot.

Meetings could also be allowed to span several periods for further flexibility. However,

in this approach, since the system does not have any account of the passage of time (there

is no connection between the actual time and CASL situations), the execution of the

system is separate from the real world, the dates and hours of the meetings. Thus, the

system is not able to, for example, remind a participant that a meeting is starting soon. A

more radical change in approach can be taken to address this. This approach is described

in [Shapiro et al., 1998]. It allows one to associate a time with each situation (the fluent

Time(s) is introduced), assign duration to actions, etc. Using this approach, one would

be able to remind participants of upcoming meetings, and integrate an account of meeting

attendance into the model.

Traceability is a very important matter in software design. In Section 5.6.3 we discussed

requirements traceability in our approach and concluded that it is well supported by our

methodology. However, there is an issue that could be problematic for requirements

traceability. This arises from the ability of analysts to model the achievement of agents’

goals declaratively, not procedurally. For example, the System agent’s goal

NoMeetingsOnWeekends in Figure 6.21 is achieved by the Meeting Scheduler’s task

GetRidOfWeekendDates. Here, for every meeting date that is suggested by the Meeting

Initiator and that falls on a weekend, the MS executes the action removeWeekendDate,

which removes the date from the list of suggested dates. This is a purely procedural way

 270

of making sure that no meeting is scheduled on a weekend and we can easily show how

the goal dependency NoMeetingsOnWeekends is supported by the MS. Another way of

achieving this goal is to change the definition of the fluent AgreeableDate, which

defines the dates that are suitable for scheduling meetings. One can change the definition

presented in Section 6.7.5 in the following way:

AgreeableDate(mid,d,s) =
def

SuggestedDate(mid,d,s) ∧ ¬Weekend(d) ∧

∀p[Ptcp(mid,p,s) ⊃ LastInformedAvailable(p,d,s)] ∧

∀p[Ptcp(mid,p) ⊃ ¬Locked(p,d,s)]

The new definition has an additional conjunct, ¬Weekend(d), which makes sure that no

date that is a weekend date becomes an agreeable date. This is a declarative way of

achieving the goal NoMeetingsOnWeekends. While this new approach may be more

elegant than the procedural one, there is one problem: definitions like this are not easily

represented in iASR models. Thus, unlike the procedural approach in Figure 6.21, we

cannot show visually how the goal is achieved by the MS when using the new definition

of AgreeableDate since there is no node in the iASR diagram where the elimination of

weekend dates is done and therefore no place to connect the goal dependency link from

the System agent. Also, in order to maintain requirements traceability, one needs to show

that only the conjunct ¬Weekend(d) is present in the new definition of AgreeableDate

because of the goal NoMeetingsOnWeekends. It is future work to determine whether and

how declarative CASL facilities that achieve agents’ goals can be effectively used in our

models while maintaining requirements traceability.

We believe that the case study presented in this chapter shows the importance and

benefits of formally modeling goal/task delegation and information exchange in a

multiagent setting. Additionally, formal support for reasoning about goals can provide the

analyst with a new modeling tool. For example, in the meeting scheduling case study we

 271

decided not to maintain schedules for meeting participants explicitly. Instead, we relied

on the presence of AtMeeting(p,mid,d,s) goals in their mental states as an indication

of the participants’ intention to attend certain meetings on certain dates. With the axioms

presented in Section 6.7.1.4 (and also assuming that agents do not drop their

commitments), the consistency of participants’ schedules can be easily maintained since

the meeting requests conflicting with already adopted AtMeeting goals are automatically

rejected.

 272

7 Conclusion

In this thesis, we devised an agent-oriented requirements engineering approach with a

formal component that supports reasoning about agents’ goals (and knowledge), thus

allowing for rigorous formal analysis of the requirements expressed as objectives of the

agents in multiagent systems. We introduced Intentional Annotated Strategic Rationale

(iASR) diagrams, which build on top of ASR diagrams of [Wang, 2001]. Using the set of

rules provided in this thesis (Chapter 4), iASR diagrams can be mapped into the

corresponding CASL specifications for formal analysis and/or simulation. A notion of

agent capability based on the epistemic feasibility [Lespérance, 2002] of agent plans is

formally defined and a capability node is added to the i*-based diagrammatic notation. A

methodology for requirements engineering using our approach is proposed (Chapter 5). A

case study demonstrating the use of the methodology is also presented (Chapter 6).

7.1 Contributions

The main technical contributions of this thesis are listed below.

1) This thesis introduces Intentional Annotated SR (iASR) diagrams (based on the

Annotated SR diagrams of [Wang, 2001]), which support modeling agents’ goals and

knowledge. The thesis also provides clear guidance on the use of goal nodes in iASR

diagrams to simplify the mapping of these diagrams into CASL and describes ways of

synchronizing the behaviour of agents with changes to their mental states.

2) New annotations for iASR diagrams are introduced. These include the interrupt with

a cancellation condition, which provides more flexibility than the original interrupt

 273

annotation of [Wang, 2001], the guard annotation, and the applicability condition

annotation to specify when a means for achieving a goal can be used.

3) A set of mapping rules is proposed to map iASR diagrams into the corresponding

CASL specifications while preserving requirements traceability and supporting the

modeling of explicit goals and knowledge. The possibilities for an automated

mapping are outlined (Section 5.8).

4) In this thesis, we introduce self-acquired goals (Section 4.3.8) that can be added to the

mental state of the agents in the absence of requests from other agents. We show that

these goals can be used as a tool to add flexibility to multiagent systems

specifications and make agents aware of what they are doing. Also, self-acquired

goals can be used to formally reason about goal decompositions at runtime.

5) The notion of an agent capability as an epistemically feasible agent plan is introduced

(Section 4.5) together with capability nodes to be used in SD, SR, and iASR

diagrams. The mapping of goal and task capabilities into CASL programs that are

guaranteed to successfully execute under certain conditions is presented.

6) A methodology for the combined use of i* and CASL is presented (Chapter 5). The

methodology describes the steps of the requirements engineering process starting

from the identification of stakeholders up to the formal verification of CASL

specifications. We also propose some improvements to the i* modeling process

including the use of self-dependencies and the System agent (Sections 5.2.3 and 5.3.2

respectively). Self-dependencies help in modeling actors that depend on themselves

for achieving their goals, etc., while the System agent is useful in modeling goals that

the system-to-be as a whole is expected to achieve.

 274

7.2 Benefits

The main advantage of the approach for the combined use of i* and CASL proposed in

this thesis is that it allows for the formal analysis of agents’ goals and knowledge in the

context of requirements engineering. This has the following benefits:

a) Goals are now represented as mental states. This is different from other

approaches (e.g., KAOS and Tropos) where goals are treated as formulae that the

whole system must satisfy. In our approach, goals are attributed to particular

agents and become their motivations. Therefore, this approach is more agent-

oriented and allows for precise modeling of stakeholder goals. With our approach,

one can create and formally analyze a model with stakeholders that have

conflicting goals, a common case in requirements engineering. Modeling of agent

negotiations is also possible with our approach.

b) Goal delegation is an integral part of multiagent systems and the ability to

represent and analyze intentional dependencies is one of the most important

features of i*. Our approach allows for formal analysis of goal delegation.

c) The ability to formally analyze agents’ knowledge allows us to model knowledge

exchange among agents and represent incomplete knowledge in the system.

Formal reasoning about agents’ goals and knowledge allows for rigorous analysis

of complex inter-agent interactions. An example inter-agent protocol is analyzed

(Section 4.4.6).

d) Agent processes can now be checked for their executability and epistemic

feasibility. Agent goals can be checked for achievability.

e) Goals do not have to be abstracted out before the formal analysis is done.

 275

f) Formal modeling and analysis of issues such as trust and privacy is now possible.

g) A formal CASL specification can be used both as a requirements analysis tool and

as a formal high-level specification for a multiagent system.

7.3 Future Work

Here, we identify some of important areas for future work

• In this thesis, we only handled achievement goals of the form

Goal(agt,Eventually(φ)). In the future, we would like to add support for other

types of goals, e.g., maintenance goals and “achieve and maintain” goals.

• In Section 4.4.6 we sketched how an agent interaction protocol can be modeled in

CASL. We would like to explore how such protocols could be visually modeled

in i* and then mapped into CASL specifications.

• We would like to investigate whether CASL could be used to formally analyze

SD models. Since SD diagram cannot represent the details of agent processes, we

expect that mainly the declarative facilities of CASL (including agent goals and

knowledge) can be used at this stage of the requirements engineering process.

• We would also like to explore how privacy, security, and trust could be modeled

in the formal CASL framework. This would involve relaxing some restrictions on

knowledge exchange and goal delegation (e.g., we can allow false information to

be communicated by agents or make all communications encrypted).

 276

• More work needs to be done in order to explore how agent capabilities can be

guaranteed to always succeed and how to make them into pluggable modules.

• Another area of future work is to see how advanced aspects of agent-based

systems can be modeled in i* and formally analyzed in CASL. This includes, for

instance, modeling the ability of smart deliberating agents to come up with

(previously unidentified) plans for achieving their goals at runtime.

• In Section 6.8 we discussed how a goal (NoMeetingsOnWeekends) can be

achieved by using the declarative facilities of CASL. It remains to be investigated

how this can be reflected in iASR diagrams and how requirements traceability can

be preserved in this case.

 277

Bibliography

F. Alencar, J. Castro, G. Cysneiros and J. Mylopoulos. From Early Requirements
Modeled by the i* Technique to Later Requirements Modeled in Precise UML. In Proc.
Anais do III Workshop em Engenharia de Requisitos, Rio de Janeiro, Brazil, 2000, pp.
92-109.

M. Bissener. A Proposal For A Requirements Engineering Method Dealing with
Organizational, Non-Functional and Functional Requirements. Ph.D. Thesis. Computer
Science Department, University of Namur, 1997.

G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language: User Guide.
Addison-Wesley, 1999.

F. Brazier, B. Dunin-Keplicz, N.R. Jennings and J. Treur. Formal Specification of
Multiagent Systems: a Real-World Case. In Proc. First International Conference on
Multi-Agent Systems (ICMAS-95), San Francisco, CA, June, 1995, pp. 25-32.

J. Castro, M. Kolp and J. Mylopoulos. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems, 27(6), pp. 365-389,
2002.

J. Castro, R. Pinto, A. Castor and J. Mylopoulos. Requirements Traceability in Agent-
Oriented Development. In A.F. Garcia, C.J.P.d. Lucena, F. Zambonelli, A. Omicini and J.
Castro, Eds., Software Engineering for Large-Scale Multi-Agent Systems, Research
Issues and Practical Applications, pp. 57-72, LNCS, Springer, 2003.

F. Chabot, J.F. Raskin and P.Y. Schobbens. The Formal Semantics of Albert II.
Technical Report. Computer Science Department, University of Namur, Namur,
Belgium, 1998.

L.K. Chung, B.A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer, 2000.

A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: A New Symbolic Model
Verifier. In Proc. International Conference on Computer-Aided Verification (CAV'99),
Trento, Italy, July 7-10, 1999.

A. Collinot, A. Drogoul and P. Benhamou. Agent-Oriented Design of a Soccer Robot
Team. In Proc. Second International Conference on Multi-Agent Systems (ICMAS-96),
Kyoto, Japan, 1996, pp. 41-47.

 278

A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-Directed Requirements
Acquisitions. Science of Computer Programming, 20, pp. 3-50, 1993.

R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In Proc. 4th ACM Symposium on the Foundation of Software
Engineering, October, 1996, San Francisco, USA.

A. Davis. Software Requirements: Objects, Functions and States. Prentice Hall, 1993.

G. De Giacomo, Y. Lespérance and H. Levesque. ConGolog, A Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence, 121, pp. 109-169,
2000.

P. du Bois. The Albert II Language: On the Design and the Use of a Formal Specification
Language for Requirements Analysis. Ph.D. Thesis. Computer Science Department,
University of Namur, Namur, Belgium, 1995a.

P. du Bois. Intuitive Definition of the Albert II Language. Technical Report RP-95-007.
Computer Science Department, University of Namur, Namur, Belgium, 1995b.

P. du Bois, E. Dubois and J.-M. Zeippen. On the Use of a Formal Requirements
Engineering Language: The Generalized Railroad Crossing Problem. In Proc. Third IEEE
International Symposium on Requirements Engineering, 1997, IEEE Computer Society
Press.

E. Dubois, P. du Bois, F. Dubru and M. Petit. Agent-Oriented Requirements Engineering:
A Case Study Using the Albert language. In Proc. Proc. of the Fourth International
Working Conference on Dynamic Modelling and Information System DYNMOD-IV,
Noordwijkerhoud, The Netherlands, September 28-30, 1994.

E. Dubois and M. Petit. Using a Formal Declarative Language for Specifying
Requirements Modelled in CIMOSA. In Proc. European Workshop on Integrated
Manufacturing Systems Engineering (IMSE ’94), Grenoble, France, December 12-14,
1994, pp. 233-241.

E. Dubois, E. Yu and M. Petit. From Early to Late Formal Requirements: a Process
Control Case Study. In Proc. 9th International Workshop on Software Specification and
Design, Isobe, Japan, 1998, pp. 34-42, IEEE Computer Society.

T. Finin, Y. Labrou and J. Mayfield. KQML as an agent communication language. In J.
Bradshaw, Ed. Software Agents, MIT Press, 1997.

FIPA. The Foundation for Intelligent Physical Agents. 2001. Available at www.fipa.org.

http://www.fipa.org

 279

A. Fuxman, P. Giorgini, M. Kolp and J. Mylopoulos. Information Systems as Social
Structures. In Proc. 2nd International Conference on Formal Ontologies for Information
Systems (FOIS'01), Ogunquit, ME, USA, October, 2001a.

A. Fuxman, M. Pistore, J. Mylopoulos and P. Traverso. Model Checking Early
Requirements Specifications in Tropos. In Proc. Fifth IEEE International Symposium on
Requirements Engineering (RE'01), Toronto, Canada, August 27-31, 2001b.

F. Giunchiglia, J. Mylopoulos and A. Perrini. The Tropos Software Development
Methodology: Processes, Models and Diagrams. In F. Giunchiglia, J. Odell and G. Weiss,
Eds., Agent-Oriented Software Engineering III, Third International Workshop, AOSE
2002, Bologna, Italy, July 15, 2002, Revised Papers and Invited Contributions, pp. 162-
173, LNCS 2585, Springer, 2003.

N. Glaser. Contribution to Knowledge Management in a Multi-Agent Framework (The
CoMoMAS Approach). Ph.D. Thesis. L'Universtite Henri Poincare, Nancy, France, 1996.

O. Gotel and A. Finkelstein. An Analysis of the Requirements Traceability Problem. In
Proc. First Int'l Conference on Requirements Engineering, 1994, pp. 94-101.

IEEE. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12.
1990.

C. Iglesias, M. Garrijo and J. Gonzales. A Survey of Agent-Oriented Methodologies. In
Proc. 5th International Workshop on Intelligent Agents: Agent Theories, Architectures,
and Languages (ATAL-98), Paris, France, July, 1998, pp. 317-330.

F. Ingrand, M. Georgeff and A. Rao. An Architecture for Real-Time Reasoning and
System Control. IEEE Expert, 7(6), December, 1992.

M. Jackson. Software Requirements and Specifications: A Lexicon of Practice, Principles
and Prejudices. Addison-Wesley, 1995.

M. Jackson. The Meaning of Requirements. Annals of Software Engineering, 3, pp. 5-21,
1997.

N.R. Jennings. Agent-Oriented Software Engineering. In Proc. 9th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-99), Valencia,
Spain, 1999, pp. 1-7.

N.R. Jennings and M. Wooldridge. Applications of Intelligent Agents. In N.R. Jennings
and M. Wooldridge, Eds., Agent Technology: Foundations, Applications, and Markets,
pp. 3-28, Springer-Verlag, 1998.

 280

D. Kinny, M. Georgeff and A. Rao. A Methodology an Modelling Technique for Systems
of BDI Agents. In W.V.d. Velde and J.W. Perram Eds., Proc. Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, 1996, pp. 56-71,
Springer-Verlag.

M. Kolp and J. Mylopoulos. Software Architectures as Organizational Structures. In
Proc. ASERC Workshop on "The Role of Software Architectures in the Construction,
Evolution, and Reuse of Software Systems", Edmonton, Canada, August 24-25, 2001.

G. Kotonya and I. Sommerville. Requirements Engineering: Processes and Techniques.
Wiley, 1998.

A. Lapouchnian and Y. Lespérance. Interfacing Indigolog and OAA: A Toolkit for
Advanced Multiagent Applications. Applied Artificial Intelligence, 16(9-10), pp. 813-
829, 2002.

Y. Lespérance. On the Epistemic Feasibility of Plans in Multiagent Systems
Specifications. In J.J.C. Meyer and M. Tambe, Eds., Intelligent Agents VIII - Agent
Theories, Architectures, and Languages, 8th International Workshop (ATAL-2001),
Revised papers, pp. 69-85, LNAI 2333, Springer, 2002.

E. Letier and A. van Lamsweerde. Handling Obstacles in Goal-Oriented Requirements
Engineering. IEEE Transactions on Software Engineering, Special Issue on Exception
Handling, 26(10), October, 2000.

E. Letier and A. van Lamsweerde. Agent-Based Tactics for Goal-Oriented Requirements
Elaboration. In Proc. 24th International Conference on Software Engineering, Orlando,
FL, USA, May, 2002, ACM Press.

D.L. Martin, A.J. Cheyer and D.B. Moran. The Open Agent Architecture: A Framework
for Building Distributed Software Systems. Applied Artificial Intelligence, 13(1-2), pp.
91-128, January-March, 1999.

J. McCarthy and P. Hayes. Some Philosophical Problems From the Standpoint of
Artificial Intelligence. In B.Meltzer and D. Michie, Eds., Machine Intelligence, Volume
4, pp. 463-502, Edinburgh University Press, 1969.

M. Merritt, F. Modugno and M. Tuttle. Time Constrained Automata. In 2nd Intl
Conference on Concurrency Theory (Concur'91), LNCS 527, Springer, 1991.

B. Meyer. Object-Oriented Software Construction, 2 Ed. Prentice Hall, 1997.

 281

R.C. Moore. A Formal Theory of Knowledge and Action. In J.R. Hobbs and R.C. Moore,
Eds., Formal Theories of the Common Sense World, pp. 319-358, Ablex Publishing,
1985.

J. Mylopoulos. Requirements-Driven Software Development. Presentation at Catholic
University of Louvain, October 26, 1999.

J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis. Telos: Representing Knowledge
about Information Systems. ACM Transactions on Information Systems, 8(4), pp. 325-
362, October, 1990.

J. Mylopoulos, L.K. Chung, S. Liao, H. Wang and E. Yu. Exploring Alternatives during
Requirements Analysis. IEEE Software, 18(1), January-February, 2001a.

J. Mylopoulos, M. Kolp and J. Castro. UML for Agent-Oriented Software Development:
The Tropos Project. In Proc. The Fourth International Conference on the Unified
Modeling Language (UML'01), Toronto, Canada, October, 2001b.

B.A. Nuseibeh and S.M. Easterbrook. Requirements Engineering: A Roadmap. In
A.C.W. Finkelstein, Ed. The Future of Software Engineering. (Companion volume to the
proceedings of the 22nd International Conference on Software Engineering, ICSE'00),
IEEE Computer Society Press, 2000.

J. Odell, H. Van Dyke Parunak and B. Bauer. Extending UML for Agents. In Proc. 2nd
Intl. Workshop on Agent-Oriented Information Systems (AOIS'00), Austin, TX, USA,
July, 2000, pp. 3-17.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar and M. K.Srivas. PVS: Combining
Specification, Proof Checking, and Model Checking. In R. Alur and T.A. Henzinger Eds.,
Proc. Computer-Aided Verification (CAV ’96), New Brunswick, NJ, USA, July-August,
1996, pp. 411–414, Springer-Verlag.

L. Padham and P. Lambrix. Agent Capabilities: Extending BDI Theory. In Proc.
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Austin, TX,
USA, August, 2000.

B. Ramesh and M. Jarke. Towards Reference Models for Requirements Traceability.
IEEE Transactions on Software Engineering, 27(1), pp. 58-93, January, 2001.

A.S. Rao and M.P. Georgeff. BDI Agents: From Theory to Practice. In Proc. First Intl.
Conference on Multiagent Systems, San Francisco, CA, USA, 1995.

R. Reiter. The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes)
and a Completeness Result for Goal Regression. In V. Lifschitz, Ed. Artificial

 282

Intelligentce and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pp. 359-380, Academic Press, 1991.

J. Rumbaugh, I. Jackobson and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

R.B. Scherl and H. Levesque. The Frame Problem and Knowledge-producing actions. In
Proc. Eleventh National Conference on Artificial Intelligence, Washington, DC, July,
1993, pp. 689-695.

A.T. Schreiber, R.J. Wieringa, J.M. Akkermans and W. Van de Velde. CommonKADS:
A Comprehensive Methodology for KBS Development. University of Amsterdam,
Netherlands Energy Research Foundation ECN, and Free University of Brussels, 1994.

J. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, New York, 1969.

S. Shapiro and Y. Lespérance. Modeling Multiagent Systems with the Cognitive Agents
Specification Language - A Feature Interaction Resolution Application. In C.
Castelfranchi and Y. Lespérance, Eds., Intelligent Agents Volume VII - Proceedings of
the 2000 Workshop on Agent Theories, Architectures, and Languages (ATAL-2000), pp.
244-259, LNAI 1986, Springer, 2001.

S. Shapiro, Y. Lespérance and H. Levesque. Specifying Communicative Multi-Agent
Systems with ConGolog. In W. Wobcke, M. Pagnucco and C. Zhang, Eds., Agents and
Multi-Agent Systems - Formalisms, Methodologies, and Applications, pp. 1-14, Springer,
1998.

S. Shapiro, Y. Lespérance and H. Levesque. The Cognitive Agents Specification
Language and Verification Environment for Multiagent Systems. In C. Castelfranchi and
W.L. Johnson Eds., Proc. First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, July 15-19, 2002, ACM Press.

S. Shapiro, M. Pagnucco, Y. Lespérance and H. Levesque. Iterated Belief Change in the
Situation Calculus. In A.G. Cohn, F. Giunchiglia and B. Selman, Eds., Principles of
Knowledge Representation and Reasoning: Proceedings of the Seventh International
Conference (KR-2000), pp. 527-538, Morgan Kaufmann, 2000.

H. Sharp, A. Finkelstein and G. Galal. Stakeholder Identification in the Requirements
Engineering Process. In Proc. 10th International Workshop on Database and Expert
Systems Applications, Florence, Italy, September, 1999, pp. 387-391.

Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60(1), pp. 51-92,
March, 1993.

 283

H.A. Simon. The Sciences of the Artificial, 2 Ed. MIT Press, Cambridge, MA, 1981.

R.G. Smith and R. Davis. Frameworks for Cooperation in Distributed Problem Solving.
IEEE Transactions on Systems, Man and Cybernetics, 11(1), pp. 61-70, 1981.

Sun Microsystems. Enterprise JavaBeans Technology Specifications. 2002. Available at
java.sun.com/products/ejb/docs.html.

K. Sycara, J. Lu, M. Klusch and S. Widoff. Matchmaking among Heterogeneous Agents
on the Internet. In Proc. 1999 AAAI Spring Symposium on Intelligent Agents in
Cyberspace, Stanford University, Stanford, CA, USA, March, 1999.

A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective.
In Proc. 22nd International Conference on Software Engineering, Limerick, Ireland,
June, 2000.

A. van Lamsweerde, R. Darimont and P. Massonet. Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In Proc. Second
IEEE International Symposium on Requirements Engineering (RE'95), York, UK, 1995,
pp. 194-203, IEEE Compouter Society Press.

X. Wang. Agent-Oriented Requirements Engineering Using ConGolog and i*
Frameworks. M.Sc. Thesis. Department of Computer Science, York University, Toronto,
2001.

X. Wang and Y. Lespérance. Agent-Oriented Requirements Engineering Using
ConGolog and i*. In G. Wagner, K. Karlapalem, Y. Lespérance and E. Yu Eds., Proc.
3rd International Bi-Conference Workshop Agent-Oriented Information Systems (AOIS-
01), 2001, pp. 59-78, iCue Publishing, Berlin.

R.J. Wieringa and E. Dubois. Integrating Semi-Formal and Formal Software
Specification Techniques. Information Systems, 23(3-4), 1998.

M. Wooldridge. Agent-Based Software Engineering. IEE Proceedings on Software
Engineering, 144(1), pp. 26-37, 1997.

M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The State of the
Art. In P. Ciancarini and M. Wooldridge, Eds., Agent-Oriented Software Engineering,
LNAI Volume 1957, Springer-Verlag, 2001.

M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2), pp. 115-152, 1995.

 284

M. Wooldridge, N.R. Jennings and D. Kinny. The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3),
2000.

P. Yolum and M.P. Singh. Commitment Machines. In Proc. Agent Theories,
Architectures, and Languages, 8th International Workshop (ATAL-2001), Seattle, WA,
USA, August 1-3, 2001.

E. Yu. Modeling Strategic Relationships For Process Reengineering. Ph.D. Thesis.
Department of Computer Science, University of Toronto, 1995.

E. Yu. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In Proc. Third IEEE International Symposium on Requirements Engineering
(RE'97), Annapolis, USA, 1997, pp. 226 -235, IEEE Computer Society Press.

E. Yu, P. du Bois, E. Dubois and J. Mylopoulos. From Organization Models to System
Requirements - A “Cooperating Agents” Approach. In M.P. Papazoglou and G.
Schlageter, Eds., Cooperative Information Systems: Trends and Directions, pp. 293-312,
Academic Press, 1997.

E. Yu and J. Mylopoulos. Understanding "Why" in Software Process Modelling,
Analysis, and Design. In Proc. 16th International Conference on Software Engineering,
Sorrento, Italy, May 16-21, 1994, pp. 159-168.

P. Zave. Classification of Research Efforts in Requirements Engineering. ACM
Computing Surveys, 29(4), pp. 315-321, 1997.

 285

Appendix A. The Complete CASL
Specification for the Case Study

A.1 The CASL Specification for the MRBS

Refer to Figure 6.18 for the corresponding iASR diagram.

proc MRBSBehaviour()

 <mid,d: Goal(MRBS,Eventually(RoomBooked(mid,d))) ∧

 Know(MRBS,¬RoomBooked(mid,d)) →

 RoomBookedProc(mid,d)
 until SystemDone>

 ||
 <mid,d: Goal(MRBS,DoAL(ConfirmRoom(MS,mid,d),now,then)) ∧

 Know(MRBS,¬∃s,s′(s≤s′≤now ∧ DoAL(ConfirmRoom(MS,mid,d),s,s′))) →

 ConfirmRoom(MS,mid,d)
 until SystemDone>

endProc

proc RoomBookedProc(mid,d)

 if ¬Goal(MRBS,Eventually(RoomBooked(mid,d))) then

 commit(MRBS,Eventually(RoomBooked(mid,d)))

endIf;

 guard Goal(MRBS,Eventually(RoomBooked(mid,d))) do

 BookRoomProc(mid,d)
 endGuard

endProc

 286

proc BookRoomProc(mid,d)

 if ∃r.AvailableRoom(r,d) then

 πr.AvailableRoom(r,d)?;

 bookRoom(MRBS,mid,d,r);
 endIf

 setDoneBooking(MRBS,mid)
endProc

proc ConfirmRoom(MS,mid,d)

 guard DoneBooking(mid) do

 SendConfirmation(MS,mid,d)
 endGuard

endProc

proc SendConfirmation(MS,mid,d)

 informWhether(MRBS,MS,RoomBooked(mid,d));
 if KRef(MRBS,Room(mid,d,r)) then

 informRef(MRBS,MS,Room(mid,d,r))
 endIf

endProc

A.2 The CASL Specification for the Meeting Participant

Refer to Figure 6.19 for the corresponding iASR diagram.

proc ParticipantBehaviour(mp)

 <mid: Goal(mp,DoAL(InformAvailableDates(mid,MS),now,then) ∧

 Know(mp,¬∃s,s′(s≤s′≤now ∧ DoAL(InformAvailableDates(mid,MS),s,s′))) →

 InformAvailableDates(mid,MS,mp)

 287

 until SystemDone>

 ||
 <mid,date: Goal(mp,Eventually(AtMeeting(mid,date) ∧

 Know(mp,¬AtMeeting(mid,date)) →

 no_op
 until SystemDone>

 ||
 <mid,date: Goal(mp,Eventually(InformedIfAttending(MS,mid,date))) ∧

 Know(mp,¬InformedIfAttending(MS,mid,date)) →

 InformedIfAttendingAndKnowIfScheduled(MS,mid,date,mp)
 until SystemDone>

endProc

proc InformAvailableDates(mid,MS,mp)

 for d: IdDate(d) do

 informWhether(mp,MS,AvailableDate(mp,d))
 endFor;

 inform(mp,MS,DoneInforming(mid,mp))
endProc

proc InformedIfAttendingAndKnowIfScheduled(MS,mid,date,mp)

 informWhether(mp,MS,Goal(mp,Eventually(AtMeeting(mp,mid,date))));

 if Goal(mp,Eventually(AtMeeting(mp,mid,date))) then

 KnowWhenScheduled(mid,mp)
 endIf

endProc

proc KnowWhenScheduled(mid,mp)

 commit(mp,Eventually(ParticipantInformed(mp,mid)));

 288

 guard Goal(mp,Eventually(ParticipantInformed(mp,mid))) do

 request(mp,MS,Eventually(ParticipantInformed(mp,mid)))

 endGuard

endProc

A.3 The CASL Specification for the Disruptor

Refer to Figure 6.20 for the corresponding iASR diagram.

proc DisruptorBehaviour(disr)

 <p,mid,d:Goal(disr,Eventually(ParticipationRequested(

disr,p,mid,d))) ∧
 Know(disr,¬ParticipationRequested(disr,p,mid,d)) →

 requestEnc(disr,p,Eventually(AtMeeting(p,mid,d)))

 until SystemDone>

endProc

A.4 The CASL Specification for the Meeting Scheduler

Refer to Figure 6.21 for the corresponding iASR diagram.

proc MSBehaviour()

 <mid,mi: Goal(MS,Eventually(MeetingScheduledIfPossible(mid,mi))) ∧

 Know(MS,¬MeetingScheduledIfPossible(mid,mi)) →

 TryToScheduleMeetingAndBookRoom(mid,mi)
 until SystemDone>

 ||
 <part,mid: Goal(MS,Eventually(ParticipantInformed(part,mid))) ∧

 Know(MS,¬ParticipatnInformed(part,mid)) →

 289

InformParticipant(part,mid)
 until SystemDone>

endProc

proc TryToScheduleMeetingAndBookRoom(mid,mi)

 request(MS,mi,DoAL(informParticipants(mid)));

 request(MS,mi,DoAL(informDates(mid)));

 guard KnowAllDates(mid) do

 GetRidOfWeekendDates(mid)
 endGuard;

 guard KnowAllPtcp(mid) do

 commit(MS,Eventually(AvailableDatesKnown(mid)

 endGuard;

 guard Goal(MS,Eventually(AvailableDatesKnown(mid) do

 for p: Ptcp(mid,p) do

 request(MS,p,DoAL(InformAvailableDates(mid))

 endFor

 endGuard;

 guard AvailableDatesKnown(mid) do

 TryAgreeableDates(mid,mi)
 endGuard;

endProc

proc GetRidOfWeekendDate(mid)

 for d: Weekend(d) ∧ SuggestedDate(mid,d) do

 removeWeekendDate(MS,mid,d)
 endFor

endProc

 290

proc TryAgreeableDates(mid,mi)

 for d: AgreeableDate(mid,d) do

 TryDates(mid,d,mi)
 endFor;

 if ¬SuccessfullyScheduled(mid) then

 setDoneScheduling(MS,mid)
 endIf

endProc

proc TryDates(mid,d,mi)

 if ¬SuccessfullyScheduled(mid) then

 TryOneDate(mid,d,mi)
 endIf

endProc

proc TryOneDate(mid,d)

 lockDate(MS,mi,d);
 for p: Ptcp(mid,p) do

 lockDate(MS,p,d)
 endFor;

 for p: Ptcp(mid,p) do

 ContactParticipant(mid,d,p)
 endFor;

 guard ∀p.Ptcp(mid,p) ⊃

KWhether(MS,Goal(p,Eventually(AtMeeting(p,mid,d)))) do

ProcessReplies(mid,d,mi)
 endGuard

endProc

 291

proc ContactParticipant(mid,d,p)

 request(MS,p,Eventually(AtMeeting(p,mid,d)));

 request(MS,p,Eventually(InformedIfAttending(p,MS,mid,d)))

endProc

proc ProcessReplies(mid,d,mi)

 if SomeoneDeclined(mid,d) then

 CancelMeetingForDate(mid,d,mi)
 endIf;

 if AllAccepted(mid,d) then

 ReserveRoomForDate(mid,d,mi)
 endIf

endProc

proc CancelMeetingForDate(mid,d,mi)

 unLockDate(MS,mi,d);
 for p: Ptcp(mid,p) do

 unlockDate(MS,p,d)
 endFor;

 for p: Ptcp(mid,p) do

 cancelRequest(MS,p,Eventually(AtMeeting(p,mid,d)))

 endFor

endProc

 292

proc ReserveRoomForDate(mid,d,mi)

 request(MS,MRBS,Eventually(RoomBooked(mid,d)));

 AskForConfirmation(mid,d);
 guard KWhether(MS,RoomBooked(mid,d) do

 ProcessReply(mid,d,mi)
 endGuard

endProc

proc AskForConfirmation(mid,d)

 request(MS,MRBS,DoAL(ConfirmRoom(MS,mid,d)));

endProc

proc ProcessReply(mid,d,mi)

 if Know(MS,RoomBooked(mid,d) then

 setDoneScheduling(MS,mid)
 endIf;

 if Know(MS,¬RoomBooked(mid,d)) then

 FailedToBookRoom(mid,d,mi)
 endIf

endProc

proc FailedToBookRoom(mid,d,mi)

 unlockDate(MS,mi,p);
 for p: Ptcp(mid,p) do unlockDate(MS,p,d) endFor;

 for p: Ptcp(mid,p) do

 cancelRequest(MS,p,Eventually(AtMeeting(p,mid,d)))

 endFor

endProc

 293

proc InformParticipant(p,mid)

 guard DoneScheduling(mid) do

 SendStatusAndRoom(p,mid)
 endGuard

endProc

proc SendStatusAndRoom(p,mid)

 informWhether(MS,p,SuccessfullyScheduled(mid));
 if Know(MS,RoomBooked(mid,d)) then

 informRef(MS,p,Room(mid,d,r)) endIf

endProc

